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Abstract
Background  Digital Volume correlation (DVC) consists in identifying the displacement fields that allow for the best possible 
registration of volume images of a sample captured at various loading stages. With cellular materials, the use of DVC faces 
an intrinsic limit: in the absence of an exploitable texture on (or in) the struts or cell walls, the available speckle pattern will 
unavoidably be formed by the material architecture itself. This leads to the inability of classical DVC techniques to measure 
kinematics below the cellular scale, i.e. at the sub-cellular or micro scales.
Objectives  Here, we extend a newly developed architecture-driven DIC technique [1] for the measurement of 3D displace-
ment fields in real cellular materials at the scale of the architecture.
Methods  The proposed solution consists in assisting DVC by a weak elastic regularization using, as support, an automatic 
finite-element image-based mechanical model.
Results  Complex (locally buckling) kinematics of a polyurethane foam under compression are accurately measured during 
an in-situ test. The method is essential to evidence the class of dominance (stretching versus bending) of the foam.
Conclusion  The proposed method allows to confirm that the foam used is bending-dominated, which is not possible with a 
classical mesoscopic DVC approach. This method is a good candidate for the analysis of complex local deformation mecha-
nisms at the architecture scale.

Keywords  Digital volume correlation (DVC) · Multigrid image registration · X-ray microtomography · Image-based 
mechanical modeling · Mechanical regularization · Cellular materials · Polyurethane foam

Introduction

Architected materials are excellent candidates for the design 
of multifunctional structures with outstanding specific prop-
erties [2, 3]. However, since such materials are characterized 
by the coexistence of, at least, two very different scales, 
the prediction of their mechanical behavior in non-linear 
regimes remains a challenge [4]. This is especially true 
for synthetic materials such as foams due to their random 
architecture. Indeed, the local response is obviously emi-
nently linked to the local architecture. But the same type 
of question arises for additively manufactured materials, 
as the effect of defects induced by the process should be 
taken into account in the models [5, 6]. In this context, X-ray 
micro-computed tomography ( �-CT) emerges as an imag-
ing modality perfectly adapted to the study of the behavior 
of such materials [7]. Specimen-specific image-based mod-
els can be built from volume images of a specimen which 
accounts for its actual geometric architecture and defects. 
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[8–13]. In addition, other images captured at different load-
ing steps during in-situ testing [14] now provide access to 
valuable volumetric kinematic information using digital vol-
ume correlation (DVC) [15]. For instance, the exploitation of 
DVC displacement fields as boundary conditions in numeri-
cal simulation is essential to achieve a proper test/simulation 
comparison [16, 17]. Next, a strengthened DVC/simulation 
dialogue clearly opens the way to model validation [16, 18] 
and constitutive parameter identification [19, 20].

The most common approach to DVC remains the local 
or subset-based approach [15, 21]. It has the advantage 
of being highly parallelizable. However, the use of such 
an approach to establish the experiment/simulation link is 
tricky at the scale of architectural details especially in the 
non-linear regime. There are at least three reasons for this. 
First, the architecture does not provide sufficient grey-level 
distribution in general so that the architecture itself usually 
constitutes the only usable pattern for DVC. The minimum 
size of the subsets will then be limited by the characteristic 
length of the architecture. For example, for a cellular mate-
rial, the minimum subset size will usually be of the order of 
the cell size. This constitutes a real bottleneck in terms of 
spatial resolution. The subset size will consequently be much 
larger than the element size used in the simulation.

Second, the generic shape functions used in the regis-
tration process are unlikely to correctly capture the actual 
complex kinematics which is strongly related to the underly-
ing moving architecture. In foams, for instance, local crush-
ing is common during compression tests [22]. Standard 
interpolation functions would then introduce a significant 
model error [1] as they are completely unable to consider 
such strong evolutions of the pattern. It would of course 
be possible to use incremental DVC [23], but this would 
induce a measurement bias and, probably, a larger number of 
tomographic acquisitions. Last, the process only gives access 
to a scattered displacement field at the subset centers. The 
connection with finite-element (FE) models is not direct. 
In the remainder, for the sake of simplicity, mesoscale will 
(abusively) refer to the scale of the cell, whereas microscale 
will correspond to the scale of the struts. While most of 
the existing DVC analyses are limited to mesoscale, to our 
knowledge, only one article reported an attempt to measure 
kinematics at the trabecula scale in a trabecular bone [24].

In order to bridge experiments and simulation more eas-
ily, another approach of the DVC, referred to as global or 
FE-based, was introduced [25]. It is particularly convenient 
in the sense that the same type of kinematic description as 
the one used in the simulation tools (e.g. usually finite ele-
ments) can be used directly in the measurement. However, 
as with the subset based DVC, for most cellular materials 
imaged by conventional �-CT (i) the minimum element size 
for performing a FE-DVC measurement is limited by the 
characteristic size of the architecture and (ii) the usual FE 

shape functions do not properly describe the underlying 
kinematics. While a refined image-based boundary fitted 
mesh would be convenient to describe the complex local 
kinematics, its direct use in standard FE-DVC would not be 
possible. This is because the elements would be too small 
with respect to the pattern and the vanishing of greyscale 
gradients within the elements would make the DVC problem 
ill-posed. However, global DVC has the advantage that it can 
be regularized a priori. Some authors have proposed, for 
instance, to use regularization schemes, based on second-
order Tikhonov operators, to compensate the lack of texture 
in cellular materials such as trabecular bone [26].

In the following, we extend the approach introduced and 
validated in 2D digital image correlation (DIC) in [1] to the 
DVC analysis of a complex in-situ compression test on a 
polymeric foam. This method consists in imposing that the 
sought-after micro displacement field should be mechani-
cally consistent [27, 28]. A weak regularization based on a 
Tikhonov approach [29, 30] is thus used based on the equi-
librium gap [31]. The weight given to the mechanical part 
introduces a characteristic length of regularization below 
which the mechanical part takes precedence, while above it 
the image pulls the correlation.

In other existing mechanically regularized DVC 
approaches, it is common to rely on macroscopic (or 
homogenized) models whose mesh does not conform with 
the micro-structure [32]. The subsets or finite elements are 
larger than the architecture scale which usually does not 
allow for a proper representation of the underlying micro 
kinematics. Conversely, the proposed approach aims at esti-
mating complex local kinematics at the scale of the archi-
tecture of the material with no a priori on the model or on 
the geometry of the sample. In other words, our assumption 
is that the grey levels carry a mechanical information that is 
used to help regularize DVC. It is a challenge when work-
ing with random architecture materials like foams since the 
geometry is specific to the sample and most importantly 
unknown. It thus requires fine meshing strategies to build 
a sample-specific image-based geometric and mechanical 
model at the architecture scale (i.e., describing a representa-
tive architecture) from the images. In addition to the regu-
larization length and the choice of the mechanical modelling 
(and boundary conditions), the choice of the parameters of 
the geometric modelling (threshold, mesh size) has to be 
done carefully as a trade-off between computational cost 
and mechanical approximations. This work done in 2D-DIC 
[1] has shown that by choosing correctly these parameters 
with the general rules (length of regularization related to the 
size of the cell, fineness of the mesh fixed compared to the 
size of the pixel), the method was able to capture complex 
non-linear local phenomenon (despite the simple behav-
iour assumption). In this work, we generalize the previous 
2D study of [1] to 3D. The potential of this extension is 
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highlighted by measuring the locally complex 3D kinemat-
ics resulting from crushing in a polyurethane foam subjected 
to an in-situ compression test. The presented experiment 
and the corresponding image set are very challenging for 
DVC analysis because the texture deforms at a scale smaller 
than the subset (or element) size. The obtained displacement 
fields are compared to those provided by standard mesoscale 
regularized FE-DVC approach. The level of deformations 
between the reference image (taken at rest) and the follow-
ing images is such that a particular strategy is necessary to 
initialize DVC. Moreover, as microscale DVC measurements 
require high hardware resources, a high performance parallel 
implementation is required.

Cellular or porous architected materials have two main 
deformation modes depending on the nature of their local 
architecture. Indeed, depending on whether they are stretch-
ing-dominated or bending-dominated, their macroscopic 
behavior, their stiffness and their use differ significantly [33, 
34]. Indeed, bending-dominated materials form the majority 
of materials and particularly foams. Stretching-dominated 
materials have a much higher specific stiffness. We show 
that the proposed DVC method contributes to better analyz-
ing in the bulk the nature (bending versus stretching domi-
nance) of crushing mechanisms inside open cell polymeric 
foams.

Sample, Experiment and Instrumentation

Material, Specimen and Motivations

The selected porous material is a polyurethane foam. The 
in-situ tests carried out in the X-ray �-CT scanner and pre-
sented hereafter aim at identifying the spatial distribution 
of the mechanical properties in relation with the local archi-
tectural properties (e.g. the local porosity). One first step 
towards realizing this long term objective is to incorporate 
a DVC analysis in the identification framework. The main 
purpose of this work is to raise the challenge of measur-
ing displacement fields at the scale of the architecture in 
real-word cellular materials. The foam had a porosity 
V(void)/V(total) equal to 0.96. The mean diameter of the 
cells was 500 �m with a standard deviation of ±200 �m . As 
illustrated in Fig. 1, the tested sample had a cylindrical shape 
with a diameter of 9 mm and a height of 10 mm.

Experiment and �‑CT Acquisition

A compression machine was specifically designed and 
used in order to perform the in-situ test (see Fig. 2). For 
this setup, an electric cylinder was used in order to apply 
the mechanical load. The capacity of the load cell used was 
50 N . A reference scan was carried out, specimen mounted, 

before starting the test. Then the loading was interrupted 
several times in order to allow the sample to be scanned. 
Each scan lasted approximately 40 to 50 min. The four stages 
of loading considered corresponded to an overall strain of 
the order of 3.4% , 5.2% , 12.3% and 28.5%.

In total, the starting point of our DVC analysis is the five 
reconstructed volumes of the foam (i.e. the image of the 
reference configuration denoted Ir and the four images of 
the deformed configurations denoted Id ). Figure 3 shows 
the rendered volumes of these configurations. The visuali-
zation of the different loading states is performed using the 
Paraview software [35, 36]. It takes, in this case, as input, 
the different VTU (Unstructured VTK) files of the surface 
representation of the segmented volume. Finally, the dif-
ferent parameters of the �-CT acquisition are synthesized 
in Table 1.

DVC Methodology

In this work, we will carry out two types of analysis. The first 
one, referred to as mesoscale DVC, can be seen as the classic 
approach in the field. It makes use of a global DVC approach [25] 
based on rather coarse and regular meshes of the whole specimen, 

Fig. 1   Physical dimensions of the chosen cellular sample

Fig. 2   Experimental setup of the in-situ compression test using X-ray 
�-CT
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i.e. that each element includes several cell-struts and void of 
the foam. The second approach, which is the microscale DVC 
developed in this paper, consists in an extension of the method 
proposed in  [1]. It relies on weak mechanical regularization [27, 
28, 37, 38] and image-based modeling [9, 11]. It benefits from 
the construction of a fine FE mesh that properly describes the 
architecture of the foam. In this section, we start by outlining 
the fundamental aspects behind DVC and then more precisely 
introduce the mesoscale and microscale DVC methods.

Fundamental Aspects

Grey‑level metric

Given two grey-level images Ir and Id representing, respec-
tively, the reference and deformed configurations of a mate-
rial sample, DVC can formally be expressed as the following 
optical flow equation [39]:

(1)
Find u ∶ Ω ⊂ ℝ

3
→ ℝ

3, such that

I
r
(x) = I

d
(x + u(x)), ∀x ∈ Ω.

x defines the point coordinates in the reference region of 
interest Ω included in the initial reconstructed volume. It 
was underlined in [40] that the formulation (equation (1)) is 
a Lagrangian description of the optical flow while the for-
mulation which would consist in defining x in the deformed 
configuration would be an Eulerian one. The grey-level 
conservation problem is generally ill-posed as it consists in 
reconstructing a three-dimensional field only using a noisy 
scalar grey-level field. Therefore, problem (equation (1)) is 
rather solved by minimizing a global grey-level metric that 
can be chosen as the squared quadratic norm of the residual 
of grey-levels. In addition, the unknown displacement field 
is discretized by means of a set of basis functions. Overall, 
the DVC problem can be written as:

where N(x) ∈ ℝ
3×ndof  is the considered shape functions 

matrix and u ∈ ℝ
ndof  is the vector that gathers the total 

(ndof) degrees of freedom (DOF). In this work, we will 
consider FE-DVC [25, 27, 38, 41] since this is the starting 
point to regularize DVC using a mechanical knowledge of 
the solution. The shape functions gathered in N(x) are thus 
associated to a FE mesh which will be composed of 4-node 
(linear) tetrahedral finite elements.

Optimization scheme

In the DIC community, problem (equation (2)) is usually 
solved using a modified Gauss-Newton algorithm [42, 43] 
which leads to the following iterative scheme. Given an ini-
tial displacement guess u(0) , the solution u(k) at iteration k is 
updated such as:

∇S(u(k)) and HS are the modified gradient and Hessian 
matrix of S, respectively, that involve the gradient of the 
reference image Ir only. For more details regarding the algo-
rithm and implementation, the reader is referred to, e.g., 
[41–43].

It must be stated, at this stage, that system (equation (3)) 
may be singular if the image gradient vanishes within the 
finite elements [44]. That is why a high frequency black 
and white speckle pattern is usually sprayed on the speci-
men surface in 2D-DIC [45–47]. This issue is central in 
DVC since it is hardly possible to add artificial speckle 
patterns in volume imaging [48, 49]. There are basically 
two ways of performing DVC in such situations: strong 
or weak regularization. The first one aims at reducing the 
number of unknowns by either increasing the size of the 

(2)min
u∈ℝndof

S(u) = ∫Ω

(
Ir(x) − Id(x + N(x)u)

)2
dx,

(3)
u
(k+1) = u

(k) + d
(k)

with H
S
d
(k) = b(uk)

and b(uk) = −∇S(u(k)).

Table 1   DVC acquisition parameters

Parameters Information

CT device Ultratom RX solutions
Source 230kV
Voltage 50kV
Current 200�A
Detector Varian 3 Mpixels
Encoding 16 bits
Memory size of one reconstructed scan 7.6 GB
Definition 1523 × 1514 × 1654

Number of scans 5 (1 Reference + 4 loadings)
Duration of each scan 45 min
Voxel size 6.67 �m

Target Reflexion target
Filter None
Tube to detector 865.6 mm
Source to object 35.5 mm
Number of projections 1600
Angular amplitude 360◦

Fig. 3   Rendering of the reconstructed volumes at the different load-
ing states. (a) Reference configuration and (b-e) Deformed configura-
tions
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elements [15, 25, 50] or projecting the problem onto an 
appropriate reduced basis [51–53]. The second approach 
consists in adding a penalization term to functional (equa-
tion (2)) in order to improve its convexity  [1, 26–28, 37, 
38, 54–57]. Both approaches aim at reducing the apparent 
dimension of the minimization subspace of problem (equa-
tion (2)). In the following, the mesoscale analysis will 
make use mainly of a strong regularization with coarse FE 
meshes whereas the microscale analysis will rely on a fine-
tuned weak elastic regularization based on the construction 
of a fine FE mesh that properly describe the architecture 
of the material.

Sub‑voxel evaluation

In order to evaluate functional (equation (2)) and build the 
operators in (equation (3)), the sub-voxel grey-level evalu-
ation of the images is necessary. In this work, this is per-
formed using a B-spline representation of the volume images 
[58, 59]. It consists in computing a new regular function Ĩ  
defined as:

where Bi,p,Bj,p and Bk,p are the total l, m, n univariate B-spline 
functions of degree p centered at each voxel. (x, y, z) is a non 
integer point in the image domain [0, l] × [0,m] × [0, n] . The 
tensor c ∈ ℝ

l×m×n represents the voxel grey-level values. We 
should note that this image representation is not interpola-
tory but has the advantage of preserving the image dynamic 
and removing the oscillatory effects of global polynomial 
interpolation [58]. It has also the advantage of not pre-com-
puting interpolation coefficients which usually requires the 
inversion of linear systems. The image gradients are also 
computed by simply differentiating (equation (4)). This pro-
vides regular gradient fields even when the texture of the 
considered specimen is poor.

Analysis of the correlation

In order to assess the quality of the correlation at conver-
gence, the grey-level residual field is a very interesting quan-
tity to analyse. It is defined as follows:

From (equation (5)), it is possible to build a global indica-
tor equal to the standard deviation of the distribution r. It is 
also very instructive to plot its distribution on the material 
architecture to provide more information on the localization 
of the potential mismatch.

(4)Ĩ(x, y, z) =

l∑
i=1

m∑
j=1

n∑
k=1

Bi,p(x)Bj,p(y)Bk,p(z)ci,j,k,

(5)r(x) = Ir(x) − Id(x + u(x)), ∀x ∈ Ω.

Mesoscale DVC

When considering the global FE-DVC methodology, the 
finite-element size is crucial and conditions the accuracy 
of the correlation. Since the texture in DVC is necessary 
associated to the scale of the material constituents, large 
finite elements are defined so that each point in the images is 
tracked along with its close neighborhood. As stated before, 
the mesoscale DVC analysis is performed mainly with the 
help of a strong regularization where the finite-element size 
controls the amount of regularization. More precisely, each 
element must contain sufficient grey-level variations, such 
that operator HS is not singular [44].

In practice, the size of the elements can be related to the 
cell size of the material. Indeed, the finite elements need 
to be sufficiently large to include several struts, i.e. several 
speckle dots as prescribed in the literature [60]. The approxi-
mate cell size was first determined using the normalized 
radially averaged auto-correlation function (see Fig. 4(a)).

The presence of a secondary peak in this function is evi-
dence of a pseudo-periodicity in the image texture. The posi-
tion of this secondary peak is thus considered as an approxi-
mation of the cell size, see the red dot in Fig. 4(a). In our 
case, the value of 28 voxels was obtained which agrees with 
the experimental value of 500 �m for the mean cell size (see 
Fig. 4(b)).

Here, we rely on a cylindrical FE mesh of the whole 
material sample based on tetrahedral meso elements that 
include both struts and voids. Figure 5 shows the three mesh 
discretizations that were considered with an average element 
size of 33, 23 and 12 voxels, respectively. Note that only 
the coarsest mesh was such that the size of the elements 
exceeded that of the cells which is required to perform a 
correlation with strong regularization alone. The two finer 
meshes actually required the combined use of an additional 
weak regularization (Laplacian-based diffusion regulariza-
tion technique). More details about weak regularization will 
be given in “Elastic Regularization”.

Fig. 4   Determination of the approximate cell size using the radially 
averaged normalized auto-correlation function. (a)  Auto-correlation 
function in the reference image that exhibits a secondary peak around 
28 voxels (red dot) and (b) Slice of the reconstructed volume stack
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A very important aspect in image correlation is the deter-
mination of the initial displacement guess. For the two first 
loading states (see Fig. 3 again), the initial displacement 
u(0) was set to zero and then a coarse-to-fine scheme based 
on four levels of image binning was performed for the ini-
tialization. This technique also known as multi-level (or 
multi-grid) initialization consists in constructing a pyrami-
dal refinement strategy for both the image and measurement 
resolutions. The interested reader can find more details 
about these strategies in [41, 61–65] to name a few. Roughly 
speaking, this process allows to gradually filter the high-
frequency components of the image so that the convexity 
support of functional (2) is increased at the coarser levels. 
This helps solving the minimization problem with an arbi-
trary initialization. However for the third and fourth loading 
states, this strategy was not sufficient to make converge cor-
rectly the Gauss-Newton algorithm. One successful strategy 
consisted in using a structured mesh with few elements in 
the height direction and running a DVC (also initialized with 
a coarse-to-fine strategy) to estimate a first coarse displace-
ment. This structured mesh, displayed in Fig. 6, covered the 
whole image domain (including a part of the bottom and 
top platens). The image signal given by the bottom and top 
platens helped the correlation algorithm as they were subject 
to translation during loading. To summarize, the first step 
of the correlation is performed with the mesh presented in 
Fig. 6 (hexahedral FE this time).

The obtained displacement is then evaluated at the nodes 
of the tetrahedral finite element meshes of Fig. 5 in order to 
get the initial guess denoted w . Finally, in order to correctly 
re-scale this initial guess, an additional tiny correlation (that 
converged in three iterations) was performed using a reduced 
basis approach. In this case, the displacement increment d(k) 
was searched for as a projection onto a reduced basis. Let us 
denote R the matrix gathering the reduced basis vector in 
column, in this case it is computed as follows:

where ���(k) are the scaling modes. The scaling matrix was 
defined as follows:

(6)d(k) = R���(k) with RTHSR���(k) = RTb(k).

wx , wy and wz are the vector displacement blocks extracted 
from w (corresponding to the x, y, z directions, respectively). 
0 is a zero vector of size ndof.

Microscale DVC

The mesoscale approach of the previous section relies on 
coarse meshes which can only estimate displacement fields 
that are homogenized at the scale of the cells. As will 
be shown in the examples, the use of large elements that 
include both struts and voids, makes it impossible to prop-
erly describe the highly complex local kinematics that occur 
during the compression test (large deformations or (post)
buckling of the struts).

It this section, the microscale DVC approach is detailed. 
Microscale means that we aim at measuring the kinematic 
transformation at the scale of the struts (or the architecture). 
For that, we will extend the recently developed approach [1] 
for the measurement of 3D displacement fields. Briefly, two 
important ingredients are required. The first one is the use 
of an image-based FE mesh [9, 11] that properly describe 
the architecture of the material. This mesh is thus boundary-
fitted at the architecture scale. The use of such a fine mesh is 
required to well describe the complex displacements of the 
struts but is not compatible with DVC since the grey-level 
distribution within the mesh is almost homogeneous or in 

(7)R =

⎛⎜⎜⎝

wx 0 0

0 wy 0

0 0 wz

⎞⎟⎟⎠
∈ ℝ

ndof×3.

Fig. 5   Three finite element mesoscale DVC discretizations. (a) 33 vox-
els, (b) 23 voxels and (c) 12 voxels

Fig. 6   Coarse grid used for the determination of an initial displace-
ment guess
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other words, its gradient is almost zero. To solve this issue, 
the second ingredient consists in adding a weak elastic regu-
larization [27, 28, 37, 38, 54, 57, 66] using the previously 
image-based FE model whose geometry (and thus stiffness) 
is relevant at the architecture scale.

Image‑based mesh generation

Image-based mesh generation consists in automatically con-
structing a FE mesh from the voxel data. In general, the 
steps of this approach are: (i) segmentation which consists 
in classifying each component of the material, (ii) boundary 
definition and finally (iii) volumetric meshing. In this work, 
segmentation is quite immediate as the foam is assumed to 
be composed of only void and solid. Therefore, the domain 
of interest is entirely described by one grey-level threshold 
value. This value used for both rendering and mesh genera-
tion was optimized using a bisection algorithm so that the 
porosity of the segmented geometry reaches the porosity 
value 0.96 given by the supplier. This led to take � = 56 . 
In order to smoothly describe the boundary of the cellular 
geometry, Gaussian filtering was also performed. The new 
grey-level values were defined by the convolution:

where I is the reconstructed volume and G� is a Gaussian 
kernel ( � , the standard deviation, was chosen equal to 0.8). 
A value smaller than the threshold value was assigned to 
the grey-level field at the top and bottom boundaries of the 
region of interest so that a closed watertight region was 
obtained. Surface extraction was then performed using the 
marching cubes algorithm [67] available in the scikit-image 
Python library [68]. Figure 7 illustrates the effect of Gauss-
ian blurring on the smoothness of the cellular geometry. This 
procedure allows to reduce the geometric modeling error and 

(8)c = G� ∗ I,

therefore improves the accuracy of the measured fields. We 
note that the mesh generation procedure is performed on 
the 2 × 2 × 2 binned image of the reference configuration in 
order to reduce the memory footprint.

A region of interest was extracted from the whole foam 
volume (see Fig. 8(left)). The idea here is to use the micro-
scale approach only in a region where highly localized phe-
nomena occur (i.e. where the grey-level mismatch is high). 
We chose to extract a slice from the volume of the reference 
configuration Ir . This full cylindrical slice has a volume of 
17.865 million of voxels cube (more exactly a radius of 240 
voxels and a height of 100 voxels). Figure 8 shows again the 
extracted slice from the cylindrical volume in addition to 
its finite element mesh. The mesh was generated using the 
CGAL library [69] which provides the user to choose the 
mean finite element face’s size. The process took 30 minutes 
to be completed. 91 isolated connected components (isolated 
voxels or groups of voxels) were removed in a first mesh 
cleaning step. The obtained mesh has 3 660 568 elements 
and 1 212 616 nodes. The average element volume is around 
0.34 voxels cube, which corresponds to an average element 
size of 0.7 voxels.

Now that the geometric characterization of the cellular 
architecture has been presented, the use of such fine descrip-
tion of the cells as a direct support for the DVC measure-
ments is presented hereafter.

Elastic regularization

As stated above, the strong regularization based on the 
FE discretization becomes obsolete if one considers solv-
ing the DVC problem (equation (2)) with the microscale 
FE mesh depicted in Fig. 8(right). In particular, this una-
voidably makes the correlation matrix HS in (equation (3)) 
singular. As a first remedy, one could use, for instance, the 
Levenberg-Marquardt algorithm with an update strategy for 
stabilizing the Hessian matrix [70]. However, this lacks of 
physical meaning and thus will not provide relevant deriva-
tive fields (such as strains and stresses) within the cell-strut. 

Fig. 7   Surface representation of the cellular geometry using a low 
resolution image ( 50 × 50 × 50 ). (a)  Without the Gaussian blur and 
(b) with the Gaussian blur with a kernel of 2 voxels (this value was 
exaggerated for visualisation purposes, in the analyses it was set to 
0.8 voxel)

Fig. 8   Position and definition of the region of interest (in blue color) 
considered in the microscale DVC. In grey color: all the foam domain
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Here we rather resort to mechanical regularization. More 
precisely, similarly as in [1], we add a penalty term to the 
functional (equation (2)). It enforces weakly the internal 
elastic equilibrium of the material at the architecture scale 
by making use of our previously constructed microscale FE 
mesh. The strategy is further outlined in the following and 
we refer the interested reader to [1] for additional details on 
the approach.

From a fundamental point of view, a very rich survey of 
such Tikhonov-based regularization strategies can be found 
for example in [29, 30]. The general discrete optimization 
form is given by:

where T is a linear operator and � is a weighting parameter. 
The presence of a FE discretization offers a great flexibility 
as it allows to directly construct differential operators in T 
coming from physical models. For the coarse FE meshes of 
Fig. 5(b-c) (i.e., for the mesoscale DVC), the measurement 
was regularized using the diffusion model which consists in 
setting T = L with L the Laplacian operator [39, 55]. For 
the microscale DVC (i.e., associated to the fine FE mesh 
of Fig. 8(right)), we make use of an elastic kernel for the 
regularization.

Pioneering works [61, 71] considered the elastic energy, 
i.e. equal to 1

2
uTKu − uT f where K and f are respectively 

the FE stiffness matrix and external force vector. This 
regularization introduces too much a priori and thus fil-
ters too much the displacement fluctuations. Instead, we 
rather increase the order of the regularization operator by 
considering the squared quadratic norm of the elastic equi-
librium gap Ku − f [31]. This approach was introduced in 
[28] where it was used for the identification of cracks in a 
silicon carbide specimen. It was later applied for DVC in 
particular in [27, 38] where a physical interpretation of the 
regularization parameter � was established. The advantage 
of the latter regularization is that it is a fourth-order filter. It 
is consequently a smoother regularization compared to the 
model based on the elastic energy.

Very recently, and in the same spirit as in this work, this 
regularization was used for DVC measurements in hetero-
geneous materials, for example in [57] where the damage 
in mortar was quantified, and in [66] where a printed pan-
tographic metamaterial was studied. Now, based on the 
proof-of-concept given in [1] for 2D-DIC, the purpose is 
to make use of this regularization scheme for microscale 
DVC measurement in cellular materials with complex and 
arbitrary topologies.

Another advantage of the equilibrium gap regularization 
over the one based on the energy is the possibility to remove 
the contribution of the regularization onto the Dirichlet and 
non-zero Neumann boundaries, i.e. where f does not vanish. 

(9)min
u∈ℝn

S(u) + �uT��,

Indeed, when choosing a region of interest inside the vol-
ume, the external force vector f is unknown in practice at 
the non-free surfaces (we may barely access to one result-
ant if the volume is completely cut in one direction). As a 
consequence, the equilibrium has to be prescribed only at 
the nodes of the bulk and at free boundaries. To do so, we 
simply introduce a binary selection operator DK that selects 
theses nodes. As the remaining nodes are removed from the 
regularization, they are guided only by the correlation. This 
can lead to a very irregular solution when the element size 
is very small, which is the case in this study. That is why a 
curvature regularization of the Dirichlet/non-zero Neumann 
boundaries is considered for these nodes. In other words, 
in the part where no relevant physical information is avail-
able, we perform a curvature-based regularization, and in 
the remaining domain where the discrete mechanical equi-
librium can be safely formulated, a mechanically regular-
ized DVC based on an elastic kernel is performed. From a 
mathematical viewpoint, by introducing the complementary 
selection operator DL , we end up with the following normal-
ized optimization functional [27]:

where �K and �L are the regularization parameters for the 
bulk and the non-free boundaries respectively. Note that 
Young’s modulus E for the elastic, isotropic and homo-
geneous regularization model at the architecture scale is 
fixed to 1 as K is proportional to E. The normalization of 
the functional is performed using a trial shear wave dis-
placement field v which allows to relate the regularization 
parameters to its period. It can be defined for example by 
v = (0, cos(

2�

T
y), 0) . It has been highlighted in [27] that regu-

larizing DVC using the quadratic norm of the operators L 
and K can be seen as a fourth-order low-pass filter acting on 
the measured displacements on both the bulk and boundary 
regions. The regularization weights �K and �L can be related 
to cut-off characteristic lengths denoted lK and lL , respec-
tively, which verify:

It has been highlighted in [1] that the optimal cut-
off wavelength lK in our case of cellular materials can be 
approximately set to the cell size. This emanated from a 
parametric L-curve study performed on an artificial 2D 
foam-like specimen.

The latter study has shown that the term associated with 
the grey-level residuals in (equation (10)) captures the low 
frequency part of the solution, i.e. associated with the mes-
oscale, while the local part of the displacement, i.e. below 

(10)min
u∈ℝndof

S(u)

S(v)
+ �K

‖DKK(E = 1, �)u‖2
2

‖DKK(E = 1, �)v‖2
2

+ �L
‖DLLu‖22
‖DLLv‖22

,

(11)�K =

(
lK

T

)4

, �L =

(
lL

T

)4

.



905Experimental Mechanics (2023) 63:897–913	

the cell scale or at the microscale, is driven by the regulari-
zation that prescribes a locally elastic behavior. This makes 
sense in continuum mechanics and will allow to measure 
inealistic fields, such as large deformations of the struts, 
as will be seen in “Analysis of Result”. The values for the 
other parameters (Poisson ratio � and boundary regulariza-
tion length lL ) of the regularized scheme (equation (10)) will 
be indicated and discussed in “Microscale DVC Results and 
Comparison With Mesocate DVC”.

It is worth noting that the mechanically regularized 
approach increases significantly the numerical cost of DVC 
as we add to the correlation Hessian HS a matrix that has the 
same pattern as KTK . The higher the regularization order, 
the denser the correlation linear system as the number of 
extra diagonals increases. From a general viewpoint, our 
implementation of microscale DVC which consists in per-
forming classical FE assemblies over the whole domain, can-
not be seen as the solution for treating large scale problems. 
The mesoscale and microscale DVC are two complementary 
approaches that should be used concurrently, for instance in 
a multiscale framework. As a first step, the mesoscale DVC 
will allow to initialize the microscale DVC in this work.

The microscale approach will be applied to the region 
of interest defined in Fig. 8. The idea, again, is not to apply 
the weak elastic regularization scheme on the whole image 
domain but only on the targeted slice. The microscale 
approach allows to remove all the voxels in the voids from 
the computation and as the considered foam is very porous 
(i.e. there is far more void than material), the microscale 
DVC allows to treat only 3.6 million fine tetrahedral ele-
ments that represent the micro-architecture. If the whole 
volume would be registered (as it is the case for dense opti-
cal flow measurements), 17.8 million voxels would have 
been treated.

Special care for the foam specimen

After meshing the region of interest, the regularization 
strategy for the boundary surfaces must be defined. As we 
consider a compression test, and since the specimen is cylin-
drical, the side surface of the slice should be free. In the 
experimental setup, the foam sample is put inside a rigid 
transparent polymeric tube that plays the role of the load 
frame (see Fig. 2 right). Here, the internal diameter of the 
tube is the result of a compromise aimed on the one hand at 
minimizing the scan resolution (because of the cone beam 
technology, the X-ray source - sample distance must be mini-
mized) and on the other hand at leaving a functional clear-
ance (to get the sample move laterally). This solution has 
the merit of simplifying the setup of the reconstruction. If 
the lateral movements of the sample was not hindered, the 
side would be free. Figure 9(a) illustrates the correspond-
ing boundary conditions if the external boundary was free 

during loading. In reality, this hypothesis is not verified. 
Unfortunately, during loading, contact occurs between the 
loading cylinder and the external boundary of the foam sam-
ple (see the green region in Fig. 9(b)). In order to avoid mak-
ing the hypothesis of traction free in regions where it is not 
the case, we decide to penalize the nodes that belong to the 
external boundary in addition to the top and bottom nodes 
(as shown in Fig. 9(c)).

Finally, concerning initialization, the first displacement 
guess is projected from the mesoscale DVC solution. In 
order to do so, a strategy of displacement exchange between 
two arbitrary FE meshes has been incorporated. In order to 
project the displacement field from the coarse mesh to the 
fine mesh, one needs to determine in which elements of the 
coarse mesh belong the nodes of the fine mesh so that the 
FE interrogation (interpolation) is performed. The practi-
cal resolution of this geometric problem is summarized in 
Appendix.

Analysis of the Results

The following numerical computations were performed on 
a 64-bit station equipped with Intel Xeon(R) CPU E5-2637 
v2 processor (3.5 GHz frequency, 16 CPUs), 125.8 GB of 
RAM. The parallel assembly routines were computed over 
the 16 CPUs using OpenMp directives. Concerning the lin-
ear system solution, as the numerical solvers were used as a 
black box and no further investigation concerning this aspect 
was performed, the CHOLMOD direct solver [72] provided 
by the Python scikit-sparse library exploited only 8 CPUs on 
this same machine. The different parameters for the differ-
ent DVC analyses are synthesized in Table 2. The so-called 
ultimate error was estimated using synthetic images with 
sub-pixel shifts using 3D FFT. The reported values are in 
good agreement with the a priori estimates calculated after 
[38]. However, these values should be considered as a lower 
bound of measurement uncertainty, as they do not take into 
account the model error. Further analysis on measurement 
errors with such an approach, was carried out in [1].

Fig. 9   Description of the boundary regularization applied on the 
extracted foam slice. (a) Ideal boundary conditions, (b) Experimental 
boundary conditions: contact occurs with the compressive cylinder in 
the green region and (c) Nodes penalized with the curvature regulariza-
tion
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Mesoscale DVC Results

The mesoscale DVC approach allowed to obtain the final 
measurements displayed in Fig. 10. This same figure also 
shows the global residual indicators obtained for the differ-
ent correlations. The first mesh resolution of 33 voxels failed 
for the last loading state. It clearly shows that the finer the 
discretization is chosen, the better the correlation is which 
is an obvious expectation in image correlation, provided 
that a well-suited weak regularization is employed. For the 
fourth loading state, the correlation algorithm converged 
probably to a local minimum (because the correlation score 
is very high). A very large strain can be reported ( 28.5% ). 
This highlights the limit of the correlation approach when 
choosing relatively large discretizations. For the first and 
second loading states, as we are still in the linear regime, the 
correlation based on large elements allowed to get a “good” 
correlation score which was not the case for the third and 
fourth states. The corresponding measured displacement 

fields are shown in Fig. 11 for completeness. Overall, this 
first study based on meso elements confirms the limits of a 
classical FE-DVC approach (classical in the sense that it is 
equivalent to a mesoscale subset DVC approach).

Microscale DVC Results and Comparison With 
Mesocale DVC

Parameter set‑up

As indicated in “Elastic Regularization”, the optimal regu-
larization length lK can be chosen equal to the cell length fol-
lowing previous study in 2D [1]. Here, we first made several 
tests by varying the regularization length lK . The minimal 
value that allowed the Gauss-Newton to converge is equal 
to 35 voxels which is quite near to the cell length. This re-
confirms our characteristic length choice of about the cell 
length. For the regularization length of the boundary given 

Table 2   Summary of the DVC parameters for the computations

Mesoscale DVC Microscale DVC

Parameters Mesh 1 Mesh 2 Mesh 3 Mesh 4

Mean element length (voxels) 33 23 12 0.7
Matching functional Equation (9) with T = L Equation (10)
Regularization length (voxels) lL = 0 � = 102(lL ≈ 35) lK = 35 , lL = 35

Ultimate error (voxels) 3.16 × 10−4 6.90 × 10−4 8.16 × 10−4 2.57 × 10−4

Initialization Coarse to fine Solution of mesh 3
FE type 4 node tetrahedrons (Lagrange)
Mesh geometry Figure 5 Figure 8
Image definition (voxels3) 507 × 504 × 551 (Binning of a factor 3)
Sub-voxel evaluation B-spline (equation (4)) with p = 3

Gaussian pre-filtering kernel (voxels) � = 0.8 (equation (8))

Fig. 10   Deformed macro meshes obtained with mesoscale DVC for 
the different loading states in addition to the global correlation score 
�(r) (which stands for the standard deviation of the residual field r 
defined in (equation 5))

Fig. 11   Displacement fields (in voxels unit) obtained using mesoscale 
DVC and the mesh defined in Fig. 5(c)
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by lL , the choice performed in [1] and which consisted in 
setting lL to its smallest value was not verified in this case. 
We thus proceeded by bisection with a large value of 50 
voxels and gradually decreased it. lL was finally set equal 
to lK . The elastic stiffness matrix K of the architecture was 
assembled with a Young’s modulus E = 1 and an arbitrary 
Poisson coefficient � = 0.28 . Preliminary numerical tests 
showed that the algorithm has no sensitivity with respect 
to the Poisson ratio. In total, the mechanically regularized 
scheme started from the initial DVC solution obtained with 
the mesoscale discretization shown in Fig. 5(c). In the rest 
of the paper, this solution will be used as mesoscale refer-
ence when comparing the microscale with the mesoscale 
DVC. Concerning the computational time, the whole pro-
cess (including mesoscale DVC as it is the initial guess of 
microscale DVC) consumed 55 GB of RAM and lasted 20 
minutes. We recall that the different parameters of both mes-
oscale and microscale DVC are synthesized in Table 2.

Distribution of the residual field over the whole region

In order to compare quantitatively the residual maps of the 
DVC analyses defined on different meshes, each result was 
post-processed such that all residuals were expressed on the 
same support. More precisely, the residual maps were com-
puted at the integration points of the micro-scale FE mesh 
(thus only the cellular constituent domain is considered for 
the study) for all DVC analyses. It requires a projection step 
that goes from the meso-scale mesh to the micro-scale mesh 
as explained in Appendix. To start comparing the two DVC 
approaches, we plot the histogram of the residual field in 
Fig. 12 along with the residual field itself, see Fig. 13. First 
we observe that when the correlation converges (i.e. for the 
three first loading states), the residual distribution is Gauss-
ian with a zero mean value. We also see that the correlation 
accuracy decreases with the increase of the loading incre-
ments, especially when mesoscale elements are used. This 
can be explained by the fact that the kinematics becomes 
more and more complex, but the discretization is the same. 
The same trend can be seen on the distribution of the 

grey-level residual field in Fig. 13. Then, Fig. 12 shows that 
the standard deviation of the residual distribution is divided 
at least by a factor of 2 for the first and second states and by 
a factor of 4 for the third state for microscale DVC against 
mesoscale DVC. Therefore the proposed architecture-driven 
regularization approach definitely improves the correlation 
accuracy for the third state. However, with multiple ini-
tialization attempts, the fourth loading state (which has a 
28.5% strain level) could not be correlated correctly. This is 
detected with the second peak in the histograms in Fig. 12(b) 
and corresponds to the large red circular region observed 
on Fig. 13. This failed correlation is due to the fact that the 
Gauss-Newton algorithm is very sensitive to the initializa-
tion and none of the proposed initialization techniques pre-
sented previously succeeded. Another source of the problem 
can be related to the chosen cylindrical mesh that contains 
the foam sample. If we look closely to the shape of the exter-
nal boundary of the sample shown in Figs. 3, 8 or even  2, 
then we notice that the boundary is not completely straight. 
This induces that a large part of void was correlated in the 
elements which has perhaps increased the measurement 
uncertainty for the fourth state in this region.

Fine analysis of the measured kinematics over a local region

From now on, we only focus on the third loading state as it 
is the state with the most important strain level ( 12.3% ) that 
we were able to compute.

In order to look for the differences between the two DVC 
approaches in more details, let us extract from the foam slice 
another small region of interest as indicated in Fig. 14. With 
this process, we get a planar view of the cellular region.

We display in Fig. 15 the obtained displacement fields in 
x, y, z directions (we recall that y is the compression direc-
tion) in addition to the Von Mises strain field. From a global 
point of view, both solutions (micro and meso) are similar. 
However, if we look very precisely at some struts, displace-
ment variations are measured at the sub-cellular scale with 

Fig. 12   Histogram of the residual field. (a)  Mesoscale DVC and 
(b) Microscale DVC

Fig. 13   Distribution of the residual field for the different loading 
states and for both microscale and mesoscale DVC
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the micro approach which is not the case for the meso solu-
tion. It can be seen that the strain is homogeneous at the cell 
scale for the mesoscale approach, while it becomes possible 
to clearly locate the spans that concentrate the largest strains 
and bendings with the microscale counterpart. Microscale 
DVC makes it possible to extract much more detailed and 
valuable information from the same raw data.

In order to see even more clearly the differences between 
the mesoscale and microscale solutions, we finally proceed 
to a practical visualization technique as follows. As we can 
also segment the images of the deformed configurations, we 
can verify visually if the displacement field obtained by the 
DVC method allows to align the initial configuration on the 
deformed configuration. Figure 16 illustrates this verifica-
tion approach. We can see in the extracted region a large 

number of cell struts that undergo geometric non-linearities 
like buckling or large deformations. We also observe some 
kind of localized bands. The obtained results confirm in 3D 
the performance of the microscale approach observed in 
2D [1]. The difference between the micro and meso DVC 
measurements is clear: the meso solution only allows low 
order transformations at the cell scale and is thus completely 
unable to represent the complex local kinematic of each indi-
vidual cell-strut. On the contrary, the developed microscale 
DVC does allow to properly measure the non-linear kin-
ematic transformation of the cell-struts.

For completeness, a zoom on some regions especially 
where large deformations/rotations occurs is performed in 
Fig. 17 in order to further appreciate the differences between 
the meso and micro solutions. As right before, these figures 
consist in superimposing, on the deformed image Id , the 
mesh constructed on the reference image Ir , advected by 
the measured displacement field. It can be seen again that 
the microscale approach accurately identified the large local-
ized deformations of individual struts, whereas its mesoscale 
counterpart failed. This constitutes a clear evidence that 
the proposed elastic regularization does not act as a strong 
regularization that constrains the kinematic measurement in 

Fig. 14   Extraction of a region of analysis from the foam slice (clip-
ping in the direction (1,0,0) with the Paraview software)

Fig. 15   Comparison of mesoscale and microscale DVC. Left: Mes-
oscale DVC. Right: Microscale DVC. From top to bottom: transverse 
displacement ux , axial displacement uy , transverse displacement uz 
and Von Mises strain field �vm = ‖�‖F (Frobenius norm)

Fig. 16   Difference between mesoscale and microscale DVC. (a)  Seg-
mented image Ir , (b)  segmented image Id for the third loading state, 
(c)  warping the reference state with the solution coming from mes-
oscale DVC and (d) warping the reference state with the solution com-
ing from microscale DVC. Ωr and Ωd stand for the reference and  
deformed configurations respectively
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the space of purely elastic solutions. Indeed, the measured 
displacement does not correspond at all to the elastic model 
used for the regularization. The regularization only consists 
in prescribing a local elastic behavior that allows to com-
plement mechanically the partial measurement at the cell-
scale given by standard the grey-level metric. This offers the 
opportunity to measure and quantify non-linear kinematics 
which is a novelty in experimental mechanics.

From a mechanical point of view, any DVC method (sub-
set, finite element, possibly regularized)—if it relies on a kin-
ematic description above the micro-structure scale—does not 
allow at all to represent the complex local kinematics of the 
material. Worse, the approach described as meso here shows 
that the individual struts deform in tension/compression (see 
Fig. 17(e)), while they clearly deform in bending. This is due 
to the simple fact that the chosen mesoscopic kinematics 
(required because of the lack of texture at the lower scale) is 
too poor. On the contrary, the proposed method describes the 
local bending kinematics (see Fig. 17(f)), for each individual 
beam. Not only the type of mechanism (stretching-dominated 
versus bending dominated) is well identified but the ampli-
tude of the deformation of each beam is accurately measured. 
We can see that the proposed tool allows a much better qual-
ity measurement and avoids misinterpretation of the class of 
dominance involved in crushing.

Conclusion and Perspectives

In this study, an in-situ compression test was performed in 
an X-ray �-CT scanner on an open cell polyurethane foam. 
Two DVC frameworks were developed. A first global FE-DVC 
based on large finite elements that do not take into account the 
underlying architecture only allowed to obtain a mesoscale and 
homogenized displacement/strain field. It was shown that this 

approach reaches its limits when localized complex subcellular 
kinematics occur. From a mechanical point of view, this type 
of meso analysis does not allow to analyze the nature of the 
mechanisms involved in the crushing of architected materi-
als. Indeed, this mesoscopic measurement suggests that the 
beams deform in tension/compression and the dominance type 
is stretching. It is therefore impossible to exploit classic DVC 
measurements at the scale of the architecture. The kinematic 
model used to measure the displacements is too poor and it 
is not possible to consider richer approximation spaces due 
to the absence of lower scale texture. In order to tackle this 
problem, we make use of an architecture driven mechanical 
regularization of DVC. More precisely, the measurement sup-
port is a sample-specific image-based finite element mesh that 
describes the cellular architecture. Provided the correct set-
ting of the parameters like grey-level threshold, mesh refine-
ment–here related to voxel size–, geometric approximation and 
regularization, regularization parameter–here related to the 
mean cell length and fixed from a previous two-dimensional 
L-curve study, see again [1]– the proposed microscale DVC, 
made it possible to measure accurately particularly complex 
three-dimensional kinematics (such as buckling or bending) 
in the absence of pattern at the strut scale. The efforts on the 
implementation allowed to treat a real, representative case 
(with several millions of degrees of freedom). This approach 
was able to measure, in the volume, local displacements and 
deformations of high complexity. Not only the type of defor-
mation dominance (stretching-dominated versus bending dom-
inated) was correctly identified but the amplitude and location 
of the deformations of each beam is perfectly reproduced. This 
tool is intended to be used for the analysis of local deformation 
mechanisms during in-situ tests.

Although the method was capable of providing accurate 
measurements of individual strut of a foam sample in com-
pression, there are still a number of areas for improvement.

As explained above, the threshold used for segmentation 
was chosen so that the volume fraction of the image-based 
model approximated as closely as possible the porosity of 
the foam as specified by the supplier. It would be interesting 
to further investigate the effect of this choice.

In order to reduce the geometric errors related to noise 
and poor resolution (imposed by the imaging tool), it would 
be interesting to perform high resolution scans of the studied 
samples with high energy �-CT scanners (for example using 
Synchrotron sources) so that a reference geometry in which 
a high trust is placed can be set once for all [57]. From this 
reference image, one can build faithful geometries for both 
the simulation and correlation aspects. For correlation, one 
can go back to conventional �-CT scanners in order to per-
form in-situ tests.

The uncertainties at top and bottom boundary nodes seem 
higher than in the bulk. To reduce the region of interest, 
only a section of the image was analysed. Some struts may 

Fig. 17  ( a-d)  Two regions in the reference configuration Ωr . (b-e)  In 
grey color: Ωd . In red color: Ωr + umesoscale(Ωr) . (c-f) In grey color: Ωd . 
In red color: Ωr + umicroscale(Ωr)
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have been cut in two in the thickness, resulting in very small 
weakly connected elements. The associated stiffness can be 
very low and so the regularization. This higher uncertainty 
on the edges does not have a strong effect on the meas-
urement but would require further developments such as 
improving the boundary regularization [32].

Among other perspectives, a very interesting avenue 
concerns the regularization operator. It is indeed possible, 
with exactly the same formalism, to consider more advanced 
models (in particular non-linear ones) [73]. In particular, it 
would be interesting to update the constitutive parameters 
and the geometry stiffness of the regularization model, 
which is possible within the very same framework [37, 73].

The problem of high performance computing for regular-
ized DVC is of double difficulty. First, from a memory point of 
vue, the equilibrium gap regularization increases the numerical 
cost of the DVC algorithm as the number of extra diagonals 
increases in the left hand side of the resolved linear system. 
The computational cost issue may become a real concern in 
three dimensions. Domain decomposition techniques or model 
reduction techniques could then be used advantageously [41, 
54, 55]. In addition, adequate iterative solvers must be adapted 
for the special Gauss-Newton algorithm of DVC [74].

One of the most difficult aspects in image correlation is 
the accurate initialization of the gradient-based optimiza-
tion scheme. Even though coarse to fine and reduced basis 
approaches seem to be sufficient in many applications, their 
use is quite manual and heuristic in the sense that multiple 
attempts are performed before running the final correlation. 
Another prospect of this work would be to investigate other 
robust initialization strategies [75].

Appendix: FE interrogation for arbitrary points

We present in this appendix a procedure that allows to per-
form automatically the displacement exchange between two 
arbitrary finite-element meshes. We consider the following 
steps for solving this geometric problem:

Step 1: Location of the Nearest Face of the FE Mesh 
to the Point

Efficient data structures (very common in collision detection 
algorithms) can be efficiently used to speed up point queries 
with respect to complex geometric objects represented by 
faces. In this work, we mainly use a rootine from the CGAL 
library [69] and PyMesh [76]. Efficient point queries such as 
intersections, distance computation, ray shooting can be per-
formed using Axis Aligned Bounding Boxes (AABB) trees 
[77]. This allows to detect the nearest face to an arbitrary point. 

Step 2: Location of the Tetrahedral Element 
Containing the Point

 After determining the nearest face, the location test is per-
formed on the tetrahedrons that share this same face (they 
are at most two). To do so, one can consider two methods:

•	 Method 1: Computation of the barycentric coordinates 
by resolution of the linear system: 

 If 𝜆i > 0, ∀i ∈ {1, ...,m} then the point x belongs to 
the tetrahedron bounded by the nodes (ti)i∈{1,...,m} . m is the 
number of nodes per convex set (4 in our case).

•	 Method 2: A faster method which does not consist in 
solving a linear system can be considered. We only evalu-
ate the signed distance of the point to each of the tet-
rahedron faces. First, the orientation of the faces must 
be determined so that all the face normal vectors point 
towards the same direction. This is given by an orienta-
tion matrix denoted O ∈ ℝ

3×4 that depends of the used 
mesh. Each column of O represents the indices of the 
nodes of the tetrahedron faces. The point x belongs to the 
tetrahedron if the distances to all the faces have the same 
sign. This is written as follows: 

 where ni(tO2,i
) is the normal vector at node tO2,i

 (which 
is the second node of the face i). It is defined by 
ni(t2) = (tO2,i

− tO1,i
) × (tO3,i

− tO2,i
).

Step 3: Evaluation of the Displacement Field 
at the Point

 Once the tetrahedron containing the point is determined, 
the isoparametric transformation (x =

∑
i Ni(�)ti) is inverted 

in order to find the isoparametric coordinate � of the point 
x. The finite element interpolation formula can afterwards 
be applied to evaluate the desired displacement field 
(ufine(x) =

∑
i Ni(�)u

coarse(ti)) , where ti are again the nodes 
of the tetrahedron.
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(12)

⎧
⎪⎪⎨⎪⎪⎩

x =

m�
i=1

�iti

m�
i=1

�i = 1

(13)(x − tO2,i
)Tni(tO2,i

) < 0, ∀i ∈ {1, .., 4}
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