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Abstract
Background  Finite element model updating (FEMU) is an inverse technique that is used to identify material (constitutive) 
model parameters based on experimental data. These experimental data, often in the form of full-field strains, may be sub-
ject to a filtering bias unique to the measurement technique, which can propagate to material parameter identification error.
Objective  Numerically adjusting for this filtering mismatch between the finite element analysis (FEA) and experimental measure-
ments, here from Digital Image Correlation (DIC), is necessary to produce an accurate calibration. We investigate “direct-leveling” 
the FEA to the DIC data, i.e. computing strains using consistent methods and length scales for both data sets, before performing 
model calibration. Thus, both data sets have the same spatial resolution and can be quantitatively compared more readily.
Methods  We generated two sets of synthetic “experimental” DIC displacement data: one directly from FEA nodal displace-
ments and one from DIC images synthetically deformed according to the FEA displacements. We then explored how the 
FEMU material model parameter identification is affected by DIC user-defined settings, including virtual strain gauge size, 
step size, and subset shape function, as well as misalignment between the FEA and DIC datasets.
Results  We found that direct-levelling of the FEA data before FEMU calibration returned more accurate results. This accu-
racy was independent of the DIC settings and spatial resolution. In contrast, performing FEMU with the unlevelled FEA 
data resulted in significant biases in the identified parameters.
Conclusion  In FEMU-based calibrations, it is advantageous to properly level the strain from the FEA to match the filtering 
and spatial resolution of the DIC results.

Keywords  Finite Element Model Updating · Digital Image Correlation · Virtual Strain Gage · DIC Levelling · Direct-
Levelling

Introduction

With the increasing use of experimental full-field data as 
input for inverse material model calibration techniques [1], 
it is of interest to develop methodologies to improve model 

parameter identification accuracy. Full-field displacement 
and strain maps are usually obtained through optical tech-
niques, one such popular method being digital image cor-
relation (DIC). DIC, which contains both hardware and 
software components, can be affected by biases related to 
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the processing algorithms and the experimental set-up. For 
the purposes of this work, which integrates DIC and finite 
element analysis (FEA), the bias errors can be separated 
into three groups:

1.	 Filtering errors such as subset shape function attenuation 
bias [2] and the similar but larger error of strain attenu-
ation bias [3], as well as different strain formulations or 
calculation methods between DIC and FEA.

2.	 Image-induced errors such as pattern-induced bias (PIB) 
[4, 5], discrete truncation of grayscale values [4, 6], and 
image sampling errors such as subpixel interpolation 
bias [7].

3.	 Errors related to the physical experimental setup and 
hardware, such as image noise [8], heat haze [9–11], 
pattern delamination, and specimen fixturing issues.

The errors in group 3 are often hard to quantify and 
should be minimized at the experimental level if possible. 
The errors in group 2 are related to the images themselves 
and have been extensively studied for their effect on DIC 
measurements, e.g. [3–8, 12–14]. The errors in group 1 are 
related to the length scale and spatial resolution of the DIC 
displacement or strain measurements, which has been the 
topic of the recent DIC Challenge image sets [13, 14] and 
are the main focus of the present work.

Ideally, a DIC experiment is designed with sufficient 
spatial resolution such that deformation in regions of 
high gradients (i.e. in the necking region of a tensile dog 
bone or at strain concentrators like holes or notches) are 
adequately captured. However, in practical situations, this 
so-called strain convergence condition cannot always be 
guaranteed, and the DIC algorithms can be viewed as a 
low-pass filter that attenuates peak values of strains. The 
filtering effect is more pronounced for strains than dis-
placements since the length scale for strains (the Virtual 
Strain Gauge (VSG)) is typically longer than that for dis-
placements (the subset). Although displacements can be 
used as input to full-field calibration methods, often full-
field strain maps are preferred as they are insensitive to 
rigid body motions and are assessed for model validation. 
Similarly, a FEA should also be designed to have suffi-
cient spatial resolution to resolve strain gradients, which 
is accomplished through a mesh refinement study. Unlike 
DIC, which often has physical limitations for the best spa-
tial resolution that can be achieved (e.g. camera detector 
size, lens optical resolution), the spatial resolution of FEA 
data can be improved with a finer mesh, limited only by 
computational time.

Discrepancies in length scale and spatial resolution 
between DIC and FEA data must be considered before quan-
titative strain error maps can be compared [15]. Lava et al. 

[15] addressed this issue by proposing the “DIC-levelling” 
approach, where synthetic DIC images are created by deform-
ing the reference experimental image according to the FEA 
nodal displacements. These images are then processed 
through the DIC software using the same user-defined set-
tings as the experimental images. This so-called DIC-levelled 
FEA data conforms to the original FEA but has the same 
filtering and same spatial resolution as the experimental data, 
thus addressing group 1 errors. Additionally, group 2 image-
based errors are also considered, since the same speckle pat-
tern is used for both the experimental and DIC-levelled FEA 
data. The DIC-levelling approach is implemented in the com-
mercial DIC software MatchID through the finite element 
(FE) Deformation and FE Validation modules [16] and has 
been applied for validation of an isotropic material model 
[17], an anisotropic material model [18], and a cased explo-
sive [19]. Recently, DIC-levelling has been used to assess 
the contribution of the DIC error to the identification cost 
function [20].

While the effect of length scale and spatial resolution 
discrepancies was demonstrated for FE model validation, 
to the best of our knowledge DIC-levelling not been uti-
lized for finite element model updating (FEMU) identifi-
cation. Typically, FEMU using full-field motion data is 
performed by interpolating kinematic quantities such as 
the experimental displacements/strains onto the FE mesh 
(or vice-versa) and directly subtracting the two fields to 
measure the mismatch on a point-by-point basis. A resid-
ual, based on the weighted sum of squares of the deforma-
tion mismatch [21–25], is minimized with respect to the 
material model parameters in order to identify the best 
parameter set. Often kinetic values such as the global force 
is included in the cost function [23], but these measure-
ments are not utilized in this paper for reasons discussed 
later. We show here that this “direct-subtraction” method 
with unlevelled kinematic FEA data can lead to biased 
calibration of the material model parameters. Similarly, 
other inverse calibration methods that employ full-field 
data, such as the Virtual Fields Method (VFM), can pro-
duce biased parameter results if the filtering effect of DIC 
is not considered [26–29]. This bias can be mitigated by 
judicious experimental design (i.e. avoiding sharp strain 
gradients) and careful selection of DIC parameters to opti-
mize spatial resolution. However, assuring the DIC strains 
are converged is not always feasible.

The DIC-levelling method offers a path to address group 
1 and group 2 errors with FEMU by rectifying discrepancies 
in spatial resolution before computing the cost function for 
calibration. However, we posit that the DIC errors in group 
2 are often inconsequential in the model calibration process 
compared to the systemic biases in group 1. Therefore, here 
we have simplified the DIC-levelling process for FEMU to 
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capture only group 1 errors by calculating strains from FEA 
nodal displacements using the same polynomial shape func-
tions as the experimental DIC measurements. This so-called 
“direct-levelling” process is more computationally efficient 
for FEMU than DIC-levelling since it bypasses generation 
and correlation of synthetic images at each iteration step 
of FEMU. Direct-levelling was first performed in [22], and 
later in [30] to handle the disparity in spatial resolution for 
the strain measurement, but has not been thoroughly inves-
tigated in the literature. We extend this procedure to also 
rectify filtering errors at the displacement (or subset) level 
before calculation of strain components.

The DIC-levelling and direct-levelling methods have both 
been developed in the context of local, subset-based DIC, 
where the user-defined DIC parameters (e.g. subset size, 
VSG size) are independent from the FEA parameters (e.g. 
element size). In contrast, global DIC [31, 32] and Integrated 
DIC (I-DIC) [23] offer alternatives to the levelling approach, 
since the experimental DIC analysis is conducted with the 
FEA mesh, inherently linking the spatial resolution of both 
data sets. However, I-DIC requires control of the DIC code 
and to the best of our knowledge has not been applied in 
stereo applications. Additionally, a majority of commercial 
DIC packages use local DIC, so the levelling approach is still 
necessary for a large number of FEMU cases.

This paper is organized as follows: In "Numerical 
Methods" we discuss construction of a finite element 
model of an hourglass specimen that generates hetero-
geneous, full-field strain data for FEMU. An isotropic 
elasto-plastic material model is employed with “ground-
truth” parameter values based on tensile dog bone speci-
mens of 304L stainless steel sheet metal. We then create 
two sets of synthetic “experimental” DIC data based on 
the deformation state of the FE model: in the first, strains 
are calculated directly from the FEA nodal displacements 
to isolate only group 1 errors; in the second, synthetic 
DIC images are generated and processed in DIC software 
to additionally incorporate group 2 errors. We then dis-
cuss the process of direct-levelling the FEA data to rectify 
identification error caused by the biases in DIC. Then 
in "Result and Descussion" we utilize direct-levelling 
to show that it is possible to perform FEMU with large 
VSG sizes and poor spatial resolution and obtain a unique 
and accurate set of material model parameters. We then 
performed FEMU with multiple DIC settings to better 
understand the effectiveness of direct-levelling and how 
the group 1 errors compare to that from group 2. Finally, 
we explore the effect of misalignment of the FE model 
to the DIC results on the identification and compare it to 
errors caused by filtering. In conclusion, we remark on 
the limitations of this method and ultimately recommend 
its use for material identification.

Numerical Methods

Finite Element Model and Constitutive Equations

A planar shell FE model with plane-stress conditions was 
made in ABAQUS 2020 Standard to represent the hourglass 
specimen geometry from [33], shown in Fig. 1(a). The mesh 
generated for the FEA along with an illustration of the bound-
ary conditions are shown in Fig. 1(b). A magnified region of 
the middle section where plastic strain and strain gradients 
were largest is shown in Fig. 1(c). Displacement was con-
strained across the bottom surface in the y-direction only, 
and a uniform displacement of V = 0.25 mm was applied on 
the top surface in the y-direction. A single fixed point at the 
bottom left corner was added to constrain rigid body motions. 
Adaptive implicit time-stepping was used, with an initial 
displacement increment of 0.0025 mm and a maximum dis-
placement increment of 0.025 mm. The FE model accounted 
for geometric and material nonlinearities and used the default 
ABAQUS convergence settings to solve the forward problem. 
Based on the symmetry of sample geometry and boundary 
conditions, a ¼ model could have been evaluated instead of 
the full geometry. However, in a physical experiment, small 
deviations from uniform and symmetric prescribed bound-
ary conditions may occur, which can lead to a discrepancy 
with the FE model using idealized boundary conditions. To 
account for such variations, the experimentally measured 
displacement near the boundaries, such as motion measured 
by DIC, can be applied to the numerical model to achieve a 
more accurate representation of the experiment, as was done 
in [18]. For this reason, we opted to simulate the full model 
geometry to better transition our model and FEMU code for 
use with a physical experiment in a future study.

Fig. 1   Finite element model used in our experiment with (a)  sche-
matic of the specimen geometry (b) applied boundary conditions on 
our final 5202-element mesh with (c) a magnified view of the neck
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We used an isotropic elastoplastic material model with 
the flow stress, �y , based on a power law:

where �o is the initial yield stress, B is the hardening rate, 
n is the hardening exponent, and �p is the equivalent plas-
tic strain, which is computed from the inelastic portion 
of the logarithmic strain in ABAQUS. In ABAQUS, this 
material model is implemented using the rate-independent 
Johnson–Cook model under isothermal conditions. The ref-
erence model parameters are shown in Table 1 and were 
based on experimental tensile tests which we conducted on 
three specimens cut from the transverse direction of a 304L 
stainless steel sheet material. In the current work, the elas-
tic properties were fixed, and the plastic parameters were 
identified using FEMU, with the initial guess values chosen 
as ± 10% of the reference value. The initial guess for �0 was 
chosen as the smaller value such that plasticity in the FEA 

(1)�y = �0 + B
(
�
p)n

would be guaranteed for the first iteration of the FEMU pro-
cedure. Since the elastic parameters E and � are fixed and 
assumed to be known, the global forces that result from the 
imposed displacements at the boundaries are not required in 
the FEMU optimization [23].

The bilinear, full-integration CPS4 element was used, and 
the mesh density was refined so the maximum logarithmic 
y-strain, �yy , converged to a final value as shown in Fig. 2. 
The N = 5,202 element mesh was chosen for its balance of 
spatial resolution (the maximum strain was within 0.03% of 
that from the mesh containing 18,456 elements) and com-
putational efficiency. This mesh had a median element area 
of 0.0104 mm2 and smallest element area of 0.0018 mm2 at 
the neck (see Fig. 1(c).

The reference coordinates of the nodes and integration 
points, which were used to spatially register the FE mesh 
to the DIC image or point cloud, were obtained from the 
undeformed ABAQUS model at the initial time step. The 

Table 1   Row 1) Reference parameters used in the material model. Row 2) Initial guess of the material model parameters used in the finite ele-
ment model. E , and � were fixed while �0 , B , and n were optimization variables

Young’s modulus, E 
(GPa)

Poisson’s ratio,� Initial yield stress, �0 
(MPa)

Hardening rate, B 
(MPa)

Hardening 
exponent, 
n

Reference 200 0.29 339 1,070 0.645
Initial Guess N/A (fixed) N/A (fixed) 305.1 1,177 0.5805

Fig. 2   Mesh convergence. Left: Line plot of the y-strain across the vertical centerline of the specimen with a magnified view of the peak strain in 
the inset. The mesh containing N = 5,202 elements was nearly indistinguishable from the finest mesh containing N = 18,456 elements, whereas 
the coarser meshes inadequately captured the strain across the peak. Right: Peak strain as a function of smallest element size used in the mesh. 
The chosen mesh containing N = 5,202 elements (shown in Fig. 1(b-c) had a peak strain within 0.03% of the finest mesh
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kinematic quantities of displacement and strain were gath-
ered from the FEA at the step where V = 0.25 mm.

Generation of “Experimental” Data

Two sets of synthetic “experimental” data were produced 
to evaluate the direct-levelling technique for FEMU. The 
first set was taken directly from the FEA nodal displace-
ments in order to evaluate the identification error due to the 
group 1 problem of filtering bias. This data set isolates the 
strain attenuation bias and does not include effects of sub-
set shape function attenuation bias nor any group 2 errors 
related to the DIC images. The second data set was taken 
from a pair of synthetic images generated from the FEA and 
processed in DIC software, to evaluate the effect of subset 
shape functions, DIC errors in group 2, and image noise on 
the identification.

Note that in reality, the true material response is rarely, 
if ever, exactly represented by an assumed analytical mate-
rial model, resulting in a bias described as “material model 
form error” [15]. In this work, we utilized the same mate-
rial model in the “experimental” data generation that we 
employed for the FE model used in our FEMU identifica-
tion, thus eliminating the effects of material model form 

error and instead allowing us to concentrate on the errors 
listed in the introduction. Including the effects of material 
model form error would obfuscate the effects of levelling 
on known DIC and experimental errors. However, though 
not considered in this work, understanding material model 
form error is an important topic that would be deserving of 
a separate study.

Synthetic “experimental” data set 1: Displacements taken 
directly from FEA

The first set of synthetic “experimental” data was created by 
interpolating the displacements from the FEA nodal loca-
tions onto a regular grid with a point-to-point spacing of 
0.149 mm (equivalent to the DIC step size of 7 pixels used 
for the second set of synthetic “experimental” data in "Syn-
thetic “experimental” data set 2: Displacements taken from 
synthetic DIC images". This was performed using MAT-
LAB’s triangulation-based cubic interpolation scheme. Next, 
the Green–Lagrange finite strain (a common strain tensor 
output from DIC codes) was computed in MATLAB using 
the polynomial shape function method described in "Strain 
Calculations for “Experimental” DIC Data").

Fig. 3   Strain E
yy

 from the FE model analyzed using the reference parameter set along with its VSG for Left: the smallest VSG of 0.4 mm and 
Right: the largest VSG of 4.0 mm. The maximum resolved strain in the larger VSG is more than 0.015 (mm/mm) less than that of the smaller 
VSG as a result of the strain attenuation bias inherent to the polynomial strain calculation method
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For this “experimental” data, 10 different virtual strain 
gage (VSG) sizes were used to obtain multiple levels of 
strain attenuation bias. The VSG sizes ranged from a small 
VSG of 0.4 mm to a, perhaps unreasonably, large VSG of 
4.0 mm, in 0.4 mm increments. The VSG was defined as all 
points falling withing a circle with a diameter equal to the 
VSG size. A circular VSG, as opposed to a square VSG such 
as in [34], was used so the strain would only be influenced 
by points equidistant from the point of interest.

Figure 3 shows the vertical normal component, Eyy , of 
the full-field strain for the smallest and largest VSG. The 
color bar shows the strain results for the largest VSG size 
are filtered by over 0.015 mm/mm compared to the smallest 
VSG size. This strain attenuation bias can be more easily 
seen on the left plot in Fig. 4 via a line-cut across the center 
of the specimen (red dashes in Fig. 3). Additionally, the plot 
on the right of Fig. 4 shows the monotonic decrease in peak 
strain for the various VSG sizes. A 4.0 mm VSG may be 
unreasonable in practice, as the additional filtering can heav-
ily alter the measured values of the strain. However, we will 
show in "Result and Discussion" that unique and accurate 
parameter identification via FEMU can still be performed 
with a VSG of this size.

Synthetic “experimental” data set 2: Displacements taken 
from synthetic DIC images

A second set of synthetic “experimental” data, based 
on synthetic DIC images, was generated to more closely 
resemble actual DIC data compared to Data Set 1. Synthetic 

image generation and deformation was performed using the 
BSpeckleRender code described in [35], with specific set-
tings outlined in Table S1 of the supplementary informa-
tion. This code was chosen here since it does not use any 
interpolants to deform the image, as the accuracy of DIC can 
be obfuscated due to interaction between the image genera-
tion interpolant and the DIC interpolant [36, 37]. Therefore, 
the absence of an image interpolant lets us more accurately 
assess the effects of subpixel bias in the DIC analysis on the 
FEMU identification. Due to the high computational cost of 
this image generation code, only the central portion of the 
specimen was included in the computational domain, as this 
is the region that plastically deformed. Two undeformed-
deformed image pairs were created, one without noise, and 
one with heteroscedastic noise added to each the reference 
and deformed image. The camera noise was based on a FLIR 
(formerly PointGrey) 5-Megapixel camera (GRAS-50S5C-
C) and was the same noise model utilized in the DIC Chal-
lenge 2.0. [13]. The final image size was 900 pixels × 461 
pixels with an image scale of 0.0212 mm/pixel. This resolu-
tion corresponded to an approximate stand-off distance of 
180 mm, which was calculated using the equations provided 
in [38] by assuming a 25 mm lens and using the FLIR cam-
era pixel size of 3.45 mμ . Figure 5(a) shows the resultant 
reference image created by the BSpeckleRender code.

DIC was performed using a subset size of 21 pixels, 
step of 7 pixels, and a normalized sum of square difference 
matching criterion. Two DIC codes were used in the analy-
sis. The first, MatchID, allowed us to use a higher order 
quadratic shape function, but was restricted to a lower order 

Fig. 4   Left: Line-cuts along the sample vertical centerline of the strain calculated from FEA displacement data differentiated over a VSG neigh-
borhood. Only select VSGs are included for clarity. Right: The maximum E

yy
 obtained for each VSG size. The larger VSGs attenuate strain more 

and can ultimately cause a disparity between the experimental measure of strain and a higher resolution FEA-calculated strain
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cubic spline image interpolant. The second, VIC2D, made 
use of the higher order 8-tap image interpolant, but was 
restricted to a lower order affine shape function. The origi-
nal ROI was approximately the same in both codes, shown 
by the red mask in Fig. 5(a). The ROI was trimmed along the 
edges by 3–5 pixels (depending on the curvature of the hour-
glass specimen) such that the discretization of the border of 
the specimen in the image and any subsequent error caused 
by edge values [38] did not affect the DIC results. The ini-
tial seed point (Fig. 5(c) was the same in both codes so that 
points would be sampled at similar locations. A MATLAB 
routine was implemented to retain only points common to 
both data sets (2901 data points).

To obtain an intuitive sense of the best VSG size for the 
DIC analysis, we performed a VSG study [39] using the DIC 
results from the noisy images which would more closely 
replicate a physical experiment. By inspection, the strain 
converged to a final value of 0.075 mm/mm with a VSG 
size of approximately 0.8 mm before succumbing to noise 
at a VSG size of 0.4 mm. Therefore, we will designate the 
VSG size of 0.8 mm as our representative DIC result when 
comparing unlevelled and levelled FEMU identifications in 
"Result and Discussion").

Finite Element Model Updating

FEMU identifies the material model parameters by optimiz-
ing the similarity between experimental and FEA data for 
some quantity of interest, here the three in-plane strains, 
� = ⟨�xx, �yy, �xy⟩ . To maintain a standard set of notations for 
the equations in the following sections, column vectors will 
be denoted by boldface (e.g. � ), and matrices will be denoted 
by boldface surrounded by brackets (e.g. [H]). Optimization 
in FEMU is performed through:

which considers the unweighted sum-of-squared differences 
(SSD) between the three experimentally measured strain 
components, �exp(Xexp) , from the two cases of synthetic data 
described above, and the three strain components from the 
FEA �FEA(Xexp,�) across the experimental region of inter-
est, Ωexp , at individual measurement locations, Xexp ∈ Ωexp . 
To keep the form of (2) general, the symbol � is used in (2) 
as opposed to the logarithmic strain, � , or Green–Lagrange 
strain, E, specifically mentioned earlier. The experimentally 
measured strains depend on the strain tensor and accuracy 
of the measurement method, and the FEA strains depend on 
the material model parameter vector � = [�0,B, n;E, �] , as 
well as any post-processing or levelling that is performed 
on the model output.

To solve the least-squares problem introduced in (2), the 
Gauss–Newton method was applied where the parameter 
vector was updated at each iteration of the optimization 
according to equations (3a, 3b, 3c) [23].

The components of the parameter vector, � , were divided 
by the initial guess to produce a normalized parameter vec-
tor, � , intended to improve performance of the optimization. 
The terms �exp , and �FEMU , without the specified location 
X , represent the global strain vectors composed of the three 
in-plane strain components at all of the measurement points.
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Fig. 5   (a) The reference image used in the analysis and ROI (red 
mask) which focused on the region where plastic deformation was 
likely to occur. (b) A zoomed in view of the neck of the specimen. (c) 
A representative subset/seed point of size 21 pixels used in the DIC 
analysis. A sample of the white background and black features show 
the pattern has roughly 130 counts of contrast with image gradients in 
both image directions
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The FEA strain for the i’th iteration, �FEA
(
�
i
)
 , was cal-

culated using the current estimate of the material model 
parameters. The sensitivity matrix, [�] , was calculated using 
a forward finite-difference approximation with a normalized 
parameter step size of 10–6 and required a separate forward 
solve for each parameter. As mentioned, the initial guess 
in Table 1 was carefully chosen so that [�] would be non-
zero at the first FEMU iteration. We utilized the software 
ABAQUS2MATLAB [40] to communicate the FEA data 
from ABAQUS to our custom FEMU code in MATLAB. 
The optimization procedure required four separate forward 
solves and transcriptions of data from ABAQUS to MAT-
LAB for each iteration to account for the current estimate 
of the strain and the finite difference perturbations for the 
three material parameters. The optimization ended when 
the convergence criterion, Φ , computed by the Euclidian 
norm of the parameter update, was less than 10–5 as shown 
in equation (4).

Strain Calculations for “Experimental” DIC Data

Different strain tensors can be computed from displace-
ment data. A commonly-computed strain tensor in DIC is 
the Green–Lagrange tensor, whose components in 2D are:

where u and v are the displacements along the x and y direc-
tions respectively. There are many methods available to com-
pute the spatial gradients in the above equation as mentioned 
in [38]. Here, we use a polynomial shape function, described 
in more detail in [34]. The displacements computed at the 
points of interest using this method are the same as obtained 
from applying a Savitsky-Golay filter of the same order, but 
we maintain a polynomial description here in order to obtain 
the coefficients for the gradients. To prevent redundancy, the 
spatial gradient calculation method is shown for a general 
displacement, Ui which can represent either u or v-directions 
through the i superscript. For a given experimental displace-
ment field, Ui

exp
 , we fit a polynomial Ui

poly
 defined by

(4)Φi+1
≡ ‖𝛿�i+1‖ < 10
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The function, consisting of a polynomial basis matrix [�] , 
and a vector of coefficients �i , is fit to an area defined by the 
virtual strain gage (VSG) size.

The polynomial basis matrix is of dimension M × P where 
M defines the number of points used in the strain calculation 
through their local coordinates x and y , and P describes the 
number of basis functions used in the polynomial. For this 
paper we utilize an affine shape function given in equation 
(7a) whose coefficients consist of rigid displacements u0 , 
v0 , and partial derivatives in equation (7b) to account for 
uniform stretching, compression, and shear.

We solve the least-squares problem in equation (8) to 
obtain optimized coefficient vectors (�∗)i , which gives us 
the partial derivatives for the experimental strain.

Direct‑levelling of FEA Data

During our FEMU analysis, �FEA is calculated at the DIC 
grid locations using several degrees of direct-levelling. The 
flow chart in Fig. 6 provides a visual aid to understanding 
the multiple different techniques of direct-levelling employed 
here and how they compare with the “DIC-levelling” pre-
sented in [15]. In the figure, we distinguish the different 
degrees of direct-levelling such as subset, tensor, and strain-
levelling and discuss their implementation in the following 
subsections.

Raw (unlevelled) strains calculated in abaqus

Due to the incremental theories used in commercial FEA 
software, different measures of strain such as the total (inte-
grated) strain, engineering strain, and logarithmic strain, can 
be reported. The default strain measurement for our model in 
ABAQUS is the “logarithmic strain”, � , shown in equation 
(9), where � is the left Cauchy-Green strain tensor composed 
of the deformation gradient, � [41].
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This data set was interpolated without modification using 
the triangulation-based cubic scheme in MATLAB from the 
FE integration points to the DIC grid. In this way, the unlev-
elled FEA data and synthetic “experimental” DIC data were 
both on the same grid, so direct subtraction of the strain 
could occur on a point-by-point basis. This data is referred 
to “unlevelled” FEA strains.

Tensor‑levelled FEA strains

To address the discrepancy between the FEA and DIC strain 
tensors, we must calculate the same strain tensor for both 
data sets. Since ABAQUS does not have an option to export 
the Green–Lagrange strain directly for the simulation we 
performed, we calculated it using the same polynomial 
method presented in "Strain Calculations for “Experimental” 
DIC Data". To largely isolate the effects of the strain tensor 
from effects of length-scale or spatial resolution, we used 
a constant VSG size of 0.4 mm for the FEA results; some 
attenuation of the underlying strain is present (see Fig. 4), 
but this was the smallest practical VSG size that could be 
used while containing reasonable amounts of nodal points. 
We call this set of FEA strains “tensor-levelled”, since the 
FEA and DIC strains were computed using the same strain 
tensor, but the two data sets still have differing spatial reso-
lution based on the varying DIC VSG size.

Strain‑levelled FEA strains

To address the discrepancy of length scale for strain calcula-
tions between the FEA and DIC strains, the Green–Lagrange 
strains were calculated from the FEA displacements using 
the polynomial shape function method in "Strain Calcula-
tions for “Experimental” DIC Data". Importantly, the VSG 
size was selected to match the different VSG sizes used for 
the synthetic “experimental” DIC strains. We call this set of 
FEA strains “strain-levelled” since it used the same strain 
calculation procedure and thus has the same spatial resolu-
tion as the “experimental” DIC strains.

Subset‑levelled FEA displacements

Strain attenuation bias is usually much larger than subset 
shape function attenuation bias, due to the longer length 
scale of the VSG compared to the subset. However, when 
the differences in spatial resolution between the FEA and 
DIC displacements are not negligible, further levelling 
may be required to obtain an accurate identification. To 
account for subset shape function attenuation bias, the 

(9)� = ln(
√
[�]) = ln(

�
[�] ⋅ [�]T)

polynomial method in "Strain Calculations for “Experi-
mental” DIC Data" was applied with a square window 
size of 21 pixels × 21 pixels and an affine shape function, 
mimicking the effect of the subset in the DIC matching 
algorithm. These “subset-levelled” displacements [ u0 , v0 ], 
are equivalent to what would be obtained by applying a 
Savitzky-Golay filter of order 1 to the underlying displace-
ments but are obtained here from the first index of (�∗)i in 
equation (8). Once the displacements were subset-levelled, 
the strains were computed as described in "Strain-levelled 
FEA strains". Thus, this FEA data is both subset-levelled 
and strain-levelled.

Results and Discussion

Effect of Tensor‑Levelling and Strain‑Levelling

FEMU using synthetic “experimental” data set 1: Effect 
of dissimilar strain spatial resolutions

Using the first synthetic “experimental” data taken directly 
from FEA ("Strain Calculations for “Experimental” DIC 
Data"), three sets of FEMU calibrations were performed for 
the 10 VSG sizes. Figure 7 shows the identification results 
for FEA strains that were either unlevelled, tensor-levelled, 
or strain-levelled. The cyan markers are from optimizing 

Fig. 6   Flowchart defining the levelling processes. The DIC-levelling 
process (green box) involves the DIC analysis of synthetic images 
generated by the FEA data and accounts for both group 1 and group 
2 image-induced errors (with the exception of subpixel interpolation 
bias). Direct-levelling (blue box) accounts for only group 1 errors by 
applying the DIC filtering biases directly to the FEA nodal displace-
ment data without the generation and correlation of synthetic images
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the unlevelled (UL) ABAQUS-produced logarithmic strain 
from equation (9) to the Green–Lagrange strain in equations 
(5a, 5b, 5c). This data did not account for either different 
strain tensors (i.e. logarithmic versus Green–Lagrange) or 
different spatial resolutions (i.e. a FEA element size that is 
approximately 10 × smaller than the smallest DIC VSG size 
of 0.4 mm). The blue markers represent a tensor-levelled 
(TL) calibration, where both the FEA strains and the DIC 
strains were computed using the Green–Lagrange tensor, 
but at different length-scales (VSG size of 0.4 mm for the 

tensor-levelled FEA strains and varying VSG sizes for the 
synthetic DIC strains). At the VSG size of 0.8 mm, the error 
in the tensor-levelled results as compared to the unlevelled 
calibration was reduced from 8.54% to -0.29% for �0 , 9.38% to 
0.84% for B , and -4.40% to 2.29% for n.While tensor-levelling 
reduced the parameter errors, both results were inaccurate 
with significant biases depending on the VSG size.

For the last calibration, the strain-levelled (SL) FEA 
strains were computed using the same tensor and VSG size 
as was used in the DIC strain computation. In this way, both 
the FEA and DIC strains had the same filtering and same 
spatial resolution. The strain-levelled calibrations (red mark-
ers) were all successful in acquiring the correct parameters 
with near machine-precision errors. The errors for all three 
data sets for the more reasonable VSG of 0.8 mm, as well as 
the maximum error using the VSG of 4.0 mm, are quantified 
in Table S2 in the supplementary information.

We have shown using synthetic “experimental” data taken 
directly from FEA data (no DIC images) that if the differing 
spatial resolution of FEA and synthetic DIC data is not taken 
into account, inaccurate model parameters may be identified 
that moreover depend on user-defined DIC settings such as 
VSG size. This result highlights the effect of group 1 fil-
tering errors. By levelling the FEA data first, however, a 
unique and exact set of parameters can be found. This accu-
racy remained true even with the unreasonably large VSG 
of 4.0 mm, suggesting uniqueness of the solution under low 
noise despite heavy filtering of the underlying strain data.

FEMU using synthetic “experimental” data set 2: Effect 
of group 2 image errors

FEMU was also performed using the second synthetic 
“experimental” data set, to test the accuracy of direct-lev-
elling using synthetic DIC images so errors related to sub-
set shape function attenuation bias, digital images (group 2 
errors), and noise can be evaluated. The synthetic images 
were processed through either MatchID with a quadratic 
subset shape function and bicubic spline interpolant or in 
VIC2D with an affine shape function and 8-tap interpolant. 
Since both DIC data sets yielded similar FEMU identifica-
tion results, only the MatchID results are shown for brevity 
here. The reader is referred to Tables S5, S6 in the supple-
mentary information to see the identification results using 
DIC data analyzed in VIC2D.

Building from the results presented in "FEMU using syn-
thetic “experimental” data set 1: Effect of dissimilar strain 
spatial resolutions" that addressed group 1 strain-filtering 
errors, we start with the noise-free image set to analyze the 
effect of group 2 errors related to the image intensity map 
and its interpolation. Figure 8 shows that the unlevelled (UL) 
and tensor-levelled (TL) calibrations performed poorly and 
had similar identification results as the FEMU identification 

Fig. 7   FEMU calibration results between levelled and unlevelled 
FEA strain for �0 , B , and n using synthetic “experimental” data set 
1. The calibration results for the unlevelled FEA strains (UL) and the 
tensor-levelled strains (TL) were inaccurate, with generally growing 
levels of error as the VSG size increased. The results for the strain-
levelled FEA strains (SL) were accurate to nearly machine precision, 
showing that the strain-levelling process results in an accurate and 
unique identification via FEMU. For a VSG size of 0.4 mm, there is 
no distinction between methods used for the blue and red markers.
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using data set 1 (no synthetic DIC images) shown in Fig. 7. 
Thus, the identification error in the unlevelled and tensor-
levelled results is attributed to the dissimilarity of the strain 
tensors and disparity in the spatial resolution between the 
FEA and synthetic “experimental” data and not the image 
errors themselves.

In contrast, the strain-levelled (SL) calibrations were all 
much more successful in acquiring the correct parameters, 
regardless of the VSG size. For the noise free images, param-
eters were calibrated with errors of 0.68% for �0 , 1.10% for 
B , and 0.76% for n for the 0.8 mm VSG. Results for all three 
levelling methods are reported in the first three columns of 

Tables S3-S6 in the supplementary information for VSG 
sizes of 0.8 mm and 4.0 mm. The error contribution from 
the image (group 2) is smaller by a factor of 10 compared to 
the error contribution from differing strain spatial resolution 
(group 1). Thus, the group 2 biases introduced by the images, 
namely image discretization errors [4, 6], pattern induced 
bias [4, 5], and subpixel interpolation bias from the bicubic 
spline interpolant [2, 5], have negligible influence on model 
calibration. This result suggests that direct-levelling, which 
bypasses the synthetic image generation and DIC analysis 
steps, can provide a more computationally-efficient route to 
addressing differing spatial resolutions compared to the full 
DIC-levelling process.

We have demonstrated the importance of levelling for 
FEMU calibration and have shown that the error contribu-
tion from the images (group 2) have a smaller contribution 
in the bias compared to the mismatch in filtering (group 1). 
Further, we showed that an accurate set of material model 
parameters can be found despite the use of an unreasonably 
large VSG in the DIC analysis. We build on our investiga-
tion by exploring how the DIC displacement shape function 
affects the accuracy of the calibration.

FEMU using synthetic “experimental” data set 2: Effect 
of dissimilar displacement spatial resolutions

As already briefly mentioned, the spatial resolution of a 
measurement, be it displacement or strain, is dependent 
in part on the shape function used. The results in "FEMU 
using synthetic “experimental” data set 1: Effect of dis-
similar strain spatial resolutions" and "FEMU using syn-
thetic “experimental” data set 2: Effect of group 2 image 
errors" focus on the effect of strain attenuation bias. Here, 
the smaller, but still noticeable, effect of subset shape func-
tion attenuation bias is discussed.

Figure 9 shows two vertical line-cuts from the noise-free 
images of the Eyy and Exy strains using a VSG size of 0.8 mm. 
The strains shown by the red and black lines were derived 
from DIC displacements measured using either a quadratic 
or affine subset shape function, respectively. The Eyy strain 
shown in Fig. 9(a) was sampled from near the center of 
the specimen like in Figs. 4, 5, and the Exy strain shown in 
Fig. 9(b) was sampled closer to the edge of the neck where 
the shear strains are non-zero. The Exx strains were omitted 
for brevity, but all three strain components showed only a 
minor difference in the peak height caused by subset shape 
function attenuation bias from the lower order shape function.

Since there was not an obvious difference in the measured 
strain for the two subset shape functions, it is reasonable to 
expect that there would be a negligible difference in the cali-
bration results. Surprisingly, though, Fig. 10 shows that the 
resulting calibration using the affine shape function (black 
markers) performs unfavorably compared to the quadratic 

Fig. 8   Found parameters for the FEMU calibration between the strain 
computed using the MatchID-measured deformation of the synthetic 
images and the levelled and unlevelled FEA strain. The strain-levelled 
calibrations performed well for all VSG sizes despite errors intro-
duced from the images



478	 Experimental Mechanics (2023) 63:467–484

results (red markers) when the FEA displacements were not 
subset-levelled before strains were calculated.

To correct for the minor shape function attenuation bias, 
the FEA displacements were subset-levelled following the 
method described in "Subset-levelled FEA displacements". 
Then, the strains were calculated as described in "Strain- 
levelled FEA strains". Thus, the FEA data were both subset-
levelled (SSL) and strain-levelled. These results are repre-
sented by the black markers in Fig. 10 and show a marked 
decrease in errors from 1.29% to 0.64% for �0 , 1.76% to 0.87% 
for B , and 2.21% to 0.49% for n in the noise-free images.

These results confirm that the strain attenuation from the 
relatively large VSG length scale is the dominating factor 
in the spatial resolution disparity. However, the effect of 
subset shape function attenuation is a second order effect 
that may add some error to calibration results, especially 
if an affine subset shape function is used. We showed that 
this error can be corrected by subset-levelling the FEA 

displacements before calculation of the strain tensor. Per-
forming this subset-levelling yielded results similar to those 
when using a higher order shape function e.g. quadratic. 
The more complicated subset-levelling comes with addi-
tional computational cost, increasing the average solve time 
from approximately 16 min to around 23 min for a calibra-
tion with around 6–7 FEMU iterations. It is our opinion 
that this is only a modest increase in computation time, and 
thus we recommend this procedure to obtain more accurate 
identification results.

Fig. 10   Identified parameters for the FEMU calibration using strain 
levelling (SL) and a quadratic shape function (red markers), an aff-
ine shape function (black markers) and an affine shape function with 
subset levelling performed on the FEA displacement before the strain 
levelling (black markers). MatchID was the DIC software used here 
to measure the displacements used to compute the strain

Fig. 9   Vertical line-cuts of the E
yy

 and E
xy

 strain using a VSG size 
of 0.8  mm and either a quadratic or affine subset shape function in 
MatchID. Peak heights are nearly identical for both shape functions, 
indicating negligible subset shape function attenuation bias
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FEMU using synthetic “experimental” data set 2: Effect 
of image interpolant quality and image noise

In "FEMU using synthetic “experimental” data set 2: Effect 
of dissimilar displacement spatial resolutions", the DIC 
images were processed in MatchID, as VIC2D is limited 
to the lower order affine shape function. However, as we 
showed in Fig. 10, by subset-levelling, lower order shape 
functions can be used in the DIC analysis to obtain FEMU 
identification results commensurate with the use of higher 
order shape functions in DIC. Therefore, we now perform 
FEMU using VIC2D along with its higher order 8-tap inter-
polant to assess the effect of image interpolation, and later 
image noise, on the identification results.

Figure 11 first presents calibration results for the noise-free 
images (left column) with an affine shape function without sub-
set-levelling (black markers). Compared to the corresponding 
results from MatchID in Fig. 10, the errors are reduced slightly 
(see Tables S4 and S5 in the supplementary information). This 
improvement is attributed to a better image intensity interpo-
lant in VIC2D. When the FEA data is both subset-levelled 
and strain-leveled (black markers), the calibration results with 
noise-free images have high accuracy for all VSG sizes, with an 
error of -0.06% for �0 , -0.29% for B , and -0.23% for n using the 
0.8 mm VSG. This level of accuracy is the result of a smooth 
noise-free DIC pattern in conjunction with a high-order inter-
polant. Therefore, this level of accuracy might not be achieved 
in a real experiment. However, we use these small errors to 
serve as a basis on which we discuss the error solely due to 
image noise, and its relation in magnitude to group 1 errors.

The calibration results using the noisy images are shown 
in the right column of Fig. 11, again for FEA data that was 
either only strain-levelled (black markers) or subset and strain-
levelled (black markers). For the subset- and strain-levelled 
data, the final parameters were calibrated with errors around 
1% for all parameters and VSG sizes (see Table S5 in the sup-
plementary information). By visually comparing the FEMU 
results from the noise free images to those of the noisy images, 
it can be concluded that the bias due to undermatched subset 
(and by extension, strain) shape functions is more of a detri-
ment to accuracy than image noise.

In summary, FEMU identifications using strain-levelled 
(and subset- and strain-levelled for lower order DIC shape 
functions) FEA data performed well with parameter errors 
around 1% or less for both the noise free and noisy images.

FEMU using synthetic “experimental” data set 2: Effect 
of step size

The importance of DIC step size for model calibration using 
full-field data has recently been recognized [1], where previ-
ous works optimized both specimen geometry and DIC set-
tings in either a two-step [42] or one-step [43] process and 

found that a step size of 1 pixel was superior. Here, the effect 
of step size on material model parameter identification using 
noisy images was briefly investigated by reducing it from 
the 7 pixels used previously to 2 pixels. Figure 12 shows the 
calibration results from VIC2D with an affine subset shape 
function, where the FEA data was subset and strain-levelled. 
The 7-pixel step size results are repeated from Fig. 11 (black 
markers), with the 2-pixel results (red □ markers) overlaid. 
The identified parameters had essentially the same accuracy, 
despite the approximately 10X increase of points used in the 
strain calculation for each VSG size with the 2-pixel step 
size. Thus, for this exemplar test, the step size did not have 
a noticeable impact on the model calibration.

Identification Error Due to Incorrect FE Model to DIC 
Registration

In the previous sections, the location of the DIC points was 
known exactly in relation to the FE model. However, in an 
experiment, coordinate alignment may be non-trivial due to 
factors such as limited spatial resolution, specimen manufac-
turing errors [15], precise marking of fiducials on the speci-
men and identification of fiducials in the DIC images, lens 
distortion, or the lack of software to perform this alignment. 
Misalignment from the FE model to the DIC grid could be 
the dominant error in the strain comparison between the 
experimental and FEA data, as the authors in [15] noted 
for FE model validation. However, the relation between the 
magnitude of misalignment to error in the identification is 
less clear. While the alignment problem could be reduced by 
building the FE model using topology measurements gath-
ered through stereo-DIC or industry standard quality-control 
tools such as a coordinate-measuring machine (CMM), this 
step adds additional complexity to the simulation workflow 
and is not typically done. For example, DIC can only capture 
a single side of the geometry without data stitching, and a 
CMM can only capture points in contact with the probe mak-
ing accurate shape measurement timely [44].

Here we intentionally induced a misalignment by rigidly 
shifting the FE grid with respect to the DIC in 1-pixel incre-
ments in the vertical (Y), diagonal (45 degrees), or horizon-
tal (X) direction. The calibration was then repeated using the 
noise-free images of the synthetic DIC data set 2, with an 
affine shape function in VIC2D, a step size of 7 pixels, and 
subset and strain-levelled FEA data. The registration error 
created a bias in the calibration results that was consistent 
for all VSG sizes, so we report here only the results for the 
0.8 mm VSG.

Figure 13 presents the calibration results as a function 
of the magnitude of misalignment. Additionally, the results 
for the corresponding perfectly aligned case (Fig. 11, black 
markers, VSG size of 0.8 mm) are displayed for compari-
son at the zero position on the “Alignment Error” axis. For 
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all misalignment directions, the identified parameter value 
diverged from the aligned value as a function of the magni-
tude of misalignment. The effect of misalignment was most 
pronounced for the hardening exponent, n , followed by the 
yield stress, �0 and hardening rate, B . Due to the loading, 
most of the strain gradients occur along the Y-direction, 
resulting in more error due to vertical misalignment than 
horizontal or diagonal misalignment.

For a small amount of misalignment that would be com-
mensurate with a real experiment, e.g. 3–4 pixels, the dif-
ference between the identified parameter values with and 
without misalignment is less than 1% for all parameters and 
directions of misalignment. Therefore, the error due to mis-
alignment (see Table S7 in the supplementary information) 
is smaller than that caused by the filtering of an affine subset 

Fig. 11   Identified parameters for the FEMU calibration using strain levelling (SL) and an affine shape function for the displacement measured 
in VIC2D. The calibration results are shown above (black markers) for both the noise free images and noisy image data sets. The calibration was 
repeated, this time with subset levelling of the FEA displacement before the strain levelling (black markers). The results show that the error due 
to noise and intensity interpolation and noise is small compared to the bias due to the undermatching of the affine shape function to the underly-
ing displacement
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shape function and much larger than that caused by the fil-
tering of the VSG (see Table S3).

Conclusions

As material models become more complex, full-field data 
from heterogeneous specimens can provide rich informa-
tion for model calibration. However, the adoption of full-
field deformation measurements such as from DIC into 
inverse parameter calibration processes such as FEMU 
may introduce problems of data (in)compatibility that can 
corrupt identification.

To address this problem, we propose to “level” the FEA 
data so that it has the same filtering and spatial resolution 
as the experimental DIC data, before the FEMU cost func-
tion is computed. Complete DIC-levelling involves gener-
ating synthetic DIC images based on the FEA and process-
ing them in the DIC software using the same user-defined 
settings (e.g. VSG size) as the experimental images. We 
investigated direct-levelling as a computationally more 
efficient method to bypass the image generation and corre-
lation steps. We evaluated three degrees of direct-levelling 
that successively account for more of the group 1 errors: 
1) tensor-levelling, where FEA strains are computed using 
the same tensor as experimental DIC strains, but may still 

Fig. 12   Identified parameters for the FEMU calibration using subset 
and strain-levelling with either a step size of 7 pixels (black mark-
ers) or 2 pixels (red □ markers) in VIC2D. The use of smoother DIC-
measured strains through decreasing the step size to 2 pixels resulted 
in negligible change in the identification results

Fig. 13   Identified parameters as a function of FE model-to-DIC 
misalignment using subset and strain-levelled FE strain and VIC2D 
measured strains with an affine shape function and a step size of 7 
pixels. The Y-direction misalignment results in larger errors since 
most of the strain gradients are oriented along the vertical axis
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have a smaller length scale; 2) strain-levelling, where 
FEA strains are computed using the same VSG size as the 
experimental DIC strains, but using the unfiltered FEA 
displacements; and 3) subset and strain-levelling, where 
FEA displacements are first filtered with the DIC subset 
shape function, and then strains are computed with the 
same VSG size.

To demonstrate the necessity and efficacy of direct- 
levelling, we generated a ground-truth FEA with an elasto-
plastic material model based on 304L stainless steel. Then, 
we created two sets of synthetic “experimental” DIC data 
based on the FEA: the first set used strains computed directly 
from the FEA nodal displacements, which accounted for 
group 1 spatial resolution and filtering errors, and the second 
set used synthetic DIC images, which additionally included 
group 2 image errors. Using these synthetic “experimental” 
data sets (with a known ground-truth reference solution), 
we showed that levelling of the finite element model results, 
so the FEA and DIC data both have the same filtering and 
spatial resolution, is necessary for an accurate calibration via 
FEMU. Key findings are that:

–	 Unlevelled FEA strain data (i.e. logarithmic strains 
output directly from ABAQUS with the FE mesh ele-
ment size governing the spatial resolution) caused large 
errors of up to 10% for reasonable VSG sizes in the 
FEMU parameter identification process.

–	 Tensor-levelling the FEA strains (i.e. computing 
Green–Lagrange strain from the FEA displacements 
to match the tensor of the “experimental” DIC strains) 
reduced the error somewhat, but still resulted in param-
eter errors up to 3%.

–	 Strain-levelling the FEA data (i.e. using the same 
VSG size as the “experimental” DIC strains) resulted 
in zero error (to machine precision) for all VSG sizes 
when using the first set of synthetic “experimental” 
data. Critically, the parameter results did not depend 
on user-defined DIC settings and did not require con-
verged experimental strain measurements.

–	 For noise-free images, image-induced errors (e.g. pattern-
induced bias, intensity discretization, and subpixel inter-
polation bias) in the DIC results were negligible in the 
calibration process, resulting in identification errors less 
than 1% on average–well below the biases from subset 
shape function and strain attenuation bias.

–	 Errors due to image noise were also small, approxi-
mately 1–3% error for the smallest VSG size and best 
direct-levelling settings.

–	 Identification errors using an affine subset shape func-
tion were around 1 percentage point higher than the 
identification results using a quadratic subset shape 
function. However, subset-levelling with affine shape 

functions addressed this issue and gave results com-
mensurate with quadratic shape functions.

–	 The 8-tap image intensity interpolant performed better 
than the bicubic spline interpolant, reducing parameter 
errors from approximately 3% to 1% for noisy images.

–	 Parameter errors were insensitive to step size, with both 
7 pixels and 2 pixels producing equivalent results.

–	 Small amounts of misalignment between the FE model 
and the DIC grid (4 pixels) did not significantly affect 
parameter results, while larger amounts (10 pixels) 
increased parameter error by up to 4 percentage points.

The above conclusions are specific to the case study 
used here (i.e., specimen geometry, FE mesh size, and DIC 
hardware and software settings) and are not necessarily 
generalizable to all experimental setups. However, when 
measuring deformation using DIC, it is difficult to know 
when the strain is sufficiently resolved, particularly when 
deformation is highly localized such as in the neck region 
of a tensile bar or near strain concentrators like holes or 
notches. The power of this direct-levelling technique is that 
a converged DIC result is no longer required to obtain accu-
rate material model calibrations. Direct-levelling improves 
the accuracy of FEMU and the concepts could be applied to 
other inverse methods that utilize full-field measurements. 
Since the topic of DIC-levelling is still new, we offer a sim-
ple approach that can be applied using local DIC without 
the need for generating synthetic images, making direct-
levelling easier and more efficient to incorporate into the 
FEMU workflow.
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