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Abstract
Background The conventional isotropic elastic model neglects the anisotropy of sheet metals' elastic modulus, leading to 
inevitable errors in springback prediction.
Objective Aiming at the problem of anisotropic springback in the forming process of sheet metals, an orthotropic elastic 
model was established in this study, and the applicability of the model was analyzed. An accurate and convenient numerical 
solution method was proposed, considering the challenge of calibrating model parameters through experimental measurement.
Methods The reliability of the proposed parameter solution method is verified by uniaxial tensile and thin-walled tube torsion 
tests. To verify the anisotropic elastic model, both V-bending finite element simulation and experimental testing were conducted.
Results The proposed parameter solution method has good prediction accuracy, with an average relative error within 5%. 
The three-group sample solution method significantly reduces experimental and data processing workload, demonstrating 
the precision and user-friendliness of this method. The proposed model yields a significant enhancement in springback 
prediction accuracy when compared to the conventional isotropic elastic model.
Conclusion This study is basic research on the prediction of anisotropic springback, which can improve the simulation accu-
racy of the sheet metals forming process involving this problem, particularly in the anisotropic metal sheet stamping process.

Keywords Anisotropy · Elastic constitutive · Parameter calibration · Springback · Simulation

Introduction

The springback phenomenon is a significant engineering 
problem that arises in the production of sheet metal-formed 
products. The occurrence of springback after unloading of 
the forming tool will result in additional deviations in the 

shape and size of the parts. This was more pronounced dur-
ing sheet metal forming compared to other methods of form-
ing (i.e. bulk forming) [1, 2], owing to the small thickness 
of the material.

Sheet metals usually exhibit a certain initial elastic ani-
sotropy mainly due to crystallographic texture, which is 
caused by the previous production steps rolling and anneal-
ing [3]. During the process of sheet metals forming, every 
particle on the part undergoes elastic–plastic loading and 
unloading, in which plastic loading and unloading are also 
accompanied by elastic deformation. The elastic deforma-
tion exerts a significant influence on the accumulation of 
plastic deformation and the accuracy of springback predic-
tion [4]. The accuracy of describing elastic deformation is 
closely related to the adopted elastic constitutive model. 
However, the conventional isotropic elastic model neglects 
the anisotropy of sheet metals' elastic modulus, leading to 
inevitable errors in springback prediction. The anisotropic 
elastic properties of the rolled sheet make it necessary to 
consider the impact of this difference in springback predic-
tion, and compensation for springback in different direc-
tions must also be adjusted accordingly. In other words, 
for example, the elastic modulus of the sheet metal rolling 
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direction and the vertical direction are not equal, then the 
amount of springback will also be different. Therefore, it is 
crucial to establish a constitutive model that can precisely 
describe the anisotropic elastic behavior for accurate predic-
tion of part forming and springback.

Over the past few years, the research on elastic modulus 
mainly focuses on the nonlinear evolution of elastic modu-
lus. The elastic modulus of certain materials exhibits signifi-
cant deviation after plastic deformation, prompting numer-
ous scholars to conduct research on such materials with 
varying elastic modulus. Yoshida and Amaishi [4] proposed 
an evolution model of elastic modulus to describe the non-
linear stress-strain response during the unloading–reloading 
process. Sun and Wagoner [5] observed that the unloading 
modulus was reduced by 30% compared to Young's modulus 
by loading and unloading DP780 and DP980 steels. Zajkani 
and Hajbarati [6, 7] captured the variable unloading modu-
lus through the nonlinear function of plastic strain. Meng 
et al. [8] applied the nonlinear elastic model proposed by 
Yoshida and Amaishi to the springback prediction of 6061 
aluminum alloy. Chang et al. [9] analyzed the variation of 
unloading elastic modulus and inelastic recovery with strain 
through cyclic loading-unloading tests and established a 
correlation model between unloading elastic modulus and 
real plastic strain. Aerens et al. [10] considered the evolu-
tion of elastic modulus to study the relationship between 
the angle accuracy of air bending and the calculated stroke 
accuracy. Liu et al. [11] proposed a mathematical model 
considering the evolution of elastic modulus and applied it 
to three-dimensional finite element analysis to simulate the 
cold rolling process. Yang et al. [12] developed an analytical 
model considering the change of elastic modulus to predict 
the springback of advanced high-strength steel in air bend-
ing. Mehrabi et al. [13] proposed a new analytical method 
to predict the bending and springback behavior of hexagonal 
close-packed metal sheets by combining the variable elastic 
modulus method. The above reports have studied the influ-
ence of elastic modulus degradation on springback during 
unloading and reloading, but neglected the directionality of 
elastic modulus, that is, anisotropic elasticity. It appears that 
scholars have not given sufficient attention to the anisotropic 
elasticity aspect of the springback problem.

In addition to the variable elastic modulus discussed 
above, the study of springback mainly focuses on the hard-
ening model, complex loading and anisotropic yield func-
tion. The Yoshida-Uemori (Y-U) nonlinear hardening 
model [14–19] and Chaboche kinematic hardening model 
[20–22] were used to study the springback. Choi et al. [23] 
improved the Homogeneous anisotropic hardening model 
(HAH) to predict springback. Julsri et al. [24] explained 
the effect of material hardening on the springback predic-
tion of advanced high strength steel based on microstructure 
modeling. Sumikawa et al. [25, 26] proposed a new material 

model considering nonlinear behavior and applied it to the 
pressing test and corresponding springback analysis of bent 
hat-shaped parts. Leu [27], Zhu et al. [28], Ouakdi et al. [29], 
Zhai et al. [30], Wang et al. [31], Kut et al. [32], Zhan et al. 
[33] studied the influence of complex loading on spring-
back. In recent studies, the anisotropic yield criterion was 
introduced into the study of springback prediction [34–38]. 
However, Marko et al. [39] given the conclusion that accurate 
modelling only of anisotropic yielding was not enough to 
accurately predict the springback phenomenon. The consti-
tutive model should also include the strain path-dependent 
change of the elastic modulus. When most studies above do 
not center on the elastic modulus, in order to simplify, the 
elastic model is treated as isotropic linear elasticity, which 
undoubtedly increases the error of springback prediction.

The accuracy of the anisotropic elastic model's descrip-
tion is directly dependent on the quality of experimental 
data used to calibrate its coefficients, which include elas-
tic modulus, Poisson's ratio and shear modulus. The elas-
tic modulus and Poisson's ratio can be determined through 
uniaxial tensile tests conducted at various angles relative 
to the rolling direction of the sheet. However, due to the 
negligible elastic deformation in the thickness direction of 
metal sheets, it is impractical to experimentally measure 
or calculate the elastic parameters in this direction using 
volume invariance as applied to plastic deformation. The 
shear modulus can be obtained by pure shear test. Although 
effective shear stress-strain curves can be obtained by tensile 
shear tests, but there is always a risk of instability failure 
[40, 41].Therefore, the torsional shear test is selected avoid 
this situation. Ballo et al. [42] and Bhaduri [43] theoretically 
analyzed and experimentally verified the feasibility of thin-
walled tube torsion experiments. However, implementing 
torsion experiments on metal sheets poses numerous chal-
lenges. Firstly, the sheet must be rolled into a slender tube 
and welded, which is a complex process. Secondly, thin-
walled tube torsion experiments may result in failure prob-
lems such as torsional instability or damage at both ends due 
to loading forces. Thus, many special tube torsion specimens 
were designed [44–47]. From the preceding discussion, it is 
evident that both the elastic parameters pertaining to thick-
ness direction and shear modulus are difficult to measure 
experimentally. Therefore, a convenient approach is required 
for obtaining these parameters.

The current research on springback is primarily focused on  
the field of sheet metals stamping, and further investigation 
into the influence of anisotropic elastic properties unique  
to rolled sheet metals on this issue is necessary. The paper is 
organized as follows. The orthotropic two-dimensional elastic 
constitutive model for metal sheets is established in “Elas-
ticity constitutive model” section and then a necessary and 
sufficient condition to assess its applicability is proposed in 
“Analysis of model applicability” section. Based on this, a  
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practical numerical solution method called the error func-
tion extremum method (ERFM) was proposed for calibrating 
model parameters in “Calibration method of elastic parame-
ters” section. In “Experiment” section, experiments to obtain 
input data and validation data were carried out. We finally 
discuss in “Results and discussions” section the reliability 
of the parameters solving method and the superiority of the 
orthotropic elastic model.

Elasticity Constitutive Model

Isotropic Elastic Model

If a material exhibits identical mechanical properties in all 
directions, it is considered isotropic. In such cases, only two 
independent coefficients are required for the elastic consti-
tutive relation. The isotropic elastic constitutive relation is 
expressed as

where E and ν are elastic constants.
The shear modulus can be expressed as

Orthotropic Elastic Model

The orthotropic elastic constitutive model is based on three 
basic assumptions: The metal sheet possesses three aniso-
tropic principal axes that are mutually perpendicular to each 
other; The metal sheet exhibits linear elasticity in elastic 
deformation; The metal sheet is subjected to a two-dimen-
sional plane stress state.

Concepts and definitions

The three spindles are identified by the numbers 1, 2 and 3. 
Without loss of generality, assume that the 1-axis is aligned 
with the rolling direction of the metal sheet. A uniaxial ten-
sile specimen can be used to determine the elastic modulus 
and two Poisson's ratios. By conducting a uniaxial tensile test 
along the 1-axis, three experimental values of E1, ν12 and ν13 
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can be obtained as an example. The setting of the material 
spindle and reference coordinate system is shown in Fig. 1.

Constitutive equation

For general anisotropic linear elastic materials, stress and 
strain have a linear relationship. It is

where 
{
�i
}
=
{
�x, �y, �z, �yz, �zx, �xy

}T is strain vector, {
�i
}
=
{
�x, �y, �z, �yz, �zx, �xy

}T is stress vector, [Sij] is flex-
ibility matrix, i, j = 1,2,3…6. From the energy density of elas-
tic deformation, it can be proved that the flexibility matrix is a 
symmetric matrix. Therefore, only twenty-one of the thirty-six 
coefficients in the matrix are independent.

From the energy density of elastic deformation and sym-
metry, it can be proved that only nine coefficients in the flex-
ibility matrix are independent, while all remaining coefficients 
are equal to zero. Under a two-dimensional plane stress state, 
there are �z = �yz = �zx = 0 , �yz = �zx = 0 . The expression of 
the constitutive equation matrix for an orthotropic metal sheet 
subjected to a two-dimensional plane stress state is therefore 
as follows:

(3)
{
�i
}
=
[
Sij
]{
�j
}

Fig. 1  Material spindle and reference axis setting, where α is the 
sampling angle of the uniaxial tensile specimen relative to the rolling 
direction
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Obviously, when equation (4) is expanded, the coeffi-
cients S33, S44 and S55 are absent in the constitutive equation. 
There are only six independent undetermined coefficients in 
equation (5) now.

The uniaxial tensile test conducted in the 1-axis direction 
obtains E1, ν12, and ν13; while that performed in the 2-axis 
direction provides E2, ν21, and ν23. Additionally, a pure shear 
test on the section aligned with the x-axis can determine G12. 
By substituting these experimental values into equation (5), 
the anisotropic undetermined coefficients can be obtained. 
There are

Analysis of Model Applicability

To assess the applicability of the orthotropic elastic model, 
necessary and sufficient conditions for evaluating linearly 
elastic orthotropic metal sheets were established based on 
fundamental definitions of elastic modulus and Poisson's 
ratio. In this study, the metal sheet that satisfies the ortho-
tropic elastic constitutive equation and its corresponding 
stress-strain relationship is referred to as an orthotropic 
metal sheet; otherwise, it is classified as a non-orthogonal 
anisotropic metal sheet.

Necessary Condition

According to equation (5), there is S12 = S21. It is

(4)
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Equation (7) indicates that the elastic coefficient of the 
orthotropic metal sheet must meet the aforementioned rela-
tionship, which is a necessary condition for judging the 
orthotropic metal sheet.

Sufficient Condition

Due to the orthogonal anisotropy of the metal sheet, both 
elastic modulus and Poisson's ratio can be considered as 
functions of the sampling azimuth angleα (as shown in 
Fig. 1). When subjected to uniaxial tension along any direc-
tion, tensor transformation relationship can be obtained as

Substituting equation (8) into equation (5), and then into 
equations (9) and (10), there are

According to the aforementioned definitions of elastic modu-
lus, width Poisson's ratio and thickness Poisson's ratio, there are

where the domain of α is [0, �
2
] . Therefore, when uniax-

ial tension is sampled in arbitrary direction α, the corre-
sponding elastic modulus, width Poisson's ratio and thick-
ness Poisson's ratio are substituted into equatios (14), (15) 
and (16). Three equations can be obtained, in which only 
S66 remains unknown while the remaining parameters are 
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determined by equation (6). Therefore, there must exist 
two equations that are independent.

Make

There is

Substituting equation (18) into equations (14) and (15), 
there is

That is

Similarly, solving equations (14) and (16) simultane-
ously can obtain

Substituting equations (6) and (7) into equations (20) 
and (21), the sufficient condition for judging the ortho-
tropic metal sheet is established.

Equation (22) indicates that, in the case of orthotropic 
metal sheets, the uniaxial tensile test values along arbi-
trary directions must satisfy the above relationship. Thus, 
the necessary and sufficient conditions for distinguish-
ing orthotropic metal sheets have been established. The 
necessary and sufficient conditions show that the true 
orthotropic metal sheet is only the one that satisfies both 
necessary and sufficient conditions. When the necessary 
and sufficient conditions are satisfied, equation (5) can 
yield more precise prediction results.

Obviously, when E1 = E2,ν12 = ν21 = ν13 = ν23, the isotropic 
elastic constitutive also conforms to the above necessary 
and sufficient conditions. It can be seen that isotropic elas-
tic constitutive is only an ideal case of orthotropic elastic 
constitutive. Therefore, the orthotropic elastic constitutive 
can more comprehensively and truly characterize the elastic 
deformation behavior of materials.
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Calibration Method of Elastic Parameters

The parameters of the orthotropic elastic model involve 
Poisson's ratio in the thickness direction and shear modulus, 
which are difficult to measure by experiment. Additionally, 
most metal sheets generally do not strictly meet the above 
necessary and sufficient conditions. Therefore, a numerical 
method for solving elastic parameters is established based 
on the approximate satisfaction degree of different types of 
metal sheets to necessary and sufficient conditions, that is, 
the error extreme value function method.

The Orthotropic Metal Sheet

For the orthotropic metal sheet, all the anisotropic param-
eters except S66 in equation (5) can be determined through 
uniaxial tensile tests conducted along the material's principal 
1-axes and 2-axes directions. Then S66 can be uniquely deter-
mined by any one of the equations (14–16). α is an arbitrary 
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] . Without losing generality, take [� =
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It can be seen from equation (26) that the shear modu-
lus of the orthotropic metal sheet can be indirectly obtained 
through uniaxial tensile testing in direction � = �

4
.

The Non‑orthogonal Anisotropic Metal Sheet

For non-orthogonal anisotropic metal sheets, the comprehen-
sive error function methods for solving the approximate val-
ues of anisotropic elastic parameters are established. Make 
the experimental data obtained from uniaxial tension along 
the direction �i be E(i), �(i), �t

(i) (i = 1, 2, ...n) , then the com-
prehensive relative error function can be constructed from the 
equations (14–16). Where S = (S11, S12, S13, S22, S23, S66).

Unconstrained extremum value method for multi‑group 
samples

Within the domain 
[
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]
 of � , n groups of experimental data 
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uniaxial tension samples. Making the fitting function of 
experimental data are

Then the error function equation (27) can be written in 
integral form. It is

When the metal sheet does not meet either the necessary 
condition or the sufficient condition, the anisotropy coeffi-
cient S can be obtained by solving the extremum stagnation 
point of the multivariate function equation (29).

Endpoint constraint condition extremum method 
for multi‑group samples

When the metal sheet satisfies only the necessary conditions, 
the endpoint constraint conditions are introduced. That is

Substituting equation (30) into equations (14–16) are
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Under the constraint condition of equation (31), S66 can 
be obtained by solving the conditional extremum stagnation 
point of equation (29). It is worth noting that, in this case, 
the fitting function equation (28) of the experimental data 
should also satisfy the endpoint constraints. There are

Unconstrained extremum method for three‑group samples

In order to minimize the amount of experiments and data 
processing, it is necessary to analyze and compare the accu-
racy of the elastic anisotropy coefficients obtained from the 
uniaxial tensile test data in the directions � = 0,
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S11

E
�

�

4

�
=

4

(S66 + 2S12)+ S11 + S22

�

�
�

4

�
=

(S66 − 2S12)− S11 − S22

(S66 + 2S12)+ S11 + S22

�t

�
�

4

�
=

− 2(S13 + S23)
(S66 + 2S12)+ S11 + S22

E
�

�

2

�
=

1

S22
, �
�

�

2

�
= −

S12

S22
, �t

�
�

2

�
= −

S23

S22
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where E(2) is the elastic modulus of the uniaxial tensile 
sample in direction � =

�

4
 , ν(2) is the corresponding Pois-

son's ratio in the width direction, νt
(2) is the corresponding 

Poisson's ratio in the thickness direction. For the conveni-
ence of the following derivation, it is expressed by E45, 
ν45 and νt45, respectively. Substituting equation (33) into 
equation (34) is

It can be seen from the constraint equation (32) that only 
S66 remains to be determined in equation (34). So, make

Then equation (35) is simplified to

Make d�

dS66
=

d�

dx
⋅

dx

dS66
= 0 , there is d∅

dx
= 0 . That is

After simplification, it is

Substituting equation (31) into equation (36) is

Thus

(34)

�(S) =

⎛⎜⎜⎜⎝

E
�

�

4

�

E(2)
− 1

⎞⎟⎟⎟⎠

2

+

⎛⎜⎜⎜⎝

�

�
�

4

�

�(2)
− 1

⎞⎟⎟⎟⎠

2

+

⎛⎜⎜⎜⎝

�t

�
�

4

�

�
(2)
t

− 1

⎞⎟⎟⎟⎠

2

(35)

�(S) =

(
4

E45

1

S66 + S11 + S22 + S12 + S21
− 1

)2

+

(
1

�45

S66 − S11 − S22 − S12 − S21

S66 + S11 + S22 + S12 + S21
− 1

)2

+

(
1

�t45

2
(
S13 + S23

)
S66 + S11 + S22 + S12 + S21

+ 1

)2

(36)

⎧⎪⎨⎪⎩

x = S66 + S11 + S22 + S12 + S21
a =

4

E45

, b =
1

v45
, c = 2

�
S11 + S22 + S12 + S21

�

d =
2

vt45

�
S13 + S23

�

(37)�(x) =
(
a

x
− 1

)2

+
(
b ⋅

x − c

x
− 1

)2

+
(
d

x
− 1

)2

(38)−
a

x2

(
a

x
− 1

)
+

bc

x2

(
b ⋅

x − c

x
− 1

)
−

d

x2

(
d

x
− 1

)
= 0

(39)x =
a2 + b2c2 + d2

a + bc(b − 1) + d

(40)
c = 2

[(
1

E1

+
1

E2

)
−

(
�12

E1

+
�21

E2

)]

d = −
2

�t45

(
�13

E1

+
�23

E2

)

Substituting the correlation coefficient in equation (31) 
into equation (42) is

In summary, when the metal sheet neither meets the nec-
essary nor the sufficient conditions, the anisotropic coeffi-
cients S are obtained by numerically solving the unconstrained 
extremum stagnation point of the above error function. When 
the metal sheet does not meet the necessary conditions or suf-
ficient conditions, the analytical expression of S66 is obtained 
by solving the extremum stagnation point of the endpoint 
constraint condition, and the shear modulus G12 is obtained.

It should be noted that in the case of metal sheets, the 
acquisition of the experimental value of Poisson's ratio in 
the thickness direction is severely limited by the accuracy 
of the measuring instrument. By analyzing the composition 
characteristics of equation (5), the anisotropic parameters 
related to Poisson's ratio in the thickness direction are S13 
and S23, and both only appear in the strain expression in the 
thickness direction. Therefore, when the practical applica-
tion focuses on the calculation results of strain inside the 
sheet plane rather than the strain in the direction of sheet 
thickness, the third formula in equation (5) can be ignored. 
In this case, remove the relevant items of S13 and S23 in all 
the previous discussions. However, in this study, to calculate 
the error function more comprehensively, the Poisson's ratio 
in the thickness direction is taken as the experimental value 
at an angle of 45° with the rolling direction of the sheet.

(41)

x =

8

E45
2 +

2

�45
2

[(
1

E1

+
1

E2

)
−
(

�12

E1

+
�21

E2

)]2
+

2

�2 t45

(
�13

E1

+
�23

E2

)2

2

E45

+
1

�45

(
1

�45
− 1

)[(
1

E1

+
1

E2

)
−
(

�12

E1

+
�21

E2

)]
−

1

�t45

(
�13

E1

+
�23

E2

)

(42)S66 =
1

2

(
x − S11 − S12 − S21 − S22

)

(43)

S66 =

4

E45
2 +

1

�45
2

[(
1

E1

+
1

E2

)
−
(

�12

E1

+
�21

E2

)]2
+

1

�t45
2

(
�13

E1

+
�23

E2

)

2

E45

+
1

�45

(
1

�45
− 1

)[(
1

E1

+
1

E2

)
−
(

�12

E1

+
�21

E2

)]
−

1

�t45

(
�13

E1

+
�23

E2

)

−
1

2

(
1

E1

+
1

E2

)
−

1

2

(
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E1

+
�21

E2

)

80

40

2
0

3
0

1

Fig. 2  Uniaxial tensile specimen size (mm)
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Experiment

Uniaxial Tension Test

DC01, DC04, DC06 and 6061 sheets are selected as the 
research objects, the standard uniaxial tensile were sampled 
along the rolling direction of 0°, 15°, 30°, 45°, 60°, 75° and 
90°, respectively. The size of the sample is shown in Fig. 2. 
The uniaxial tensile test was carried out on the Inspek-
t100kN electronic universal material testing machine, and 
the gauge elongation and width reduction during the tensile 
process were recorded by the longitudinal extensometer and 
the wide extensometer respectively. The average strain rate 
was 9E-4  s−1 for longitudinal strain at room temperature.

Thin‑walled Tube Torsion Experiment

Different from the common uniaxial tensile experiment, 
the thin-walled tube torsion test has many difficulties, as 
mentioned above. Therefore, it is necessary to introduce the 
experiment in detail and carry out finite element simulation 
to verify the reliability of the experiment.

Finite element model

The diameter of the thin-walled tube torsion specimen used 
should be as small as possible and the length as long as 
possible. But, considering the factors such as preparation 
conditions and test equipment, the designed specimen size 
is shown in Fig. 3.

The finite element model consists of a tube and two man-
drels. The tube adopts the shell element type, and the man-
drels adopt the discrete rigid body element type. The outer 
surface of the mandrels and the outer surface of both ends 
of the tube are set as coupling constraints. To ensure that the 
model is close to the actual torsion experiment, the boundary 
condition of the model is a fixed section, and the other end 
is applied with the torsion load. The model is meshed by 
hexahedral elements, as shown in Fig. 4.

Sample preparation and torsion experiment

The preparation process of the torsion sample is shown in Fig. 5.
Through the process shown in Fig. 5, the influence of 

the weld on the pipe sample can be minimized. To avoid 
the deformation of both ends of the circular tube due to the 
clamping force, a pair of metal plugs with the size shown in 
Fig. 6 was designed. The outer diameter of the plug and the 
inner diameter of the tube are clearance fit.

The torsion experiment was carried out on a 2ND3005 
microcomputer-controlled electronic torsion testing 

Fig. 3  Thin-walled tube torsion specimen size (mm)

Fig. 4  Finite element model and meshing of thin-walled tube torsion test

Rolling Welding Griding
Annealing Sample

Sheet

Fig. 5  Process diagram of torsion specimen to eliminate the influence of weld seam

3
6

3
3
.5

40 18

Fig. 6  Size of metal round plugs used to maintain tube end shape (mm)
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machine, and the deformation of the sample was recorded 
by sticking a strain gauge. The average torsion rate of the 
torsion specimen was 0.5°/min at room temperature.

V‑bending Experiment

To verify the orthotropic elastic constitutive model, DC04 
and 6061 were selected to carry out V- bending experiments 
in 0° and 90° directions.

Finite element model

The traditional isotropic elastic model and the established 
anisotropic elastic model were used to simulate the V-bend-
ing experiment. The finite element size and material prop-
erty parameters of the specimen are shown in Fig. 7 and 
Table 1, respectively. In order to eliminate the influence 
factors other than anisotropic elasticity, the same harden-
ing function is used for the bending deformation in differ-
ent directions, which ensures that the bending deformation 
in different directions is affected by the equivalent plastic 
deformation.

As shown in Fig. 8, the finite element model consists 
of a punch, a die and a sample, where the die is a rotatable 
rigid body. The hexahedral element type is used to divide 
the mesh and the symmetry constraint is used to simplify the 
model. The punch fillet is 2 mm, the die fillet is 15 mm, and 
the die distance is 90 mm. When the model is working, the 
punch is pressed down 30 mm and then unloaded to obtain 
the sample after springback.

Experiment

The rectangular samples were cut at 0° and 90° along the 
rolling direction. The V-bending experiments were carried 
out on the mold shown in Fig. 9. The punch pressing rate 
was 5 mm/min at room temperature.

Results and Discussions

Uniaxial Tensile

The experimental curves of the elastic stage in seven direc-
tions are shown in Fig. 10, where S is true stress, HR is the 
strain in the longitudinal direction of the sample, TR is the 
strain in the transverse direction of the sample.

The elastic stage of the experimental curve is fitted to 
obtain the elastic constants. According to equations (7) and 

100
3
0

1

Fig. 7  V-bending specimen size (mm)

Table 1  Material property parameters

Material Angle /° E /MPa Ν Yield 
stress /
MPa

DC04 0 191368 0.382 138
90 212985 0.448 140

6061 0 72611 0.331 263
90 72863 0.331 272

Fig. 8  One-half finite element model and meshing diagram of 
V-bending test

Fig. 9  3D die diagram of V-bending experimental equipment
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Fig. 10  Elastic stage curve of tensile test for the four materials, where the imaginary line is the value region of elastic parameters: Elastic modu-
lus (a, c, e, g) Poisson's ratio (b, d, f, h)
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(22), calculate and judge whether the sheet meets the neces-
sary and sufficient conditions. It should be noted that satis-
fying the necessary and sufficient conditions does not mean 
absolute equality. However, when the relative error between 
the two is less than 5%, the two are approximately equal. 
The calculation and judgment results are shown in Table 2.

Thin‑walled Tube Torsion

The shear stress-strain curves and simulation results 
obtained from the torsion experiment are shown in Fig. 11. It 
can be seen from Fig. 11 that the simulation and test curves 
are close, indicating the reliability of the torsion test.

The experiment and simulation results of shear modulus 
shown in Table 3 were obtained by fitting the shear stress-
strain elastic stage curve.

Error Function Calculation

For the convenience of expression, the above error func-
tion methods (ERFM) are renamed, and the new names are 
shown in Table 4.

According to the results of Table 2, DC01 only satisfies 
the sufficient condition, DC04 only satisfies the necessary 
condition, DC06 neither satisfies the sufficient condition 
nor the necessary condition, and 6061 satisfies both. There-
fore, the DC06 is calculated using the ERFM1 and ERFM3 
methods, and the DC01 and DC04 are calculated using the 
ERFM2 and ERFM4 methods. The solving results are given 
in Table 5.

The calculation results of ERFM1 and ERFM3 in Table 5 
are brought into equations (14–16), and the elastic param-
eters in all directions are given in Table 6.

Table 2  Calculation and 
judgment results of elastic 
constants

Material Angle/° E/MPa ν Necessary 
condition/%

Results Sufficient 
condition/%

Results

DC01 0 206412 0.356 14.56 mismatch 4.02 match
15 210575 0.304 2.05
30 218089 0.300 0.82
45 216750 0.276 4.65
60 220114 0.310 0.63
75 221231 0.309 0.28
90 211720 0.312 3.86

DC04 0 191368 0.395 1.91 match 0.62 mismatch
15 198374 0.423 6.79
30 198843 0.413 1.93
45 209505 0.422 4.27
60 206306 0.419 2.56
75 211013 0.414 4.69
90 212985 0.448 0.76

DC06 0 191618 0.382 8.89 mismatch 2.75 mismatch
15 200126 0.392 5.32
30 192759 0.378 5.46
45 205905 0.361 0.49
60 201874 0.363 4.22
75 207366 0.408 14.66
90 202059 0.367 1.10

6061 0 72611 0.331 0.35 match 0.09 match
15 73004 0.330 0.44
30 73155 0.329 0.41
45 73143 0.316 1.65
60 73179 0.337 1.39
75 73471 0.344 2.78
90 72863 0.331 0.09
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Figure 12 is the comparison results of the ERFM and 
the experiment. The comparison results show that the 
maximum relative error of elastic modulus is 3.62%, the 
maximum relative error of width-Poisson 's ratio is 8.82%, 
and the maximum relative error of thickness-Poisson 's 
ratio is 1.67%. It can be found from Fig. 12b that there are 
two abnormal convex points with large relative errors. If 
the experimental error is considered, such experimental 
points should be rounded off. Therefore, from the average 
value, the ERFM is proved to be reliable. In addition, com-
pared with the ERFM1 overall, the average accuracy of 
the ERFM3 method is worse, but less than 5%. Therefore, 
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Fig.11  Experimental and simulated shear stress shear strain curves: (a) DC01, (b) DC04, (c) DC06, (d) 6061

Table 3  Experimental and simulated shear modulus

Material DC01 DC04 DC06 6061
Experiment/MPa 87924 76642 77613 29057
FEM/MPa 84933 73666 75644 27798

Table 4  Renaming of ERFM

ERFM Equation (29) Equation (31) Equation (33) Equation (43)
New names ERFM1 ERFM2 ERFM3 ERFM4
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Table 5  Elastic coefficients 
calculated by ERFM

Methods S11 S12 S13 S22 S23 S66

ERFM1 5.0632E-6 1.8886E-6 1.8144E-6 5.0280E-6 1.8019E-6 1.3440E-5
ERFM2 1.3279E-5
ERFM3 5.0233E-6 1.8623E-6 1.8168E-6 4.9835E-6 1.8024E-6 1.2789E-5
ERFM4 1.3293E-5

Table 6  Elastic modulus and 
Poisson's ratio calculated by 
ERFM1 and ERFM3

Angle/° 0 15 30 45 60 75 90

ERFM1 E/MPa
ν
νt

197504 198652 201059 202513 201773 199862 198886
-0.373 -0.37 -0.363 -0.361 -0.365 -0.372 -0.375
-0.362 -0.361 -0.630 -0.360 -0.360 -0.361 -0.362

ERFM3 E/MPa
ν
νt

199072 198,900 198634 198750 199422 200273 200662
-0.371 -0.364 -0.366 -0.365 -0.367 -0.372 -0.374
-0.358 -0.360 -0.364 -0.366 -0.364 -0.360 -0.358
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Fig. 12  Comparison of elastic parameters calculated by ERFM1,3 methods with experimental results: (a) E, (b) ν, (c) νt
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under the premise of satisfying the accuracy, the ERFM3 
(the ERFM for three-group samples) can be selected to 
solve the parameters, which greatly reduces the experi-
mental amount.

According to Table 5 and equation (26), the shear modu-
lus G12 are given in Table 7. Figure 13 is the comparison of 
the Shear modulus between ERFM and the experiment. It 
can be seen from Fig. 13 that the maximum relative error 
between ERFM and the experiment is 4.13%, which proves 
the accuracy of the ERFM. In addition, for the orthotropic 
metal sheet, the shear modulus calculated by equation (26) 
is accurate.

V‑bending Experiment

In the bending experiment, according to the principle of 
plastic work equivalence, the plastic strain of bending 
deformation in different directions is equal by calculat-
ing the downward pressure of bending, so the influence 
of plastic deformation in different directions is almost 
equivalent. The measurement of the springback angle of 
the specimen is shown in Fig. 13. The bending angle at 
loading is 94.4°. The specimens after unloading are shown 
in Fig. 14.

The comparison of V-bending experiments and simula-
tion results of DC04 and 6061 is shown in Fig. 15. The 
columns in the figure are the simulation results of isotropic 
elastic model and anisotropic model, respectively. Where the 
dotted line is the bending angle of the specimen at loading, 
the red line is the bending angle of the specimen in the 0° 
direction after unloading, and the blue line is the bending 
angle of the specimen in the 90° direction after unloading.

In Fig. 15, the comparison between the red line and the 
blue line shows that there are obvious differences in the 
bending angles of the samples in different directions after 
unloading, which proves that anisotropic elasticity has an 
important influence on springback. However, this difference 
has not been well predicted by the isotropic elastic model, 
while the anisotropic elastic model shows satisfactory 
results, and the predicted springback differences in differ-
ent directions are in good agreement with the experimental 
results.

Table 7  Shear modulus calculated by ERFM and equation (26) com-
pare with experiment date

Methods ERFM1 ERFM2 ERFM3 ERFM4 Equation (26)
G12/MPa 74405 75309 75227 75228 27892
Relative 

error/%
4.13 1.74 3.07 1.84 4.00

Loading angle Unloading angle

Sample

Fig. 13  Measurement method of springback angle after unloading

DC04 6061

Fig. 14  The specimen after unloading
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The comprehensive error function shown in equation (44) 
is established to evaluate the prediction accuracy of different 
elastic models. Equation (44) represents the sum of rela-
tive errors in different directions, that is, the comprehensive 
error. The calculation results of the error function are given 
in Fig. 16.

where ��pre and ��exp are the predicted and experimental 
values in the 0° and 90° directions, respectively.

It can be seen from Fig. 16 that the comprehensive error of 
the anisotropic elastic model is significantly smaller than that 
of the isotropic model, indicating that the anisotropic elastic 

(44)� =

(||||
�0

pre − �0
exp

�0
exp

|||| +
||||
�90

pre − �90
exp

�90
exp

||||
)
× 100%

model can significantly improve the prediction accuracy of 
springback. Combined with the necessary and sufficient con-
ditions as well as Fig. 16, it can be concluded that 6061 satis-
fies both the necessary and sufficient conditions while DC04 
only fulfills the necessary ones. Obviously, the comprehensive 
error of 6061 is smaller than that of DC04, indicating that the 
anisotropic elastic model has higher prediction accuracy for 
materials that meet the necessary and sufficient conditions.

Conclusion

Aiming at the problem of anisotropic springback in the form-
ing process of sheet metals, an orthotropic elastic model was 
established that can effectively improve the problem, and the 
necessary and sufficient conditions for judging the applicability 
of the model were given. Considering the difficulty of calibrat-
ing model parameters, a precise and user-friendly numerical 
solution method has been proposed. The established orthotropic 
elastic model was verified through V-bending simulation and 
experimentation. The following conclusions are obtained:

1. The V-bending test results obtained from different orien-
tations of the sheet exhibit significant variations, which 
proves the obvious influence of the anisotropic springback 
problem in the forming process of the rolled sheet metals.

2. Compared to the conventional isotropic elastic model, 
the established orthotropic elastic model can signifi-
cantly enhance the accuracy of springback prediction.

3. A necessary and sufficient criterion for assessing the 
applicability of the model is proposed, which, when sat-
isfied, enables the established orthotropic elastic model 
to more accurately predict springback.
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Fig.15  Comparison of V-bending experiment and simulation results: (a) DC04 (b) 6061

DC04 6061
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

T
at
o
al
er
ro
r
(%

)

Material

Isotropy

Anisotropy

Fig.16  Comprehensive prediction errors of different elastic models



18 Experimental Mechanics (2024) 64:3–19

4. The proposed error function extremum method for cali-
brating elastic parameters has good prediction accuracy, 
with an average relative error within 5%. The three-
group sample solution method significantly reduces 
experimental and data processing workload, demonstrat-
ing the precision and user-friendliness of this method.

Prospect In this paper, the issue of anisotropic springback 
in sheet metals was investigated, but there are still numer-
ous limitations that need to be addressed. Firstly, the linear 
elastic assumption of the elastic modulus fails to accurately 
describe the deformation-induced evolution of the elastic 
modulus in practical applications. Secondly, the proposed 
necessary and sufficient conditions only provide a rough 
assessment of satisfaction and non-satisfaction, lacking 
quantitative analysis of varying degrees of satisfaction as 
well as other related issues. The author shall delve deeper 
into these contents in the future.
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