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Abstract
Background  The unit pulse integral method is used extensively with the incremental hole-drilling residual stress measure-
ment technique. The ASTM E837 standard, which applies only to isotropic materials, recommends the use of Tikhonov 
regularization to reduce instability when many depth increments are used. In its current formulation, Tikhonov regulariza-
tion requires the decoupling of stress, as is possible for isotropic materials. The fully coupled integral method is needed for 
residual stress determination in layered composite laminates and is currently employed without Tikhonov regularization. 
This causes greater sensitivity to measurement errors and consequently large stress uncertainties. An approximate method 
of applying Tikhonov regularization exists for biaxial composites, but is not applicable to more complex laminates.
Objective  Extend Tikhonov regularization to the fully coupled integral method to improve residual stress determination in 
composite laminates.
Methods  This work investigates the use of the approximate and fully coupled regularization approaches in an angle ply 
composite laminate of [+45/-45/0/90]s construction. Experimental validation in a [0/+45/90/-45]s laminate is also presented 
where the regularized fully coupled integral method is compared to the series expansion method that includes all in-plane 
stress and strain directions simultaneously in a least-squares solution.
Results  The regularized integral method produces comparable results to those of series expansion while requiring twelve 
times less FE computation to calculate the compliances. The optimal degree of regularization is also more convenient to 
determine than the optimal combination of series order required by series expansion.
Conclusions  The new method is easily applied and should find wide application in the measurement of residual stresses in 
composite laminates.
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Introduction

Composite laminates, such as fibre reinforced plastic (FRP) lami-
nates, undergo complex temperature and pressure cycles during 
production and residual stresses arise due to differences in the 
coefficients of thermal expansion and mechanical properties in 
each ply, tool-part interaction and cure shrinkage of the resin 
[1–3]. The magnitude and distribution of the residual stresses 
depend on the material properties of each ply, the laminate 

configuration and the cure-cycle used. Residual stress distribu-
tions in composite laminates are discontinuous at the interfaces 
between plies of different orientation [4, 5]. The residual stresses 
that develop in FRP components can introduce transverse cracks, 
fibre waviness, micro-buckling and delamination [5–7]. These 
adverse phenomena reduce the overall strength, stiffness and 
fatigue life of the component [5, 6].

Various residual stress measurement techniques exist 
including non-destructive diffraction techniques and semi 
or fully destructive relaxation techniques [8]. Every meas-
urement technique has certain advantages and disadvantages 
in terms of material applicability, implementation difficulty 
and cost, maximum measurement depth, depth resolution, 
measurement accuracy, etc. [9]. Additionally, some tech-
niques are more suited to near surface measurements while 
others experience large potential error near the surface, 
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therefore, multiple techniques are often used to supple-
ment each other to more accurately describe the residual 
stress distribution in a specimen. However, non-destructive 
measurement techniques such as X-ray and neutron diffrac-
tion have highly restricted application in FRP laminates 
since they are non-crystaline [10, 11]. The use of relaxation 
methods is therefore usually required. Such methods include 
incremental hole-drilling (IHD) [12], incremental slitting 
[13] and layer removal [14], for example.

IHD is one of the most commonly used techniques to 
measure residual stresses due to its general availability, 
practical implementation, low cost and ability to yield 
reliable and accurate results [9, 10, 15]. IHD involves 
incrementally drilling a small hole in a specimen while 
measuring the released deformations (usually measured 
as strain using a special IHD rosette) around the hole on 
the top surface of the specimen. The released strains on the 
surface are related to the residual stresses that existed in 
the material prior to drilling through an integral equation. 
Influence functions, also often referred to as compliance 
or ‘calibration’ coefficients, can be obtained through finite 
element (FE) modelling of the equivalent direct problem for 
a chosen stress distribution basis function such as piecewise-
constant functions or power series functions [16]. Relating 
measured deformations to the residual stresses requires 
solution of an ill-posed inverse problem [17]. The inverse 
problem may also be ill-conditioned since deformations 
are measured at different locations from where the stressed 
material is removed and there are technological limitations 
which prevent sufficiently accurate strain measurements 
with negligible noise or induced error [17].

Several computational methods are available for IHD, 
such as power series expansion [16] and the unit pulse 
integral method [18]. The integral method is used in the 
standardised IHD test procedure for isotropic materials, 
ASTM E837-20a [19], and it is also the most commonly 
used method in composite laminates. The residual stress dis-
tribution is represented by a piecewise-constant basis func-
tion. Unit pulses of uniform stress are applied individually 
to every incremental depth as the depth of the hole increases 
in a forward FE solution of the direct problem. This allows 
the generation of calibration coefficients which represent 
the strain that would be measured if a unit pulse of uniform 
stress was released at each depth increment [18]. Calibration 
coefficients are determined for each stress depth increment 
for every hole depth increment and depend on parameters 
such as material properties, laminate configuration, strain 
gauge rosette geometry, hole diameter and hole location 
[20]. Since unit pulses are only applied up the current hole 
depth, the resulting calibration matrix is lower triangular 
[8] and the inverse solution is unique since the number 
of unknown stresses is the same as the number of depth 
increments [21]. The method is consequently susceptible to 

computational error sensitivity and error amplification [22, 
23]. The greater the number of depth increments, the greater 
this error sensitivity becomes [17]. Therefore, some form 
of ‘regularization’ is required to improve the stability of the 
solution in the presence of noise. Available ‘regularization’ 
methods include coarser discretisation of the solution by 
limiting the number of depth increments [18], optimising 
the depth increment distribution [24] and Tikhonov regu-
larization [25], amongst others. Any form of ‘regulariza-
tion’ reduces variance in the stress solution by assuming 
physical knowledge of the solution but introduces some 
bias. The bias distorts the calculated solution from the true 
solution and can usually not be quantified. A variance vs. 
bias trade-off must consequently be considered carefully 
as shown in Fig. 1 [17]. Solution bias can only be reduced 
at the expense of increased variance, and vice versa. This 
behaviour is explained in detail in a recent publication by 
Beghini et al. [17].

IHD is a discretised technique by nature and so some bias 
due to discretisation is unavoidable. Fine discretisation (many  
small depth increments) reduces the bias but introduces 
unacceptable levels of variance [17]. It is common practice 
to reduce the degrees of freedom of the solution through 
coarse discretisation (fewer and larger depth increments) 
to improve the stability of the solution at the expense of 
resolution [18]. This approach is limited if the expected 
variation of the residual stress distribution is high. In such 
cases, distortion of the stress solution will occur due to 
averaging effects across the sequence of uniform stresses 
if the depth increments become too large. This is because 
the calculated stress in each depth increment is considered 
constant. However, this is currently the approach adopted 
by most practitioners when applying the integral method 
in composite laminates to reduce scattering and instability 
in the results with an accompanying loss of resolution [26].  
Zuccarello [24] proposed optimising the increment distribution  

Increasing regularization

Total error

Fig. 1   Illustration of variance vs. bias trade-off



277Experimental Mechanics (2024) 64:275–290	

for the integral method in isotropic materials to reduce error 
sensitivity by ensuring calibration coefficients on the diagonal 
remain equal in magnitude by gradually increasing the size of 
each depth increment as the hole depth increases. This approach 
works well but resolution remains an issue. It is usually not 
possible to apply this approach in layered composite materials 
since the depth increment distribution must align with the 
interfaces between different materials at particular depths to 
ensure that the discontinuities in stress at the interfaces between 
material types can be captured correctly. Application of 
Tikhonov regularization to reduce the sensitivity of IHD stress 
solutions to noise in the measured data is more practical to use 
in this situation and is accordingly preferred.

When performing IHD in isotropic materials, second-order 
Tikhonov regularization [25] is implemented that adds continuity 
in the stress solution to the objective function by penalizing 
the norm of the second derivative of the solution. This favours 
smooth solutions over those with high local curvature, smoothing 
the calculated residual stresses. The original ill-posed problem 
is no longer solved and instead a different, slightly biased but 
well-posed, problem is solved whose refinement is controlled 
by the regularization parameter � [17]. A discrepancy between 
the measured strains and those corresponding to the regularized 
solution is thereby allowed to remove strain noise artefacts. When 
Tikhonov regularization is applied, the inverse problem no longer 
suffers from increasing instability with increasing number of depth 
increments but actually benefits from the larger data set [17]. 
Tikhonov regularization combined with small depth increments 
is able to accurately measure residual stress distributions with 
steep gradients near the surface, such as in material treated by shot 
peening [27] and laser shock peening [28]. The use of Tikhonov 
regularization for the integral method of IHD is widely accepted 
and is recommended in the ASTM standard. This approach does 
not, however, extend to layered composite materials. In these 
materials the relationship between the residual stress distributions 
and released strains does not have a trigonometric form [26] and 
so it is not possible to decouple equi-biaxial and shear components 
to which Tikhonov regularization can be applied independently. 
The fully coupled integral method [26], which considers all three 
stress and strain directions simultaneously, with nine calibration 
coefficients representing each stress application depth for each 
depth increment must accordingly be employed.

Significant stress variation can occur within a single ply of 
a FRP laminate, for example, due to tool/part interactions at 
the surface. Currently, no integral computational method exists 
for IHD that can simultaneously measure all in-plane residual 
stress components of complex angle-ply laminates where steep 
stress gradients occur within a single ply; is also tolerant to noisy 
strain data; and has high depth resolution. Without Tikhonov 
regularization, the fully coupled integral method requires a limited 
number of depth increments to reduce instability and variance in 
the solution. Smit and Reid [29] extended the use of Tikhonov 
regularization to determine residual stresses in biaxial composite 

laminates through the use of simplifying approximations. This 
numerical procedure is effective in smoothing the residual stress 
profiles and reducing variance in the stress solution but, when 
used in more complex laminates, the simplifying approximations 
can potentially result in some numerical errors depending on 
the laminate configuration and the relative magnitude of the 
off-diagonal terms in the calibration matrix. Separate series 
expansion [30] is an alternative computational method that 
resolves the limitations of IHD in layered composite materials 
as it is inherently tolerant to noise in the experimental data or to 
single erroneous measurements due to least-squares curve fitting 
in the inverse solution. Separate series expansion has been shown 
to work well in complex laminates [30] but this method requires 
significantly more FE calculation than the integral method to 
determine the required calibration and stress matrices [29]. In 
addition, the selection of the optimal combination of series order 
in the different ply orientations is not always trivial.

Tikhonov regularization greatly reduces instability and 
variance when measuring residual stress distributions in isotropic 
materials. This approach does not, however, extend to complex 
composite materials where integral methods without Tikhonov 
regularization are currently still employed which are sensitive to 
measurement errors that result in large stress uncertainties. This 
work develops a means to apply Tikhonov regularization to the 
fully coupled integral method for residual stress measurements 
in composite laminates of any complexity. The use of the 
approximate regularization and the fully coupled regularization 
approaches are investigated in an angle ply composite laminate 
of [+45/-45/0/90]s construction using known stress distributions 
obtained through FE simulations. The regularized fully coupled 
integral method is then experimentally demonstrated on a 
[0/+45/90/-45]s laminate where results are compared to those 
of the series expansion method that includes all in-plane stress 
and strain directions simultaneously in a least-squares solution.

Integral Computational Methods for IHD

The following integral computational methods are applicable 
to instances where stress and strain components cannot be 
decoupled and therefore fall outside the ASTM standard. This 
is a common occurrence when performing IHD in composite 
laminates, but may also arise in isotropic materials under 
certain conditions such as the presence of hole eccentricity. 
Since the laminated composite case is more common it will 
be the focus of this work, but the presented methods can also 
be applied to IHD in isotropic materials.

Fully Coupled Integral Method

The fully coupled integral method is shown in equation (1) in 
vector-matrix form. The matrix coefficients of the first two 
depth increments are given by equation (2) [26], for example.
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where �res is the calculated residual stresses, �meas is the 
measured strains and C is the calibration matrix.

where Cigjs is the measured strain at the location of strain 
gauge g when a unit stress is applied in the s direction to 
the jth depth increment when the hole is i increments deep.

Residual stresses are calculated from the inverse 
solution of equation (1). Since the calculated stresses are 
directly linked to the measured strains there is a unique 
correspondence between measured strain and stress 
that is consequently very susceptible to measurement 
uncertainty. Coarse discretization, i.e. limiting the number 
of calculation steps, can be used to reduce scattering and 
instability in the results. However, Tikhonov regularization 
is a superior form of regularization and is preferred.

Approximate Tikhonov Regularization of the Fully 
Coupled Integral Method

Tikhonov regularization can be applied separately to each 
measurement direction of the the fully coupled integral 
method through simplifying approximations to signifi-
cantly reduce sensitivity to measurement errors. This 
method was developed for biaxial composites where the 
strain release in a particular direction predominantly arises 
from the relaxation of residual stress in that direction. The 
comprehensive method on the use of Approximate Tik-
honov Regularization with IHD in composite materials 
is described by Smit and Reid [29] and is, therefore, only 
briefly summarised here.

In the case of biaxial laminates the diagonal coefficients 
of each ‘block’ in equation (2) are dominant due to Poisson’s 
effects. Furthermore, the residual stresses in the x and y directions 
are similar in magnitude with the shear stresses close to zero 

(1)�meas = C �res

(2)

because the thermo-mechanical response of these laminates 
is the same in both directions. These factors mean that the 
majority of the strain released in the x and y directions at every 
depth increment arises from the relaxation of residual stress in 
those directions, respectively. The off-diagonal coefficients in 

each ‘block’ in equation (2) can therefore be discarded during 
regularization since their contribution to the released strain is 
negligible. Considering the stress-strain relationships in each 
in-plane direction, equation (2) can be decoupled so that the 
stress-strain relationship is written in terms of each direction 
only, as presented in Fig. 2. Each residual stress component is 
therefore treated separately, as shown for the x component in 
equations (3)-(4). Second-order Tikhonov regularization can 
then be implemented separately for each stress component using 
equation (5), in the usual fashion as for metallic structures.

where �x is the regularization parameter that controls the degree 
of regularization applied and L is the second-order Tikhonov 
operator with (-1 2 -1) sequence along the main diagonal.

For composite laminates, rows of L relating the two sides 
of a material interface are set to zero to prevent regularization 
across the interface and allow discontinuities in stress to exist 
at the interfaces between different materials [31].

It is important to note that following separate application 
of Tikhonov regularization to each stress component, the 
calculated strains corresponding to the regularized solution 
in each measurement direction must be combined into a full 
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strain vector, �calc , in the form of equation (2). The regularized 
strain vector �calc is then used with the fully coupled 
calibration matrix, C , to calculate the regularized residual 
stress distribution using equation (1). The optimal degree of 
regularization can be determined initially using the Morozov 
Discrepancy Principle [32] as will be shown in the subsequent 
section. The regularization parameters may require adjustment 
if the stress solution shows signs of excessive variance or local 
curvature or signs of distortion due to bias.

Tikhonov Regularization of the Fully Coupled 
Integral Method

All components of residual stress contribute to the meas-
ured strain at each strain gauge grid for every depth incre-
ment. Depending on the stress distribution relative to the 
in-plane stiffnesses and Poisson’s ratios of the material, the 
contribution to the released strain in a particular direction 
due to stresses in other directions may be significant. The 
approximate decoupling approach of the preceding section 
which allows separate regularization in each direction was 
set up in this form to maintain similarity to the approach of 
the ASTM standard. The method can, however, be combined 
into a single coupled system in the form of equation (2) to 
simultaneously penalise the local curvature in all three stress 
components using an appropriate second-order Tikhonov 
regularization operator with the (-1 2 -1) sequence along 
the main diagonal of each measurement direction [33]:

While this approach is an improvement on the 
approximate method because the off-diagonal 
contributions to strain measurements are accounted for in 
a single solution, regularization of each stress component 
remains dependent only its contribution to the strain gauge 
grid associated with the diagonal of equation (2). Since 
the off-diagonal contributions of each stress component to 
the measured strains at the two other corresponding strain 
gauge grids are not directly included in the regularization 
simultaneously, a more thorough approach is proposed.

Tikhonov regularization can be applied directly to the 
fully coupled integral method by constructing a L matrix 
that incorporates contributions to each strain measurement 
direction from all stress components. This allows the amount 
of data that is incorporated to be tripled, albeit that the 
strain contributions from the two grids associated with the 

(6)

Fig. 2   Approximate decoupling of the fully coupled integral method for the purpose of regularization
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off-diagonal directions have lower magnitude and sensitivity. 
If the magnitude of the contribution to off-diagonal 
strains is small, then incorporation of the additional data 
will have a negligible effect on the overall regularization 
and the additional lower quality data will not negatively 
influence the regularization. However, if the contribution 
to off-diagonal strains is larger, their inclusion meaningfully 
contributes to the regularized solution. The variance of a 
given regularization scheme is reduced when the highest 
number of measurements are taken [17], therefore the 
inclusion of the off-diagonal contributions of each stress 
component to the strain measured at the two associated strain 
gauge grids benefits the regularized solution. The relative 
contribution of each stress component to the measured strain 
in the two off-diagonal directions is always smaller than that 
of the diagonal direction and so the contribution of these 
off-diagonal strains to the regularization must be weighted. 
The ratios of the off-diagonal calibration coefficients to the 
primary diagonal coefficient of each strain measurement 
direction for every depth increment are used to appropriately 
weight the off-diagonal (-1 2 -1) terms of L such that the 
secondary strain components arising from each stress 
component are not only accounted for, but also used in the 
regularization of each stress component in a single solution. 
The form of the accompanying L matrix for equation (2) is 
shown in equations (7)-(11). 

The off-diagonal terms corresponding to the final -1 term of 
the (-1 2 -1) sequence in each row are determined such that the 
sum of each off-diagonal sequence is equal to zero, ensuring 
that no net force or moment is added into the solution. 
Alternatively, the off-diagonal terms of L can be weighted 
using the average of the ratios in equations (8) and (9) to 
preserve the (-1 2 -1) form, for example, the −C2112

C2111

 entry in 
equation (8) would become −(C2112

C2111

+
C2122

C2121

)∕2 and equations (9) 
and (10) would become E = −2D and F = D , respectively. 
This slight variation of the method has not been employed in 
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the remainder of this work since it produces insignificant 
benefits in the composite laminates considered herein.

The pattern illustrated in equations (8)-(10) for the 2nd row 
can be expanded along the main diagonal, ensuring that the 
relevant terms of the calibration matrix of equation (2) are 
used for each depth increment:

Finally, each row of L can be scaled such that the absolute 
row-wise sum of the matrix coefficients are all equal to a 
constant value. For the sake of simplicity this constant can 
be 4 as would be found for the standard (-1 2 -1) sequence. 
This ensures that the degree of regularization applied 
remains constant across all depth increments throughout 
the measurement depth. Otherwise, an artificial increase  
or decrease in regularization with depth occurs. As 
in the approximate method, the rows of L bordering 
any interface must be set to zero to ensure that no 
regularization is applied across the interfaces between ply  
orientations or material types.

While a single regularization parameter will usually 
suffice, regularization parameters can also be controlled 
individually through the use of a diagonal matrix 
containing the �x , �y and �

45◦
 parameters corresponding 

to each in-plane direction. Strains are measured by 
the same equipment and therefore should have similar 
standard errors. Nonetheless variations in optimal 
regularization parameters in each direction usually exist. 
The use of a diagonal regularization parameter matrix 
allows simultaneous optimization of each regularization 
parameter by allowing different degrees of regularization 
to be applied in each direction.

(10)F = − [D + E]

(11)
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The regularized fully coupled stress distribution can be 
determined from the inverse solution of:

The degree of regularization applied can have an appreciable 
effect on the quality of the calculated stress distribution. 
The degree of regularization to apply is again a variance vs. 
bias trade-off that is complicated by the fact that the bias 
is not accessible to the user [17]. Many strategies exist to 
determine the optimal degree of regularization, however, the 
Morozov discrepancy principle has been frequently used and 
with success in IHD and other relaxation methods so it will 
be used here as well. The Morozov discrepancy principle 
can be used to iteratively determine the optimal degree of 
regularization to apply based on the standard strain error to 
ensure that maximum noise artefacts are removed from the 
measured strains without introducing a dominant bias which 
distorts the residual stress distribution. The standard strain 
error in each direction can be estimated using the average 
local misfit norm [34] which assumes that smooth strain 
variations exist in each ply and that deviations from the 
smooth variation are a result of measurement noise [35]. 
Due to the possibility of pronounced changes in the released 
strain at the interface between plies, the local misfit norm 
is calculated separately in each ply to exclude the misfit 
across interfaces [29]. This prevents overestimating the 
standard error due to slope discontinuities and, consequently, 
applying excessive regularization that would distort the 
stress distribution. The Morozov discrepancy principle 
specifies that an optimal degree of regularization is achieved 
when the chi-squared statistic, �2 , equals the number of 
depth increments, i.e. when the squared discrepancy between 
the calculated and measured strains is equal to the standard 
error over the measurement depth. Each ply is treated 
separately since the estimated standard error, e, tends to vary 
slightly from ply to ply. The �2 statistics can be calculated 
using equation (14), shown only for strain in the x-direction 
but similarly for strain in the y and 45◦ strain directions.
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where n is the number of plies, hfj is the first depth increment 
in ply j, hej is the depth increment at the end of ply j (i.e. at 
the interface with the subsequent ply), ejx is the standard 
strain error in the x-direction in ply j, �meas

x
 is the measured 

strain data and �calc
x

 is the calculated strain corresponding to 
the regularized solution of equation (13):

The optimal combination of regularization parameters 
can be found iteratively by starting with sufficiently small 
regularization parameters and determining the ratio of the �2 
statistic vs. the total number of depth increments, h, in each 
measurement direction after solution of equations (13) and 
(15). The ratios obtained from the current iteration, k, can 
be used to scale the regularization parameters for the next 
iteration. Shown only for the x-direction but similarly and 
simultaneously for the y and 45° strain directions:

where a power term m is included simply to allow greater 
control over the rate of convergence through a simple 
gradient ascent, but m = 1 can be used for the general case 
and reduced if finer iteration steps are required.

All three regularization parameters are optimised 
simultaneously and since their respective convergence 
to the Morozov discrepancy principle is based on their 
ratio of �2 of the current iteration to the total number of 
depth increments, smaller or larger adjustments are made 
depending on their relative ‘distance’ from the optimal 
value. This allows convergence to the Morozov discrepancy 
principle in each strain direction through the use of the 
diagonal regularization parameter matrix. The optimal 
values for the diagonal regularization parameters for a given 
standard strain error are unique and a minimum is found 
for the least-squares solution of Tikhonov regularization 
with the second derivative penalty term. However, despite 
the use of the Morozov discrepancy principle it may be 
necessary to adjust the degree of regularization applied if 
noise artefacts and local curvature in the stress solution 
remain or if distortion of the stress solution occurs since 
the standard strain error is not exactly known and only 
estimated. Nonetheless, the Morozov discrepancy principle 
can be used to determine an initial estimate of the optimal 
degree of regularization to apply. This initial estimate might, 
however, make it difficult to know whether the solution is 
somewhat under-or over-regularized. An effective approach 
when performing Monte Carlo simulation to estimate 
uncertainty, is to use regularization parameters of say 50% 

(15)�
calc = C �res
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of that indicated by the Morozov discrepancy principle and 
gradually increase them while observing the behaviour 
and roughness of the stress distributions calculated from 
perturbed strain data. As the degree of regularization is 
gradually increased, the mean solution should remain 
relatively unaffected overall except for fine smoothing 
of the stress through removal of local curvature. This is 
accompanied by a gradual reduction in variance until a 
degree of regularization is reached where the first signs of 
the induced bias becoming the dominant source of error 
in the solution is observed through deviation of the stress 
solution. This can be achieved by inspecting the mean and 
variance of the stress distributions visually or by statistical 
means as the degree of regularization is gradually increased.

Demonstration of Methods Using Known Stress

To confirm the accuracy of the proposed method of fully 
coupled regularization, the method is assessed against 
a known stress distribution in a complex laminate. 
For comparison, the method is assessed against the 
approximate method of regularization that is known to 
work well in biaxial laminates, but has not been assessed 
elsewhere. Sinusoidal eigenstrain distributions are applied 
to a FE model to generate a known stress distribution 
through the thickness of a laminate, whereafter IHD is 
simulated to obtain a known released strain variation. The 
same FE model as that of the forward solution is used to 
avoid any variability arising from different FE models. A 
laminate configuration of [+45/-45/0/90]s was selected 
for the verification tests. This laminate configuration is 
arbitrary but allows the accuracy of the proposed method 
to be assessed in a reasonably complex laminate where 
the off-diagonal compliance terms are large with respect 
to the diagonal terms (at least 30% the magnitude). A 
Gaussian distributed noise with standard deviation of 
1 µm/m is added to the known strains in a Monte Carlo 
simulation [36] using 1000 trials. The approximate and 
fully coupled regularization methods with 75 depth 
increments up to 1 mm depth (five plies deep) are used to 
determine the residual stress distribution for each of the 
1000 noisy strain datasets. Only 1000 trials are required 
to obtain repeatable results since only one uncertainty 
source is considered. Small depth increments are used 
for the regularization methods to limit the introduction of 
bias due to discretisation [17]. This increases the variance 
of the solution significantly which must be reduced by 
Tikhonov regularization, allowing the performance of the 
approximate and fully coupled methods to be assessed more 
independently of the bias introduced by discretisation.

The standard method with coarser discretisation of 
twenty depth increments up to the same depth is also 
included as a baseline comparison. Following the Monte 
Carlo simulations, the mean stress and variance at every 
information depth is obtained from the 1000 trials used in 
the Monte Carlo simulation for each method. The variance 
is determined from the standard deviation in calculated 
stress at each depth across all 1000 trials, presented as 
±2 standard deviations. Stresses are presented at the mid-
depth location rather than piecewise constant functions to 
improve figure readability.

Modest Stress Variation Throughout the Laminate

Firstly, a modest stress variation throughout the laminate, 
with a released strain presented in Fig. 3, is considered 
in Figs. 4, 5 and 6. At optimal levels of regularization, 
both regularized methods are able to accurately determine 
the applied stress throughout the drilling depth with 3.75 
times greater depth resolution than the standard approach 
while also reducing the stress variance by a factor of 
around 3. It was clear, however, that the approximate 
regularization method is more affected by bias and con-
sequently a slightly lower degree of regularization is used 
for this method. This results in slightly larger variance 
compared to the fully regularized method even at a degree 
of regularization where the bias is still noticeable towards 
the maximum depth.

Strains corresponding to the regularized solutions versus 
the known strain variation are not presented since the known 
strain is free of noise or error and the mean calculated 
strains of both regularization methods fit the known strains 
indistinguishably well.
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Near‑Surface Stresses Due to Tool/Part Interaction

The manufacturing process of composite laminates can 
induce significant tool/part stresses near the surface of the 
laminate during curing and release. These stresses can have a 
considerable gradient near the surface which dissipates over 
the thickness of the surface ply, leaving the remaining plies 
with a relatively constant stress throughout their thickness. A 
known stress distribution was generated where there is sig-
nificant stress variation in the first ply to simulate tool/part 
interaction and little to no variation in the remaining plies. 
This also serves as a test for the regularization methods to 
determine if they are able to correctly regularize the solu-
tion when there is a combination of steep stress gradients 

near the surface followed by constant stresses as presented 
in Fig. 7 for the x-direction only since the other directions 
show the same behaviour. Again, both regularization meth-
ods show very good correlation with the known stress vari-
ation and perform between 3 and 4 times better than the 
standard method in terms of both the depth resolution and 
the stress variance.

Capturing Significant Stress Variation Within each Ply

To further verify the performance of the regularization 
methods, a known stress distribution with significant stress 
variation through the thickness of each individual ply is gen-
erated in Fig. 8. Although simple theoretical models indicate 
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such variation to be unlikely, it is however, commonly found 
in practice [29, 30]. Both methods still perform extremely 
well throughout the thickness.

The approximate regularization approach is found to pro-
duce acceptably accurate residual stress measurements in 
this particular laminate which compare well to those of the 
fully regularized method. However, even at optimal regu-
larization levels it can be seen in Figs. 4, 5, 6, 7 and 8 that 
the stress results of this method start to deviate from the 
known stress at maximum depth. While this is mostly insig-
nificant in these cases, it does illustrate the error introduced 
by not performing regularization on the coupled system and 
applying regularization to the strain in each gauge direction 
using only the calibration coefficients of the primary stress 
associated with that direction. A different stress is therefore 
initially solved and smoothed by the regularization in equa-
tion (5) than the actual stress state existing in the material. 
This smooth, but incorrect, stress state is then used to obtain 
regularized strains in each direction that are subsequently 
used to determine the regularized stress solution using the 
fully coupled method of equations (1) and (2). Despite this 
error, the approximate method works well in most cases, 
but the error should be recognised and care should be taken 
when using this approach. Despite the better than anticipated 
performance of the approximate regularization approach in 
a complex laminate, the fully regularized method is superior 
and more accurate overall over the entire depth of measure-
ment and will be the only method considered hereafter.

Effect of Under‑and Over‑Regularization of the Fully 
Coupled Method

Determining the optimal degree of regularization to apply is 
crucial to the quality of the measurement of the residual stress 

distribution. Insufficient regularization does not remove all 
the noise artefacts from the strain data, resulting in large stress 
variance or even instabilities in the stress solution. Under-
regularization obtains the true solution but has large variance. 
Over-regularization reduces variance but removes true strains 
from the data and introduces a bias into the over-smoothed 
stress solution that deviates from the true stress solution. Opti-
mal regularization balances these effects to achieve a good 
compromise between variance and bias to obtain the best esti-
mate of the stress distribution with minimal variance. The 
effect of under- and over-regularization of the fully coupled 
method is presented in Fig. 9 for the x-direction. The behav-
iour in y and shear directions is similar. The optimal �x , �y and 
�
45◦

 parameters were found to be 2.05 × 10−13 , 1.93 × 10−13 
and 5.11 × 10−13 respectively. While the �x and �y parameters 
are similar, �

45◦
 differs significantly since the shear stresses 

are constant in each ply, but the use of the diagonal parameter 
matrix allows the optimal �

45◦
 to be found.

Effect of Increasing Noise on the Fully Coupled 
Method

The effect of increasing measurement uncertainty on the 
fully regularized method is presented in Fig. 10 for Gauss-
ian distributed noise with standard deviations of 1 µm/m, 
3 µm/m and 5 µm/m. In practice, measurement noise should 
be minimised by meticulous experimental technique and not 
reach levels of 5 µm/m which is greater than 10% of the aver-
age magnitude of the released strains across all directions 
and depths in this case. However, despite this level of noise, 
the fully regularized method is able to accurately determine 
the residual stress distribution, with a stress variance that 
enables the measurement to be meaningful.
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Experimental

Following successful demonstration of the accuracy of the 
fully coupled regularization method using known stress and 
strain from FE simulations, it is important that the method 
be compared in a real world application to another method 
beyond the standard fully coupled integral method with lim-
ited depth increments used thus far. The series expansion 
method considers all stress and strain component contribu-
tions simultaneously in a least-squares solution and so pro-
vides a robust comparison for the results of the fully coupled 
regularization method. Layered composite materials have 
discontinuous stress distributions at the interfaces between 
plies which are difficult to describe by a least-squares fit of 
a single series, even at high orders. This prevents application 
of the standard series expansion method in composite mate-
rials. These materials can be investigated with IHD through 
the use of separate, lower order, series expansion in each 
ply to achieve a good fit to the experimental strain data. The 
comprehensive method on the use of separate power series 
expansion with IHD in composite materials is described by 
Smit and Reid [30] and is, therefore, only briefly summa-
rised here. Stress variations induced by applied power series 
eigenstrain functions in the forward solution are used to cre-
ate a stress matrix which allows discontinuities in stress to 
be captured on each side of a ply interface. The separate 
series expansion method has been successfully compared 
against neutron diffraction in a fibre metal laminate of [0/90/
steel]s construction [37].

A laminate configuration of [0/45/90/-45]s was arbitrar-
ily selected for the experimental case. This configuration 
is, however, substantially different from the previous lami-
nate where a known stress was used. This is to ensure and 

demonstrate that the method and optimisation process applies 
to any configuration and is not inadvertently tuned to perform 
well where the stress is known and subsequently applied to an 
experimental case of the same laminate configuration.

Specimen

The [0/45/90/-45]s composite plate was manufactured from 
E-glass/epoxy using prepreg material with Vf ≈ 60% and ply 
thickness of ≈ 200 µm. The cured plate had no noticeable 
curvature or voids and a thickness of 1.6 mm. Further details 
around the manufacturing process and orthotropic lamina 
properties can be found in previous works [29, 30].

IHD

The test specimen was laid flat on a surface and drilled with-
out any other constraints being applied to avoid introducing 
mounting stresses. To avoid any movement during drilling, 
a specimen with dimensions of 75 mm × 170 mm was used 
such that it had sufficient inertia. An HBM foil strain gauge 
rosette of type 1.5/350M RY61 with 6 strain gauge grids was 
used. Strain gauges with a resistance of 350 Ω and a gauge 
excitation voltage of 1.5 V were selected to reduce heating 
effects on the low-conductivity material whilst achieving the 
desired sensitivity. Further details regarding the experimental 
procedure can be found in previous works [29, 37].

Sixty constant depth increments were used up to the mid-
plane, and an additional fifteen increments past the midplane 
(up to the end of the layer beyond the midplane). The experi-
mentally measured strain variations with depth at each strain 
gauge location are presented in Fig. 11. The use of small 
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depth increments not only reduced the introduction of heat 
into the specimen during drilling but also provided sufficient 
data for the series expansion method [21] for a fair compari-
son with the regularized fully coupled integral method which 
also benefits from larger data sets [17]. The small depth 
increments also provided a good data set for interpolation of 
measurements at the depths of the more coarsely discretised 
20 step integral method. IHD was conducted beyond the mid-
plane to provide additional data points for series expansion 
as these additional data points help constrain the series near 
their end points where greater instability and consequently 
greater variance in stress can occur [38]. This approach there-
fore reduced the overall uncertainty in the measured stress 
distribution at the midplane [29, 38].

Computational

MSC Nastran was used to determine the calibration coef-
ficients required for both IHD computational methods. 
Calibration coefficients for the integral and series expan-
sion methods were determined from the same FE model 
to negate variability in the results. The FRP laminate was 
modelled using HEX20 type 3D elements with 32 elements 
through the thickness, 4 elements through each ply [29]. 
The hole diameter measured after IHD was used in the FE 
model. Due to the material asymmetries, a full model was 
used with boundary conditions to prevent rigid body motion. 
Further details regarding the application of the basis func-
tions of each method to the FE model and the calculation 
of the required calibration coefficients from the FE forward 
solutions are outlined in previous works [29, 37].

The calibration matrices for the regularized fully coupled 
integral and series expansion methods must be populated 
with data corresponding to the 75 experimental depth incre-
ments used. Therefore, the calibration coefficients for the 
75 experimental depth increments are interpolated from the 
twenty depth increments used in the FE calculation. The 
coefficients follow smooth variations with depth, with dis-
continuities (in slope) at the interfaces between different ply 
orientations. A separate spline was accordingly fitted to the 
FE calibration coefficients within each ply orientation to 
enable these interpolated coefficients to be found.

Propagation of Uncertainties

Only the dominant experimental and computational uncer-
tainty sources [29, 39] were considered in the Monte Carlo 
simulation of the IHD experiment in the [0/45/90/-45]s lami-
nate, these are provided in Table 1. Uncertainties due to 
material properties were not included for simplicity since 
they affect the integral and series expansion computational 
methods similarly [29].

Zero depth detection is essential for IHD residual stress 
measurement and is one of the largest sources of error in 
the stress solution. The approach used in this work is as 
described by Smit and Reid [29], where the drilling process 
is started slightly above the specimen. The first few depth 
increments do not measure any meaningful strain while the 
end mill is in the air or within the thickness of the strain 
gauge. Once the end mill has penetrated the specimen, a 
strain response is observed in at least one of the gauge 
directions due to the presence of residual stresses near the 
surface. However, it is not known if this occurs just as the 
end mill makes contact with the specimen at the end of an 
increment or if the end mill was a full depth increment into 
the specimen. To be conservative, the zero depth uncer-
tainty is set to the size of a full depth increment. After the 
IHD experiment, the strain variations were investigated and 
shifted along the x axis to find the most likely position of 
the surface. The discontinuities in slope at the interfaces 
between ply orientations were also used to aid the determi-
nation of the zero depth position.

Within each Monte Carlo trial, the measured strains are 
all scaled using the same random variable for the indicated 
strain uncertainty as they are considered fully correlated 
[41]. Thereafter, the depth of each strain measurement is 
adjusted for uncertainty in incremental depth, and all meas-
urements are adjusted for the uncertainty in zero depth posi-
tion. Spline interpolation is used to determine the strain 
data, referenced to the zero depth of that trial, at the relevant 
depths for the inverse solution of each method considered. 
Some additional bias is introduced by the use of spline 
interpolation, but this is negligible in comparison with the 
uncertainty associated with the depth position of each incre-
ment. Finally, uncertainty due to strain measurement noise 
is included for each interpolated strain datum.

Table 1   Sources of uncertainty 
and their assigned probability 
density functions

xi Description p(xi) [40] Type [40] Nominal value, uncertainty

h
0

Zero depth Rectangular B 0 µm, 13.33 µm
hi Incremental depths Rectangular B 13.33 µm, 0.50 µm
�meas Indicated experimental strain Normal B Fig. 11, 1.54%
�noise Experimental noise Normal A Fig. 11, 0.61 µm/m
FE Finite element calculations Normal B 0, 2 %
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The regularized integral method and series expansion 
both contain an inherent bias since only an approximation 
of the original inverse problem is solved. The calculated 
strains corresponding to the residual stress solutions do 
not exactly match the experimental strain data, a so called 
‘model error’ [21]. The induced bias cannot be determined 
directly but its effect must be estimated and included in 
the uncertainty analysis. Prime and Hill [21] proposed 
that this uncertainty be estimated as the standard devia-
tion of the misfit between the experimentally measured 
strains and those calculated by the least-squares fit of 
series expansion. This is done separately within each ply 
orientation for the x, y and 45° directions [30]. The same 
approach was used for the calculated strains produced by 
the regularized fully coupled integral method so that both 
methods are treated similarly for comparison purposes. 
A similar approach for Tikhonov regularization has been 
proposed by Olson et al. [42, 43].

FE calculations are not able to fully represent all the 
deformations that are possible in reality. The calibration 
coefficients were all varied by the same random variable 
within each Monte Carlo trial since the matrices are con-
sidered to be fully correlated [41].

The residual stress field was determined for each Monte 
Carlo trial using equation (1) for the standard fully cou-
pled integral method with 20 steps and equation (13) for 
the regularized method. The mean stress and variance 
at every information depth is determined as for the ear-
lier known stress cases. Ten thousand trials are used in 
this Monte Carlo simulation since multiple uncertainty 
sources are considered and a sufficient number of trials 
must be used to allow interaction between the different 
noisy inputs to estimate their combined effect on the stress 
distribution variance.

Results and Discussion

The residual stress distributions determined using the 
regularized fully coupled integral method and the stand-
ard integral method (discretised to 20 steps) are overlaid 
with those determined using series expansion in Figs. 12, 
13 and 14. The standard integral method is discretised 
to 20 steps to yield stable stress results as a baseline 
comparison. A coarser discretisation would not allow 
the rapid stress variations to be properly captured due to 
averaging effects while a finer discretisation would lead 
to meaninglessly large variance and somewhat erratic 
behaviour. In contrast to the standard method, the regu-
larized method benefits from an increased number of 
depth increments and produces stress results with both 
good resolution and considerably lower uncertainty over 
the measurement depth. The general trend of the integral 

methods match each other well. The residual stress distri-
butions of the regularized fully coupled integral method 
compare favourably with those obtained by separate 
series expansion. Although the correlation is not perfect 
(which is expected considering they are based on two 
entirely different approaches) they are clearly represent-
ing the same general trends.

The regularized and least-squares fits to the measured 
strain data in the x-direction are presented in Fig.15 for the 
regularized integral method and series expansion, respec-
tively. The curve fits from both methods correctly capture 
the discontinuity in slope between plies of different orien-
tation. The curve fits to the measured strain data are nearly 
indistinguishable from each other except for minor discrep-
ancies near the interfaces between plies. This demonstrates 
that the fully regularized integral method is working well 
compared to series expansion which directly incorporates 
all stress and strain components simultaneously in its least-
squares curve fitting.

The optimal �x , �y and �
45◦

 regularization parameters were 
determined as 1.88 × 10−12 , 1.69 × 10−12 and 5.53 × 10−12 , 
respectively. These regularization parameters are much 
smaller than those recommended in the ASTM E837 stand-
ard for isotropic materials (10-6 – 10-4) simply because the 
calibration matrices in the ASTM are based on a normalised 
Young’s modulus of 1 MPa and therefore have much higher 
values with the actual material properties being multiplied 
in during the inverse solution.

Regularization of the fully coupled method is predictable 
and stable in its behaviour in the sense that over-regularization 
simply flattens the stress solution while reducing the vari-
ance, indicating the bias becoming the dominant source of 
error. This effect is, however, noticeable when the stress 
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distributions and accompanying variance are plotted with 
increasing regularization. It then becomes comparatively easy 
to determine the degree of regularization at which the bias 
starts to become dominant. As is evident in Fig. 9, increasing 
the regularization decreases the variance without significant 
changes to the solution apart from removing low magnitude 
oscillations. At some point the shape of the solution starts to 
deviate and it is just before this point that optimal regulariza-
tion is found, where the variance is minimised without the 
bias significantly influencing the underlying solution. While 
the Morozov discrepancy principle is used as an initial guide 
to determine the first estimate of the optimal regularization 
parameters, the stress solution and variance for a range of 

increasing regularization parameters are considered in deter-
mining the optimal degree of regularization.

In this experimental case it was clear that the shear stress 
required a higher degree of regularization, especially near the 
surface. The �

45◦
 regularization parameter was consequently 

progressively increased to gradually reduce variance and local 
curvature without introducing significant bias in the shear stress 
solution, or in the x and y directions. The effect of increasing the 
�
45◦

 regularization parameter on the x and y stress distributions is 
accounted for in the fully coupled regularization which considers 
all components simultaneously. If this had been attempted with 
only a single regularization parameter for all stress components, 
the x and y stress distributions would have become over-regu-
larized or the shear stress would have been under-regularized. 
The use of a diagonal matrix for the regularization parameters 
avoids a compromise between under- and over-regularization in 
different directions. In this work, the regularization parameters 
have been kept constant with depth throughout all plies but there 
is potential scope for further optimization of the regularization 
parameters by adjusting equation (12) to allow for changes in the 
degree of regularization applied to each ply orientation, similar 
to the approach used in the separate series expansion method 
where the series order can vary from ply to ply.

While a table comparing the stress uncertainty induced 
by each input uncertainty source would usually be included, 
it is omitted since the relative contribution of bias towards 
the solution uncertainty for each method is unknown. This 
renders such a comparison meaningless [17]. Consequently 
it is debatable whether the regularized fully coupled integral 
method or the separate series expansion method produces 
superior stress results in this particular experiment because 
the true solution is not known, but it is clear that the results 
are comparable throughout the entire measurement depth. The 
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fully coupled regularized integral method requires 12 times 
fewer FE computations, however, to calculate the compliances 
and since it does not require experimental drilling up to a 
particular depth, it is more practical in general application. 
The optimal degree of regularization is also more convenient 
to determine than the optimal combination of series order in 
each ply orientation required by series expansion.

Conclusions

The approximate regularization method performs well in all 
known stress cases considered, but deviates somewhat from 
the correct solution at maximum depth and may be suscep-
tible to errors in other cases. Tikhonov regularization of the 
fully coupled integral method of IHD matched the known 
stress solution extremely accurately and outperformed the 
approximate solution in the composite laminate considered in 
this work. Both regularized approaches significantly improve 
upon the standard approach. The regularized fully coupled 
integral solution closely matches the series expansion solu-
tion in the experimental example presented. Since the series 
expansion solution employs a least-squares fit of all stress 
and strain components simultaneously, this close match pro-
vides reassuring evidence of the accuracy of the regularized 
fully coupled integral method presented in this work. The 
standard fully coupled integral method, the approximate 
regularization method and the regularized fully coupled 
method all require the fully coupled calibration matrix and 
so, once this calibration matrix is obtained, the additional 
effort required to implement fully coupled regularization is 
negligible. Fully coupled regularization should consequently 
be used in general as there is little downside to this method. 
The regularized integral method requires significantly fewer 
FE computations compared to separate series expansion. 
Furthermore, optimal values only need to be found for three 
regularization parameters instead of an optimal order com-
bination from a large number of possible order combinations 
that grows rapidly with laminate complexity in the case of 
separate series expansion. Optimal regularization parameters 
can be found simultaneously for the fully coupled method. 
The solution is a true and unique minimum of the objec-
tive function for a chosen admissible squared discrepancy 
between the calculated and measured strains. The new 
method is easily applied and should find wide application in 
the measurement of residual stresses in composite laminates 
and in isotropic materials where the ASTM standard cannot 
currently be applied.
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