
Vol.:(0123456789)

Experimental Mechanics (2024) 64:785–804 
https://doi.org/10.1007/s11340-024-01053-1

RESEARCH PAPER

Influence of Contact Stresses on Crack‑Tip Stress Field: 
A Multiparameter Approach Using Digital Photoelasticity

G. Ramaswamy1 · K. Ramesh1  · U. Saravanan2

Received: 12 October 2023 / Accepted: 29 February 2024 / Published online: 4 April 2024 
© Society for Experimental Mechanics 2024

Abstract
Background The interaction of stress fields between cracks or cracks with discontinuities like holes, etc., has been widely 
studied. Another crucial class of problems include cracks interacting with contact stresses but there has been no work to 
study them systematically.
Objective This study aims to understand the role of contact stress in influencing the crack-tip stress field which is essential 
for reliable estimation of stress intensity factors (SIFs) experimentally.
Method The contact stress influence on crack-tip isochromatic features is initially discussed using an experimental result 
for a moderately-deep beam with a small crack. SIFs are evaluated using the over-deterministic nonlinear least squares 
method. The crack-contact stress interaction is then studied by a superposed crack-contact analytical solution. Photoelastic 
experiments are conducted for a cracked moderately-deep beam subjected to three-point bending. The SIFs evaluated using 
the multiparameter solution compare well with finite element predictions. Subsequently, multiple interaction configurations 
are experimentally examined in a cracked moderately-slender beam by varying the magnitude and position of the contact 
load relative to the crack.
Results Even a small crack shows a noticeable change in isochromatics due to influence of contact stress and a two-parameter 
solution is inadequate here. A multiparameter crack-tip solution is observed to capture the isochromatic fringe field very 
effectively towards SIF evaluation.
Conclusion The changes in isochromatics at a crack-tip due to contact stresses are significant. A systematic analysis shows 
that with appropriate data collection, the multiparameter solution provides SIFs with very little uncertainty in the presence 
of contact stresses with varying complexities.
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Nomenclature
a  Crack length, mm
ac  Semi-contact length, mm
AIn  Mode-I crack tip stress field parameters (n = 1, 

2, 3…)
AIIn  Mode-II crack tip stress field parameters (n = 1, 

2, 3…)
c  Calibration specimen image
d  Depth of the beam, mm
e  Error
E  Young’s modulus, GPa
F�  Material stress fringe value, N/mm/fringe
h  Thickness of the model, mm
J  J-Integral, MPa-m
KI  Mode-I stress intensity factor, MPa√m
KII  Mode-II stress intensity factor, MPa√m
L  Clear span of the beam, mm
N  Fringe order
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Highlights
• Contact stress influence on a crack-tip stress field is brought out 

using digital photoelasticity
• Irwin's two-parameter method is not applicable even for short 

cracks far away from contact load
• SIFs evaluated using the multiparameter approach for crack-

contact interaction are validated with finite elements for a 
moderately-deep three-point bent beam

• This approach is then systematically assessed across various 
crack-contact configurations in a moderately-slender three-point 
bent beam

• The multiparameter crack-tip solution very effectively captures 
complex fringe features towards SIF evaluation in interaction 
problems with minimal uncertainty in the values

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11340-024-01053-1&domain=pdf
http://orcid.org/0000-0002-1979-175X


786 Experimental Mechanics (2024) 64:785–804

P  Applied contact load, N
r  Radial distance of point of interest measured 

from the crack tip, mm
R1, R2  Radii of contacting bodies, mm
R, G, B  Red, green, blue colour intensities
H, S, V  Hue, saturation and value colour components
S  Distance between contact loading axis and 

crack axis, mm
t  Test specimen image
x, y  Spatial coordinates in mm
�1, �2  In-plane principal stresses, MPa
�ox  Constant stress term in the �x component 

(T-stress), MPa
�x, �y, �xy  Stress components in Cartesian coordinates, 

MPa
θ   Angle subtended by point of interest from 

crack axis, radians/ degrees
ν  Poisson’s ratio
μ  Coefficient of friction

Abbreviations
CDF  Colour difference formula
CE  Convergence error
CTR   Crack-tip refinement
FEM  Finite element model
FRSTFP  Fringe Resolution Guided Scanning in TFP
NLR  Nonlinear
SEN   Single-edge notched specimen
SIF   Stress intensity factor
TFP  Twelve fringe photoelasticity
XFEM   Extended finite element method

Introduction

Nearly all mechanical components are subjected to 
interacting stress fields during service which deteriorate their 
performance and design life. These interactions could occur 
between cracks or cracks with nearby discontinuities such as 
holes, etc., or crack and contact stresses. Studies have focussed 
on interacting cracks [1–6] under various configurations using 
experiments and simulations to understand effects like stress 
amplification and shielding. The effect of discontinuities like 
holes on the crack path have also been studied [7–11].

Researchers have also investigated cracks developed at the 
bi-material interface, experimentally and numerically, in vari-
ous configurations over time [12–16]. In the case of interac-
tion problems, photoelastic fringes have provided a wealth of 
information in both qualitative as well as quantitative sense.

The corrected multiparameter crack-tip solution given 
by Atluri and Kobayashi [17, 18] has been widely used in 

experimental fracture mechanics to study complex mixed-
mode problems. Similarly, the analytical equations with 
elliptical contact stress distribution given by Smith and 
Liu [19] have been used to understand contact developed 
between two elastic bodies even if friction is present at 
the contact. Further, in conjunction with the experimental 
technique of photoelasticity which gives isochromatics 
(contours of σ1-σ2) as output, the over deterministic non-
linear least squares method has been used to study fracture 
problems [3, 4, 20, 21] and contact problems [22–25], 
separately. These have been used to evaluate fracture 
parameters including SIFs and contact parameters, namely, 
contact length and friction coefficient. Photoelastic fringes 
have also assisted in understanding mode dominance in 
fracture problems [26, 27] and effect of friction in contact 
stress fields [22, 23].

There has been no work till date to study the interaction 
of crack and contact stress field. Studies have mostly been 
limited to extraction of SIFs using only a two-parameter 
solution for a crack close to contact stresses [28] or analysing 
only a single crack-contact configuration [29]. There is a 
need for a systematic study to draw meaningful conclusions. 
The evaluation of SIFs for cracks in the presence of contact 
stresses is important to characterise cracks and the focus of 
this study is to address this aspect.

Crack-tip isochromatics show, on careful scrutiny, certain 
geometric features even when the contact loads are suffi-
ciently away from the crack-tip which is demonstrated in 
this paper for a moderately-deep beam with a small vertical 
crack. The multi-parameter crack-tip solution is explored 
to capture the geometric features of the isochromatics. In 
the presence of multiple contact loads, use of superposition 
method is suggested in ref [30]. Following this, the beam 
problem is again studied using the superposition of singular 
crack-tip and contact stress equations.

A moderately-deep beam (L/d ~ 2.4) with a small bottom 
vertical crack (a/d ~ 0.08) is studied by subjecting it to three-
point bending with the contact load sufficiently far away. The 
experimental isochromatics near the crack-tip are processed 
to obtain the SIFs using the over-deterministic non-linear 
least squares method using the multiparameter solution. 
These results are compared against similar cases modelled 
using finite elements as a form of verification. Since beams 
are members which often have to support moving contact 
loads like rail roads, these are suitable candidates for 
interaction studies once a crack develops in them. Multiple 
configurations with varying load positions and magnitudes 
are considered for a moderately-slender beam (L/d ~ 4.91 
and a/d ~ 0.14). Fracture parameters are evaluated from 
the experimental results using the over deterministic least 
squares method.
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Method of Analysis

Photoelastic experiments are carried out on transparent 
epoxy specimens with thickness, h = 5.5 mm and material 
stress-fringe value, Fσ = 11.86 N/mm/fringe. Dark-field cir-
cular polariscope arrangement is used along with white light 
source. The isochromatic fringes are captured using a Canon 
EOS 850D CMOS DSLR camera.

The fracture parameter evaluation from experimental 
isochromatics involves the following steps as elaborated next.

Obtaining Whole Field Fringe Order (N) Using 
Twelve Fringe Photoelasticity (TFP)

The fringe order at every pixel of the isochromatic image 
(i.e., test image) is obtained using single-image based 
processing algorithms [31, 32]. These sophisticated 
algorithms involve pixel-wise colour matching of the test 
image against a calibration colour image obtained from a 
known problem to get N at every pixel. With advancements in 
computer vision, processing of images with fringe orders as 
high as twelve is now possible making it suitable for a wide 
variety of problems.

The colour matching scan is performed using a colour 
difference formula (CDF) and error minimisation in the pixel-
wise RGB (red–green–blue) and HSV (hue-saturation-value) 
values given by:

(1)e =

√
(Rt − Rc)

2
+ (Gt − Gc)

2
+ (Bt − Bc)

2
+ (Ht − Hc)

2
+ (St − Sc)

2
+ (Vt − Vc)

2

where subscripts ‘t’ and ‘c’ denote values for test and cali-
bration images, respectively.

Based on minimum error, each pixel in the test image is 
assigned the corresponding fringe order (N). The pixel-wise 
fringe orders obtained are further refined using the advanced 
fringe resolution guided scanning (FRSTFP) scheme [33] to 
eliminate any jumps due to colour repetition or other error 
sources. The refined results are smoothened to obtain the 
whole field fringe order data [31]. These steps are carried out 
using an in-house developed software DigiTFP® [34].

Data Collection for SIF Evaluation

Stress intensity factor evaluation using regression requires 
inputs from experiments in the form of positional coordi-
nates (r, θ) with the crack-tip as the origin along with the 
corresponding fringe order (N). With the availability of 
whole field fringe order data as discussed in "Obtaining 
Whole Field Fringe Order (N) Using Twelve Fringe Pho-
toelasticity (TFP)", one can obtain contours of any choice 
such as bright (N = 0.5, 1.5, 2.5…) or dark field (N = 0, 1, 
2…) as well as mixed-field isochromatics (N = 0.25, 0.75, 
1.25…) or even composite field isochromatics (N = 0.25, 0.5, 
0.75…). The necessity and advantage of using mixed-field 
and composite field isochromatic fringes is highlighted in 
several cases analysed in the subsequent sections. Several 
studies have shown that it is better to collect data along 
fringe contours that capture the salient geometrical fea-
tures of the crack-tip fringe field for improved convergence 
rather than at random locations in the fringe field [4, 5, 16, 
32, 35]. By specifying the zone of data collection and the 
fringe order tolerance, the datapoints are collected automati-
cally from the experimental fringes. Use of mixed-field or 
composite field facilitates better data collection in case of 
poor photoelastic response. In this paper, composite field 
fringes are used for the case discussed in "Evaluation of 
Stress Intensity Factors" and for all the remaining cases, 
mixed-field fringes are found to be adequate.

Over‑deterministic Non‑linear Least Squares Method

The (r, θ, N) data collected in "Data Collection for SIF 
Evaluation" serve as inputs for the over-deterministic non-linear 
least squares method whose salient details are discussed next.

Multiparameter crack‑tip stress field equations

The corrected equations of Atluri and Kobayashi [18] for 
a general mixed-mode condition in terms of positional 
coordinates (r, θ) with the crack-tip as the origin are given as:
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where A In and A IIn represent the mode-I and 
mode-II parameters, respectively. The SIFs and 
T-stress are related to the respective coefficients as 
KI = AI1

√
2�,KII = −AII1

√
2� and �ox = −4AI2 The nonlin-

ear regression analysis is carried to fit the experimental data 
to Equation (2) iteratively by suitable addition of parameters 
for SIF evaluation. Fringe order error minimisation is used 
as the convergence criterion for the iterations [18] which is 
deemed satisfied if

where Ntheory is the theoretical fringe order obtained at every 
datapoint from the iterated parameters and Nexp is the actual 
fringe order obtained experimentally at the point of interest. 
Initially, for a two-parameter modelling of the stress field, a 
convergence error of 0.5 is taken and the value is progres-
sively reduced as the number of parameters is increased. 
Achieved convergence error of 0.05 or less is considered as 
a good solution.

The experimental datapoints are echoed back on the 
theoretically simulated isochromatics to ensure that the 
stress field is indeed reconstructed as desired in addition to 
monitoring the convergence error. This verification based on 
fringe order minimisation along with satisfactory theoreti-
cal reconstruction of the fringe field has been emphasized 
in fracture mechanics literature to ensure acceptable results 
[32, 36].

The data collection and regression analysis are carried 
out using an in-house software PSIF [37]. The implementa-
tion of all the steps elaborated is presented in detail for one 
sample case in Appendix-A.

(3)
∑���Ntheory − Nexp

���
Total no. of data points

≤ convergence error

Isochromatic Fringe Features at a Crack‑tip 
in the Presence of Contact Stress and SIF 
Evaluation

A rectangular epoxy beam of dimensions 150 × 50 × 
5.5 mm is taken with a 9 mm vertical crack on the bottom 
edge. The beam is supported fully on aluminium at the 
bottom. An epoxy disc of 30 mm radius is used to apply a 
contact load (P) of 419 N on the top, symmetrical to the 
crack axis. The dark field isochromatics captured in colour 
is shown in Fig. 1(a). One observes prominent forward 
tilting of the crack-tip fringes. The whole field fringe order 
data for the portion inside the black square in Fig. 1(a) is 
obtained and the dark, mixed and composite field fringes 
are presented in Fig. 1(b-d), respectively.

It is observed from the crack-tip isochromatic fringes 
in Fig. 1(b) that in addition to a forward tilt, there is a 
prominent frontal loop formed ahead of the crack due to 
the presence of a contact loading applied far away from the 
crack-tip. Such features get better highlighted using mixed 
and composite field fringes (Fig. 1(c and d)).

Evaluation of Stress Intensity Factors

In 1957, Irwin, while discussing the results of Post and Wells 
[38, 39], commented that Westergaard’s solution is inadequate 
in modelling the observed experimental isochromatics and 
suggested adding a correction term (-σox) to σx for analysis 
of finite bodies [40], which is now known as T-stress in 
fracture literature. This addition explained the forward tilt in 
the photoelastic fringes, near the crack-tip, as observed in the 
experiments [38]. Consequently, he showed that the SIF could 
be theoretically calculated using just one datapoint lying at the 

Fig. 1  (a) Experimental dark field isochromatics in colour recorded using white light with the region of interest highlighted using black square; 
grayscale fringes for region of interest as (b) dark field, (c) mixed-field, (d) composite field with near-tip zone marked in red square, (e) close-up 
of the near-tip zone showing green circle of size 5 times the permissible data collection zone in two-parameter method. Theoretical composite 
field reconstruction with 55 red experimental datapoints echoed back for (f) 2 parameters, (g) 4 parameters and (h) converged 7 parameter solu-
tion
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farthest point from a photoelastic fringe loop, which is known 
as Irwin’s two-parameter method.

If one overlooks the presence of the frontal loop in 
Fig. 1(a), one will attempt to evaluate the SIF using Irwin’s 
two-parameter method. However, to obtain valid results, 
Irwin’s two-parameter method requires the farthest datapoint 
to lie within an extremely small circular zone of radius rm 
near the crack-tip (rm/a < 0.03) and the angular orientation 
of this farthest point on the fringe (θm) to lie in the range 
73° < θm < 139° [41]. The near-tip zone marked using a red 
square in Fig. 1(d) is magnified and presented in Fig. 1(e) 
showing rm and θm labelled with respect to the crack axis. 
It is not possible to comply with these requirements for the 

fringes shown in view of the crack-contact interaction. To 
impress upon this point further, Fig. 1(e) also shows a circle 
in green having a radius of 1.35 mm which is 5 times the 
radius of the permissible zone for data collection as per ref. 
[41]. Even within this circle, there are no discernible fringes 
for data collection. On considering the closest fringe to the 
crack-tip from the composite field (N = 1.25), the respective 
measures for rm and θm are 2.286 mm and 69.58°. The com-
puted values of KI and σox using the two-parameter method are 
0.010 MPa√m and 2.612 MPa, respectively. The predicted 
SIFs change sharply with a small change in the measure of 
θm which would not give reliable results. Hence, Irwin’s two 
parameter method is found unsuitable for studying this case.

Fig. 2  Experimental isochromatics (a) dark field using white light with the region of interest marked using black square, (b) composite field in 
grayscale for region of interest with fringe features highlighted. Plots for dark field isochromatics in colour with region of interest marked and 
composite field in grayscale for the region of interest for qualitative comparison using (c-d) only singular term, (e–f) only contact field and (g-h) 
superposed equations of singular term and contact field for an a/w ratio of 0.18
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Sanford [42] observed that Irwin’s correction of Wester-
gaard’s solution is only valid for specific cases. He observed 
that in experiments, several fringes can cross the crack axis, 
such as frontal loops for a long crack in an SEN specimen and 
obtained generalised Westergaard's solution of the crack-tip 
stress field involving multiple parameters whose coefficients 
need to be evaluated experimentally. Reference [43] brought out 
that the various multi-parameter solutions reported are identical 
and noted that the one by Atluri and Kobayashi [17] is the most 
elegant one to use.

The present problem (Fig. 1(d)) is initially analysed using 
the least squares method with the multiparameter crack-tip 
stress field equations (for a detailed description, see one sam-
ple case in Appendix -A). The theoretical reconstruction of the 
fringe field at 2 parameters, 4 parameters and the converged 
solution with 7 parameters are presented in Fig. 1(f–h). Even 
within the multiparameter framework, just two parameters do 
not reconstruct the fringe field correctly even though it utilises 
whole field data and not just a point as in case of Irwin’s two-
parameter method. It requires 7 parameters to get an accept-
able reconstruction. The mode-I SIF (KI) and T-stress evaluated 
from the converged solution are 0.160 MPa√m and 1.20 MPa 
within an uncertainty of 0.0024 and 0.009, respectively. The 
errors between the evaluated values using the multiparameter 
solution and Irwin’s two-parameter method are 94% and 118% 
for KI and T-stress, respectively.

Analytical Superposition of Singular Crack 
and Contact Stress Field

In Ref. [30], to analyse the isochromatics in the presence 
of adjacent contacts, they have used a linear superposition 
of the individual stress fields. Following the superposition 
method suggested in ref. [30], an attempt to understand the 
interaction analytically is made using a simple superposition 
of singular crack-tip stress field (KI = 0.160 MPa√m, 

(Fig. 1(h)) and contact stress field equations. The combined 
equations required for plotting simulated isochromatics 
are presented in Appendix – B. The contact stress field 
corresponding to Fig. 1(a) is modelled using the following 
inputs: E = 2.3 GPa, v = 0.34, μ = 0, R1 = 30 mm, R2 = ∞ and 
P = 419 N.

The experimental dark field isochromatics and the compos-
ite field in grayscale for the crack-tip region are reproduced in 
Fig. 2(a and b) with the features highlighted for clarity. To better 
understand the influence of contact stress, the results using the 
equations are presented separately in a stepwise manner.

Initially, the isochromatics are plotted using only a sin-
gular term crack-tip stress field presented in Fig. 2(c and d). 
Observing the composite field fringes for the region of inter-
est in Fig. 2(d) shows that the fringes are symmetric about the 
horizontal. Next, the isochromatics are plotted using only the 
contact stress field appropriately placed as presented in Fig. 2(e 
and f). Upon superimposing the singular crack-tip stress field 
with this contact stress field, one can observe marked changes 
in the isochromatic features at the crack-tip (Fig. 2(g and h)). 
It can be seen from Fig. 2(h) that a prominent frontal loop 
appears in addition to a forward tilt qualitatively capturing the 
geometric features observed in the experiment. The presence 
of such features, particularly the frontal loop, can be attributed 
to a crack-contact stress interaction.

In the interest of further understanding this interac-
tion, qualitative isochromatic plots using the superposed 
equations for two more cases of smaller crack lengths, 6 
mm (a/w = 0.12) and 3 mm (a/w = 0.06), are presented in 
Fig. 3(a-d). Frontal loops are observed even for very small 
cracks (a/w = 0.06) which can only be attributed to the inter-
action with the contact stress field.

The results using the superposed equations are presented 
here only to appreciate the presence of these geometric fea-
tures and not the exact sizes. The sizes of the fringes will 
only match once the appropriate fracture parameters are 

Fig. 3  Plots for dark field isochromatics in colour and composite field in grayscale using the superposed equations for qualitative visualisation of 
fringe features for a/w ratio of (a and b) 0.12 and (c and d) 0.06
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evaluated for this problem from the experimental fringes 
in Fig. 2(a). The evaluation of these parameters using the 
superposed solution approach is taken up next and the pro-
cedure is discussed in the subsequent sections.

While the contact stress field is global in nature, the crack-tip 
solution is essentially a near-field solution. Hence, SIF evaluation 
using the superposed equations requires a two-step approach – (i) 
evaluation of the contact stress parameters, namely, semi-contact 
length (ac) and friction coefficient (µ) using a least-squares analy-
sis and (ii) evaluation of SIFs using the superposed equations 
(with ac and µ in (i)) with appropriate weights for the individual 
crack-tip and contact stress fields which is presented next.

Evaluation of contact stress parameters (ac and μ) 
from experimental results

From the experimental image, the whole field fringe order 
data is obtained. It should be noted that the contact stress 
field is defined with the centre of load application taken as 
the origin. With this appropriate origin, the data points for 
the least squares analysis are collected from the dark field 
fringes. Since the centre of the load application point in 
experiments is user-specified, it is error-prone much like the 
user-defined crack-tip in experiments (See Appendix—A). 
Hence, the process of contact stress origin refinement is 
carried out to identify the origin of the contact stress (centre 
of the load application) accurately. The isochromatic fringe 
field is then theoretically reconstructed with experimental 
datapoints echoed back for verification as presented in 
Fig. 4.

The values of contact parameters obtained from process-
ing the experimental results are ac = 1.51 mm and �  = 0.006. 
These values are used for the evaluation of SIFs in step-II.

Evaluation of stress intensity factors using the superposed 
equations

The least squares analysis is carried out using the super-
posed equations with the contact parameters taken from 
"Evaluation of Contact Stress Parameters (ac and μ) From 
Experimental Results" and user-specified constant weights 

for the contact stress field as well as the crack-tip stress 
field. Given that the analysis is done near the crack-tip 
with the contact load far away, the weights are chosen to be 
higher for the crack-tip stress field and lower for the contact 
stress field.

Typical results from the analysis for 1 parameter, 4 param-
eters and 7 parameters are presented for two cases of weights 
considered (wcontact and wcrack) are presented in Fig. 5.

The evaluated SIFs for the cases presented in Fig. 5 along 
with the corresponding convergence errors (CE) are tabu-
lated in Table 1.

The analysis shows that one parameter solution even 
with superposition is unable to capture the geometric 
features of the experimental fringes. While using a four-
parameter solution, the geometric features are qualitatively 
captured and the case requires a seven-parameter solution 
superposed with contact stress field to capture all the 
key geometric features ahead of the crack-tip as seen in 
Fig. 5(f).

It is observed that convergence and proper reconstruction is 
achieved at lower weights for the contact field (Fig. 5(f)) with 
a SIF value of 0.156 MPa√m as compared to 0.160 MPa√m 
(with convergence error of 0.006) using the multiparameter solu-
tion presented in "Evaluation of Stress Intensity Factors".

The comparison shows that the results are consistent, 
provided the choice of weights are appropriate. Evaluation 
of the appropriate weights may be difficult for a complex 
problem. Further, the weights for the stress fields for a 
given problem need not be constants but could also have 
spatial variation. Hence, although it may be conceptually 
appealing to compute the SIFs using the superposed 
analytical equations while approaching such a problem, 
it is cumbersome from a practical standpoint. The two-
step process where the contact stress has to be handled 
separately followed by the evaluation of appropriate 
weights for every problem makes this approach unwieldy 
to implement. On the other hand, given that the crack-tip 
multiparameter solution is only valid in the neighbourhood 
of the crack-tip, the self-sufficiency of this solution by 
suitably choosing the data collection zone is explored in 
the subsequent sections.

Fig. 4  (a) Experimental dark 
field isochromatics recorded in 
white light (P = 419 N), (b) dark 
field fringes in grayscale and (c) 
reconstructed fringe field with 
data points echoed back in red 
(50 Nos.)
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Numerical Verification of the SIFs Evaluated Using 
the Multiparameter Crack‑tip Solution

The configuration shown in Fig. 6 is used for a numerical 
comparison. To facilitate easy implementation of the bound-
ary conditions in the numerical code, a moderately-deep 
beam (L/d ~ 2.4) subjected to three-point bending is consid-
ered with a very small crack of 4 mm.

Three load cases are considered for this beam (P1 = 270 
N, 308 N and 347 N). The experimental isochromatics 
recorded using white light are shown in Fig. 7(a) from por-
tion of the beam highlighted in green rectangle in Fig. 6. 
This portion is considered for further processing.

Numerical model is developed in  Abaqus® using the 
XFEM module to model the crack discontinuity. C3D8R 
8-noded hexahedral linear brick elements with reduced inte-
gration are used. The elliptical distribution of the contact 
stress is applied using a user-defined analytical field based 

on the equations from Smith and Liu [19]. Mesh convergence 
study is carried out and a mesh size of 0.15 mm is used near 
the crack-tip which gives converged results. The field out-
put from the software is post-processed using an in-house 
developed method to obtain numerical isochromatics fringes 
with colours as one would observe in experiments [32]. The 
numerically post-processed isochromatics for the respective 
cases closely match with the experimentally obtained fringes 
(Fig. 7(a and b)).

Fig. 5  Composite field recon-
struction using superposed solu-
tion approach for 1 parameter, 
4 parameters and 7 parameters 
(left to right) using two different 
weights for stress fields (a-c) 
wcontact = 0.05; wcrack = 0.95 and 
(d-f) wcontact = 0.02; wcrack = 0.98 
with experimental datapoints 
echoed back in red

Table 1  Results from least squares analysis using superposed solution 
approach

Weights KI in MPa√m (CE)

1 parameter 4 parameters 7 parameters

wcontact = 0.05; 
wcrack = 0.95

0.340 (0.298) 0.152 (0.072) 0.369 (0.075)

wcontact = 0.02; 
wcrack = 0.98

0.340 (0.280) 0.153 (0.033) 0.156 (0.029)

Fig. 6  Loading schematic for the moderately-deep beam
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The red rectangles indicated in the mixed-field fringes 
(Fig. 7(c)) are used for data collection and SIFs are evaluated 
using the procedure mentioned in "Methods of Analysis" (an 
example case presented in Appendix-A). Upon convergence, 
the fringe field is reconstructed with the datapoints from the 
experiment echoed back in red (Fig. 7(d)). It can be seen that 
the reconstruction is good.

Stress intensity factors for the three load cases are evalu-
ated using the multiparameter solution. The mode-I SIFs (KI in 
MPa√m) are 0.297, 0.341 and 0.376, respectively. The respec-
tive mode-II SIFs (KII in MPa√m) are 0.011, 0.013 and 0.016. 
The solution requires 8, 8 and 9 parameters and the correspond-
ing convergence errors achieved are 0.025, 0.030 and 0.025, 
respectively that conforms to the recommendation of conver-
gence error less than 0.05. The SIFs are also obtained from the 
finite element models using the J-integral approach embedded 
in the software module. The respective SIFs (in MPa√m) for the 
three load cases from these numerical models are 0.305, 0.348 
and 0.392 for mode-I and 0.012, 0.013 and 0.015 for mode-II. 
The SIF values from experiments and finite elements are com-
pared and a p-value of 0.06 is obtained against a significance 
level of 0.05 which shows that there is no significant difference 
in the results.

In view of this, the use of multiparameter crack-tip solu-
tion alone is further explored for studying crack-contact 
stress fields. In the following section, more cases are stud-
ied wherein, the contact load is moved closer to crack-tip 
in stages.

SIF Evaluation for Different Configurations 
in a Moderately‑slender Beam (L/d ~ 4.91)

Since beams are members which often have to support 
moving contact loads like rail roads, these are suitable 
candidates for interaction studies once a crack develops 
in them. Multiple configurations with varying load posi-
tions and magnitudes are considered for a moderately-
slender beam (L/d ~ 4.91) (Fig. 8(a)). A vertical through-
thickness crack of 4 mm length is introduced on the top 
face of the beam (a/d ~ 0.14). The contact load is applied 
at different positions using a circular epoxy half-disc 
of radius 30 mm. The distance between the crack axis 
and the contact load axis, labelled as S in Fig. 8(a), is 
decreased from 20 mm, 15 mm, 10 mm, 5 mm, 2 mm to 
S = 0 in order to increase the influence of contact stress 
on the crack-tip. The experiments are conducted for two 
load cases, namely, P2 = 83 N and 125 N. The convention 
used for discussions in the following sections is shown 
in Fig. 8(b).

The changes in the fringe features with the moving load 
can be seen in Fig. 9(a-f) for 83 N contact load. It can be 
observed that the fringe features on the left side of the 
crack get modified significantly when the load is moved 
closer progressively.

The experimental isochromatics captured for a similar 
configuration with an increased contact load of 125 N are 
shown in Fig. 10(a-f).

Fig. 7  Results for a moderately-deep beam with column (a) dark field experimental isochromatics with region of interest marked in green, (b) 
numerically post-processed isochromatics from finite elements (c) mixed-field fringes for the region of interest with data collection zone marked 
in red rectangle and (d) theoretical reconstruction with datapoints echoed back in red
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The experimental isochromatics are processed (as per 
Appendix A) to obtain the SIFs. The converged results are 
presented along with results at some intermediate param-
eters for two typical cases, namely, S = 20 mm (Fig. 11) 
and S = 5 mm (Fig. 12), respectively.

Figure 11(a) shows the region of interest in the dark field 
isochromatics captured. The mixed-field fringes for this 
region are seen in Fig. 11(b) with the red rectangle showing 
the zone from where data (r, θ, N) has been collected for SIF 
evaluation. In this case, the ratio of the maximum radius of 

data collection zone to the crack length (rm/a) is around 1.67 
and 1.16 on the right and left side of the crack, respectively 
(see Fig. 8(b)). The respective theoretical reconstructions 
at 2 parameters, 5 parameters and the converged solution 
with 9 parameters are presented in Fig. 11(c–e). While the 
two-parameter solution is unable to capture the features, by 
increasing the number of parameters, the multiparameter 
solution is seen to be very effective in capturing the fringe 
field. The fringe order error achieved for these cases are 
0.077, 0.069 and 0.023, respectively. The error achieved 

Fig. 8  (a) Loading schematic for the moderately-slender beam and (b) convention used for discussion

Fig. 9  Experimental dark field isochromatics for a contact load of 83 N applied using a 30 mm radius circular half-disc with S values of (a) 
20 mm, (b) 15 mm, (c) 10 mm, (d) 5 mm, (e) 2 mm and (f) S = 0
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Fig. 10  Experimental dark field isochromatics for a contact load of 125 N applied using a 30 mm radius circular half-disc with S values of (a) 
20 mm, (b) 15 mm, (c) 10 mm, (d) 5 mm, (e) 2 mm and (f) S = 0

Fig. 11  (a) Experimental dark field isochromatics with the region of interest marked in green, (b) mixed-field fringes for the region of interest 
with data collection zone marked in red rectangle. Theoretical reconstruction with experimental datapoints echoed back in red for (c) 2 param-
eters, (d) 5 parameters and (e) converged 9 parameter solution for S = 20 mm and P2 = 83 N
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with 9 parameters is well below admissible values (Over-
deterministic Non-linear Least Squares Method).

As the contact load is brought closer to the crack, the 
zone of data collection needs to be adjusted. Figure 12(a) 
shows the dark field isochromatics for S = 5 mm and P2 = 83 
N with the region of interest marked in green and the mixed-
field fringes for this region are presented in Fig. 12(b). The 
red rectangle in Fig. 12(b) shows the data collection zone 
with rm/a of around 0.8 on the right and in the range of 0.7 to 
0.95 on the left of crack. The reconstruction at 2 parameters 
and the converged 10-parameter solution with convergence 
errors of 0.14 and 0.03, respectively are shown in Fig. 12(c 
and d). It can be seen that even complex features due to 
nearby contact load are effectively getting captured using 
the multiparameter solution with good reconstruction and 
satisfactory convergence.

Figure 13 presents the results for the cases S (mm) = 15, 
10, 2 and 0 for contact load of 83 N in a consolidated form 
with the region of interest, mixed-field fringes (with data 
collection zone in red rectangle), fringe reconstruction 
at 2 parameters and converged solution shown from left 
to right.

For the case of S = 0, due to symmetry, the crack experi-
ences only mode-I loading. However, the problem becomes 
challenging due to the presence of contact stresses and the 
useful data collection zone becomes extremely small. The 
mode-I fringes are confined to a very small zone near the 
crack tip (~ 1 mm × 1 mm) as highlighted by the red square 
in mixed field fringes (Fig. 13(d)). The fringe order data 
obtained using sophisticated algorithms developed in pho-
toelasticity data extraction is used advantageously. Using 
the whole field data, multiple fringes are obtained for data 
collection as close as ~ 0.5 mm in a zone as small as 1 mm × 
1 mm to obtain a good reconstruction and effectively evalu-
ate the SIF.

The fringe order errors at convergence for these four cases 
are 0.014, 0.015, 0.026 and 0.035. The values of the ratio, 
rm/a for these four cases in the form [right of crack, left of 
crack] are [1.12, 1.04], [1.24, 0.94], [1.00, 0.75] and [0.25, 
0.25], respectively.

It can be seen that as the load moves closer, with suitable 
reduction in the data collection on the left side of the crack, 
the multiparameter solution is able to capture the essential 
features of the fringe field.

Fig. 12  (a) Experimental dark 
isochromatics with region of 
interest marked in green, (b) 
mixed-field fringes for the 
region of interest with data 
collection zone marked in red 
rectangle. Theoretical recon-
struction with experimental 
datapoints echoed back at (c) 2 
parameters and (d) converged 
10 parameter solution for 
S = 5 mm and P2 = 83 N
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Fig. 13  Experimental dark field isochromatics with the region of interest marked in green, mixed-field fringes for the region of interest with data 
collection zone marked in red rectangle and theoretical reconstruction with experimental datapoints echoed back at 2 parameters and converged 
solution (left to right) for P2 = 83 N and (a) S = 15 mm, (b) S = 10 mm (c) S = 2 mm and (d) S = 0

Similar configurations have been processed for contact 
load (P2) of 125 N to introduce variation and assess the 
performance of the multiparameter solution. The results are 
presented in a consolidated form for each case of distance 
S in Fig. 14(a-f). Each case is presented (from left to right) 
– dark field isochromatics (with region of interest marked 

in green), mixed-field fringes (with data collection zone in 
red rectangle), fringe reconstruction at 2 parameters and 
converged solution.

The respective fringe order errors at convergence for 
these cases are 0.022, 0.027, 0.039, 0.030, 0.047 and 0.042, 
respectively. The errors are well below the specified criteria for 
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Fig. 14  Experimental dark field isochromatics with the region of interest marked in green, mixed-field fringes for the region of interest with data 
collection zone marked in red rectangle and theoretical reconstruction with experimental datapoints echoed back at 2 parameters and converged 
solution (left to right) for P2 = 125 N and (a) S = 20 mm, (b) S = 15 mm, (c) S = 10 mm, (d) S = 5 mm (e) S = 2 mm and (f) S = 0
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convergence in "Over-deterministic Non-linear Least Squares 
Method" which shows that the method is very effective in 
capturing the solution with the suitable addition of parameters. 
The values of the ratio, rm/a for these cases in the form [right of 
crack, left of crack] are [1.77, 1.64], [2.09, 1.57], [1.41, 1.22], 
[1.05, 0.91], [0.98, 0.78] and [0.29, 0.29], respectively. It can 
be seen that the theoretical reconstruction even in the cases 
where the contact loading is very close to the crack axis is 
good using the multiparameter solution (Fig. 14(d-f)).

It is to be noted that all the interaction cases under study 
are having mode-mixities which is comfortably handled 
in the form of independent SIFs using the multiparameter 

solution. The variation of the SIFs obtained with the load 
positions is presented in Fig. 15.

The upper and lower bound SIF values obtained from an 
uncertainty analysis are tabulated in Table 2. Details about 
the procedures for uncertainty analysis are presented for a 
sample case in Appendix-A.

The variation observed in the evaluated SIFs is very less 
with a range [0.0012, 0.0041] for KI and [2 ×  10–4, 0.0015] 
for KII, respectively. Further, there is a reduction observed 
in the Mode-I SIFs when the contact loading axis and the 
crack axis coincide with the Mode-II response vanishing 
due to symmetry.

Fig. 15  Variation of evaluated 
SIFs with varying load positions 
for the moderately-slender beam

Table 2  SIF values for all 
cases along with corresponding 
uncertainty values

Distance S 
(mm)

Contact load (P2) = 83 N P2 = 125 N

KI (MPa√m) KII (MPa√m) KI (MPa√m) KII (MPa√m)

20 0.268 ± 0.0020 0.008 ± 0.0005 0.396 ± 0.0024 0.011 ± 0.0004
15 0.288 ± 0.0024 0.013 ± 0.0002 0.424 ± 0.0034 0.016 ± 0.0011
10 0.317 ± 0.0028 0.015 ± 0.0011 0.476 ± 0.0040 0.024 ± 0.0006
5 0.388 ± 0.0012 0.031 ± 0.0015 0.569 ± 0.0034 0.059 ± 0.0004
2 0.465 ± 0.0030 0.105 ± 0.0013 0.663 ± 0.0041 0.150 ± 0.0013
0 0.382 ± 0.0013 0.006 ± 0.0003 0.537 ± 0.0019 0.0003 ± 0.0005
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Conclusion

In this paper, the changes in the geometric features of the 
isochromatics in the neighbourhood of a crack-tip due to 
the presence of contact load is brought out. If the presence 
of the frontal loop is overlooked, one may attempt to evalu-
ate the SIF using the Irwin’s two-parameter solution, which 
is shown to be not applicable even when a small crack is 
interacting with a faraway contact load. This implies that a 
multi-parameter solution is basically needed to handle prob-
lems dealing with a crack interacting with the contact load.

Although one may be interested in the first two parameters 
of Mode-I (KI and T-stress) and the first parameter for Mode-
II (KII), to evaluate these from the isochromatic field, a multi-
parameter solution is needed, which effectively captures the 
fringe features upon convergence. The applicability of the use of 
crack-tip multi-parameter stress field equations being sufficient 
to extract the SIF is verified by results from FEM for the case of 
a moderately-deep beam under three-point bending.

Following this, different interaction configurations in a mod-
erately-slender beam are systematically checked by increasing 
the proximity of the contacts stress relative to the crack-tip. The 
geometric features of the fringe field are quite complex and it is 
observed that with appropriate data collection, the multiparam-
eter solution gives fracture parameters for all cases with well-
reconstructed fringe field. The evaluated SIFs are reported along 
with an uncertainty analysis carried out with different datasets. 
This study demonstrates that the multiparameter solution is very 
effective in studying problems having interacting between crack-
tip and contact stress fields. The applicability of this approach 
can be extended to study crack-contact interactions found in 
problems like rail-wheel interaction, mating gears, etc.

Appendix A

This appendix shows the implementation of the steps dis-
cussed in "Methods of Analysis" for SIF evaluation from an 
experimental isochromatic image. As an example, a single 

load configuration (S = 2 mm; P2 = 83 N) is considered. This 
example is chosen as it is representative of the complex geo-
metric fringe features seen near the crack-tip in the presence 
of nearby contact load.

Obtaining whole field fringe order (N) data using 
twelve fringe photoelasticity (TFP)

From the dark field isochromatics captured in the photoelas-
tic experiment (Fig. 16(a)), the region of interest is decided 
and the remaining portion to be excluded from the analysis 
is masked out. Using the colour difference formula and error 
minimisation (Equation (1)), the fringe order N at every pixel 
in the region of interest is initially evaluated. Generally, there 
would be jumps observed in this initial evaluation as seen in 
Fig. 16(b) due to repetition of colours which requires further 
refinement. The advanced FRSTFP scheme is used to refine 
the fringe order variation. The respective values for refinement 
parameters, namely, window span and kernel size are taken as 
0.4 and 11 as per the general recommendations which works for 
all the cases in this study [44]. The correct fringe order variation 
obtained after refinement is shown in Fig. 16(c). The N-data is 
subsequently smoothened with the parameters values for span 
and iterations taken as 10 and 5, respectively using the NLR 
smoothing scheme [32]. The smoothened whole field fringe 
order data at every pixel in the region of interest is shown in 
Fig. 16(d). These steps for obtaining N-data are sequentially 
carried out using an in-house software, DigiTFP® [34].

Data collection and non‑linear least squares analysis

As discussed in "Data Collection for SIF Evaluation", the 
availability of whole field N-data is advantaegeous for flexible 
data collection. With the whole field data, one should be able 
to pick random data for regression and obtain results. However, 
research carried out over the years indicates that random inputs 
to the nonlinear algorithm do not always guarantee correct 
results and the algorithm requires to be guided with proper 
data, preferably collected along fringes. Different fringe fields, 

Fig. 16  (a) Dark field isochromatic image, (b) whole field N-data generated using CDF, (c) refined N-data and (d) smoothed N-data
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namely, dark field, mixed-field and composite field fringes as 
shown in Fig. 17 can be used to extract datapoints based on 
the photoelastic response. In this paper, mixed-field fringes are 
used for data extraction for all cases.

The positional coordinates and corresponding fringe order 
(r, θ, N) of the datapoints are passed as inputs for the iterative 
regression. Modules dedicated to data collection and regression 
in an in-house software, PSIF [37] are used for this purpose. 
The software also facilitates the plotting of the fringe field using 
the parameters obtained at any particular level of convergence 
during the analysis. The collected datapoints can be echoed 
back on this plot for readily assessing the quality of the solution.

The crack-tip, which is the origin for the coordinates, 
is user specified in this process and is error prone. The 
convergence of the solution and the accuracy of evaluated 
SIFs are found to be sensitive to variation in the crack-tip, even 
by a few pixels. Considering the crack-tip as an additional 
unknown in regression introduces unnecessary computational 
difficulties. To circumvent this issue and to identify the correct 
crack-tip location, a crack-tip refinement (CTR) [32, 45] 
procedure is deployed after the number of parameters for the 
problem are frozen based on the analysis. A 5 × 5 pixel mask 
surrounding the initially specified crack-tip is considered and 
the convergence error is recalculated by shifting the origin 
to each of these pixels. The pixel location giving the least 
error now serves as the centre of a new 5 × 5 pixel mask and 
the procedure is repeated until the estimated origin with least 
error becomes the centre of the mask. The procedure helps to 
identify the crack-tip coordinates accurately.

Stress intensity factors evaluated can be deemed 
reliable only if these are independent of the choice of 
data. Uncertainty for any quantity is defined as the ratio of 
standard deviation to the square root of dataset count. Hence, 
accuracy of SIFs can be gauged based on the measure of 
uncertainty with different input datasets. Towards this, each 
case is checked by processing six independent datasets for 

SIF evaluation. These datasets are created by systematic 
elimination of data from a master dataset at regular 
intervals. This elimination process introduces variability 
while preserving the geometry of fringe features necessary 
to guide the algorithm. Initially, SIFs are evaluated using 
all the six datasets and the one giving the least convergence 
error is considered. CTR is performed on this dataset and 
the correct crack-tip coordinates are identified. For the 
remaining five datasets, least squares analysis is repeated 
using the corrected crack-tip coordinates. The SIF values 
closest to the mean of all the six trials after CTR are deemed 
as final and results are reported along with uncertainty. More 
details about the procedures for crack-tip refinement and 
uncertainty analysis is available in Ref. [32].

The parameter-wise reconstruction of the complete 
solution for the example case is shown in Fig. 18 along with 
the convergence error (CE) with 167 datapoints. It can be 
observed the fringe field gets better captured as the number 
of parameters is increased. The converged solution requires 
10 parameters with a convergence of 0.026 and a good 
reconstruction. The evaluated values in MPa√m for KI and 
KII are 0.465 and 0.105 with an uncertainty of 0.003 and 
0.0013, respectively.

Appendix B

Within linear elasticity, a set of combined crack-contact stress 
field equations are obtained by linear superposition. The contact 
stress field equations relating normal and tangential loads by the 
friction law [19] and the singular crack-tip equations [40] for 
a planar condition are superposed. With suitable independent 
placements of the respective origins, namely, the contact 
load application point and the crack-tip, and appropriate 
transformations, the combined field equations in accordance 
with Fig. 19 are presented in Equations. (4) to (6).

Fig. 17  Experimental fringes 
in grayscale (a) dark field, (b) 
mixed-field and (c) composite 
field
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Fig. 18  Parameter-wise variation in the theoretical reconstruction of the fringe field with the experimental datapoints echoed back in red for the 
case of P2 = 83 N and S = 2 mm

Fig. 19  (a) General schematic 
showing equation variables 
to be superposed to obtain 
combined crack-contact stress 
field equations and (b) radii of 
contacting bodies made of two 
materials
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where,

Using the stress-optic law [32], the principal stress dif-
ference is expressed as

where, N, Fσ and h represent the fringe order, material 
stress fringe value and specimen thickness, respectively. 
Hence, using a colour spectrum, the combined stress field 
can be plotted in the form of isochromatics by employing 
Equation. (7) as shown in Fig. 2.

Data Availability Data available on request from the authors.
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