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Abstract
Background Inertial microcavitation is a well-known phenomenon that generates large stresses and deformations at extremely 
high loading rates in various soft materials, ranging from commercial polymer coatings to biological tissues. Recent advances 
in soft material characterization have taken advantage of inertial cavitation as a means towards a high-rate, minimally invasive 
soft material rheology approach. Yet, most of these studies rely on idealizations to infer the full deformation fields around 
the bubble based only on the experimentally measured temporal evolution of the bubble radius (akin to relying on crosshead 
strain data in a traditional materials test).
Objective Here, we develop an experimental method to quantitatively measure full-field deformation and associated strains 
due to laser-induced inertial cavitation (LIC) in gelatin hydrogels, where the surrounding material is subjected to ultra-high 
strain rates ( 103 ∼ 106 s −1).
Methods Our method combines two broad experimental techniques: the embedded speckle plane patterning (ESP) method 
and spatiotemporally adaptive quadtree mesh digital image correlation (STAQ-DIC).
Results We illustrate the powerful capability of our approach by testing three concentrations of gelatin hydrogels 6%, 10%, 
and 14% as benchmark cases and quantitatively capture their kinematics during LIC.
Conclusions These full-field, quantitative investigations are of significant interest in many cavitation-related applications 
including high strain-rate material characterization, guided advanced laser & ultrasound therapies, tissue engineering, and 
advanced manufacturing.

Keywords Digital image correlation (DIC) · Cavitation · Viscoelastic material behavior · High strain rate · Large 
deformations

Introduction

The powerful nature of cavitation has long been appreciated. 
Cavitation-erosion is a well-known, destructive phenome-
non often associated with significant damage to ship-based 
propellers, pumps, and impellers [1–3]. Biology displays 

an equally diverse array of cavitation phenomena, from the 
prey-stunning capability of the mantis shrimp [4, 5] to cavi-
tation injuries in soft tissues like the liver, kidney, or brain 
[6, 7]. The rapid expansion and collapse of inertial cavita-
tion bubbles can generate stresses in the surrounding mate-
rial on the order of GPa with internal bubble pressures and 
temperatures upon collapse rivaling our sun. For soft mat-
ter systems, in particular, understanding the large, high-rate 
deformation response of the surrounding material during 
cavitation has become paramount in limiting the collateral 
damage associated with cavitation-based medical proce-
dures, such as histotripsy [8, 9] and laser-based eye surgeries 
[10]. Moreover, recent experimental and theoretical investi-
gations have shown that significant, strain-amplifying insta-
bility patterns can arise during cavitation depending on the 
particular boundary and loading conditions [11–13]. Strain 
amplification due to these instabilities has the potential to 
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be even more detrimental to the surrounding material than 
the deformation fields arising around spherical bubbles. In 
fact, our recent work has shown that classical rugae instabili-
ties [14, 15], long studied only under quasi-static compres-
sive loading, could also exist under a state of tension when 
large-scale inertial forces are present [16]. Taken together, 
these recent discoveries motivate the need for an experimen-
tal capability to resolve the existence, spatial variance, and 
evolution of heterogeneous deformation signatures in the 
surrounding material during inertial cavitation.

Previous experimental methods focused on providing 
such full-field information have included background-
oriented Schlieren [17–20], interferometry [21, 22], par-
ticle tracking (PT) [23, 24], and particle image velocime-
try (PIV) [25–29] methods. While these techniques have 
provided some information about the deformation fields 
near a cavitating bubble, they have primarily focused on 
investigations in liquids and have largely remained qualita-
tive or approximate with generally low spatial information 
due to several technical challenges. A particular experi-
mental challenge is the non-uniform temporal evolution of 
an inertially cavitating bubble, featuring intervals of both 
extremely short (e.g., near the collapse point) and long (e.g., 
during peak expansion) time windows requiring fast cam-
era frame rates over a long collection window, which is 
challenging to accomplish with most commercially avail-
able camera systems. Measurement difficulties are further 
exacerbated by the large deformations experienced during 
cavitation in soft solids, i.e., the maximum circumferential 
stretch ratio, or the maximum radius ratio, can reach as 
large as 10 [29, 30]. Furthermore, as the cavitation problem 
in itself is extremely sensitive to any perturbations in its 
surroundings, such as changes in impedance due to a free 
surface [31–33] or solid boundaries [34, 35], traditional 
surface-based DIC or PIV techniques cannot be directly 
applied. Similarly, due to the fast frame rate requirements 
and the often small (sub-millimeter) bubble size, volumet-
ric DVC and PIV techniques cannot provide a high enough 
spatial signal to offer a complete volumetric reconstruction 
of the surrounding deformation fields [36, 37].

To address some of these challenges, we introduce a new 
experimental framework to measure the finite deformation 
fields near inertial microcavitation bubbles inside a gelatin 
viscoelastic hydrogel. Our method combines and further 
improves recent advances in adaptive digital image correla-
tion and subsurface speckling methods, namely the Spati-
oTemporally Adaptive Quadtree mesh Digital Image Correla-
tion (STAQ-DIC) method [38] and the subsurface Embedded 
Speckle Plane (ESP) patterning method. The advantage of 
the recently developed STAQ-DIC method is that it allows 
for the measurement of displacement fields close to bound-
aries of arbitrary and complex geometries with little user 
input [38]. Thus, this technique is well-suited for resolving 

large, evolving deformations near oscillating cavitation bub-
bles without excessive interface smearing (or intrinsic DIC 
low pass filtering) [39–41]. Leveraging the recently devel-
oped ESP patterning method, we provide a straightforward 
method to selectively pattern at user-specified heights deep 
within the bulk of a water-based hydrogel specimen [42, 
43]. Finally, by combining both of these techniques with our 
previously established laser-induced cavitation (LIC) sys-
tem [13, 23, 30], we present the first high-resolution, full-
field, high-strain-rate, and large-deformation measurements 
of highly compliant viscoelastic hydrogel materials during 
laser-induced inertial microcavitation. As an application of 
the new experimental method, we examine a key kinematic 
assumption of Inertial Microcavitation Rheometry (IMR) 
[13, 23, 30]. IMR is a cavitation-based characterization tech-
nique for measuring the viscoelastic mechanical properties 
of soft materials at high strain rates. Modeling cavitation in 
soft materials relies on several idealizations to infer the full 
deformation fields in the material surrounding the bubble 
from the experimentally measured temporal evolution of the 
bubble radius. One such assumption in the IMR theoreti-
cal modeling framework is that after an LIC event, residual 
deformation is negligible, and hence that the material sur-
rounding the equilibrium bubble may be idealized as stress-
free [30]. Using our new method, we experimentally measure 
the residual deformation after an LIC event and verify that 
the residual strain in the surrounding material is minimal in 
the equilibrium state.

The remainder of this paper is organized as follows. In 
“Experimental Setup”, we describe the ESP DIC pattern-
ing method used to create gelatin hydrogels with embed-
ded speckle planes, our LIC experiments on gelatin, and 
the subsequent STAQ-DIC post-processing of deformation 
fields induced during LIC events. In “Results”, we present 
experimentally measured bubble dynamics and deformation 
fields in the surrounding material along with the predictions 
of a theoretical framework based on the idealizations of 
spherical symmetry and incompressibility. In “Discussion”, 
we comment on our improved ESP method, experimentally 
verify the aforementioned key assumption in IMR regarding 
the equilibrium state, and discuss potential error sources. 
Finally, we close this paper with some concluding remarks 
and future directions in “Conclusion and Future Directions”.

Experimental Setup

Creation of Gelatin Hydrogels with Embedded 
Speckle Planes

Multiple concentrations of gelatin hydrogels were pro-
duced using porcine gelatin 300-g bloom (Sigma-Aldrich 
G1890) mixed with Milli-Q deionized (DI) water. Mass 

64 Experimental Mechanics (2023) 63:63–78



1 3

concentrations of 6, 10, and 14 percent were heated above 
60 ◦ C and stirred continuously until all gelatin was dis-
solved. The gelatin was then pipetted into the bottom of a 
14 mm glass-bottom dish (VWR 10810-054) and covered 
with a polyethylene terephthalate (PET) plastic film to cre-
ate a horizontal flat surface (Fig. 1(a)). The sample was then 
placed into an ice bath for 1 hour to allow complete gela-
tion. The PET film was then removed by peeling one end 
towards the other using the largest possible peeling angle 
(Fig. 1(b)). Following the successful removal of the film, a 
speckle pattern was applied to the surface. Here, we quickly 
sprayed 20 ∼ 30 µm sized inkjet toner particles onto the 
surface using a high-pressure air stream being careful not to 
let the gel surface dehydrate. Immediately after the surface 
was speckled, gelatin heated to a few degrees above its melt-
ing temperature1 was added to the sample and allowed to 
cover the surface (Fig. 1(c)). The exact temperature needed 
depends on the gelatin type and processing conditions, but 
for the samples used here, a temperature of approximately 
34 ◦ C was used. After approximately 10 seconds, the sample 
was then placed in an ice bath to halt further melting of the 
interface. The intent of this procedure is to melt the gelatin 
at the speckle interface just enough to create a continuous 
gel but not enough to cause the speckles to sink or mix. The  
specific temperature and time needed to fuse the sample 
together is dependent on many factors and must be deter-
mined empirically. After gelation, the sample was placed 
into a high humidity oven set to just below the melting tem-
perature of the gelatin and allowed to fuse for an additional 
hour (Fig. 1(d)). Finally, the sample was allowed to hydrate 
in Milli-Q DI water for two days at 4 ◦ C (Fig. 1(e)). Before 
testing, one specimen from each batch was cut perpendicular 
to the plane, and the gel was pulled away from the speckle 
plane until failure. A weak interface exists if there is layer 

separation or if the material fails along the speckle plane. 
In such a case, the other test samples should be placed into 
the high humidity oven at a slightly higher temperature. We 
repeated these testing and heating steps until a test sample 
confirmed that the layers were fused.

Quasistatic Shear Moduli Measurements of Gelatin

The quasi-static, ground-state shear modulus of each con-
centration of gelatin gel was determined using an ARES-G2 
rheometer with a 25 mm stainless steel smooth plate force 
transducer (TA Instruments, DE). First, a strain sweep rang-
ing from 0.01% to 1% strain at a frequency of 2 � rad/s was 
used to determine the linear regime for each of the three gel 
concentrations. Then, a strain amplitude of 0.5%, which was 
well within the linear regime of all three gel concentrations, 
was used in the frequency sweep experiments. The gels were 
tested at 0.5% strain with a frequency f ranging from 0.01 Hz 
to 10 Hz. This frequency sweep procedure was iterated four 
times to ensure repeatable data was achieved and to avoid 
any Mullins-type effect. The ground-state shear moduli G

∞
 

are estimated by extrapolating the measured shear modu-
lus when the frequency f → 0 , which are 0.74 ± 0.02 kPa, 
3.08 ± 0.01 kPa, and 6.71 ± 0.03 kPa for 6%, 10%, and 14% 
concentration gelatin hydrogels, respectively.

Laser‑induced Inertial Microcavitation (LIC)

The laser-induced inertial microcavitation platform employed 
in this work has been described in detail in our previous 
works [13, 23, 30]. Briefly, a single inertial cavitation event 
was generated within the speckle plane of each sample 
through spatially-focused deposition of laser energy within 
the focal plane of the 3D gelatin gels. A tunable (1-25 mJ) 
Q-switched Nd:YAG Minilite II laser (Continuum, Milpitas, 
CA) with a pulse width of ∼ 4 ns was frequency-doubled to 
532 nm, expanded, and steered into the rear aperture of a 
Nikon Plan Fluor 20×/0.5 NA imaging objective through the 
backport of a Nikon Ti2-E microscope (Nikon Instruments, 
Long Island, NY). The expansion, collapse, and subsequent 

Fig. 1  A graphical overview of the fabrication method for embedding a speckle plane within a gelatin hydrogel. (a) Molten gelatin is pipetted into a 
glass-bottom dish covered by a thin PET membrane. (b) After the gel has set, the thin PET film is removed, revealing a flat surface. (c) A speckle pat-
tern is added to the surface and then covered with molten gelatin heated slightly above its melting temperature. (d) After the gel has been set, the entire 
sample is heated to the gel transition temperature and allowed to fuse. (e) The sample is placed within a cold water bath to hydrate to equilibrium

1 The melting temperature of gelatin has been found to vary depend-
ing on its type, concentration, pH, and bloom strength. The melting 
point of most common gelatin hydrogels is in the range of 20 ∼ 35 ◦ C 
[44].
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rebounds of each cavitation event were recorded at 2 million 
frames per second using a Shimadzu HPV-X2 high-speed 
camera (Shimadzu Corporation, Kyoto, Japan). Pulsed illu-
mination of each frame was achieved through a coupled 
SILUX640 laser illumination system with a pulse duration 
of 20 ns (Shimadzu Corporation, Kyoto, Japan) mounted to 
the collimator of the microscope and triggered by the HPV-
X2 ultra-high-speed camera.

Camera Calibration of the Speckle Plane

The optical system needed to guide a laser to an objec-
tive lens while simultaneously imaging a 2D speckle plane 
embedded in a gel perpendicular to the imaging axis requires 
careful calibration for maintaining collinearity. However, the 
use of a calibrated inverted microscope simplifies this task 
greatly since optical plane flatness, and aligned positioning 
of the object plane are built-in features of commercially avail-
able microscope systems. The slope of the 2D speckle plane 
can be adjusted to be made perpendicular to the optical axis 
using the leveling screws on the microscope’s mounting plate. 

Furthermore, great care is taken in the microscope’s optical 
system to ensure that the warping of the image is minimized. 
However, since the high-speed camera system used in these 
experiments is not typically used with these microscope sys-
tems, the use of a calibration grid to measure image distortion 
and pixel to real-world unit conversion is recommended. In our 
experiments, one pixel corresponds to 1.6 µm in the labora-
tory frame.

Digital Image Correlation Post‑processing

By comparing the image frames during cavitation with the 
reference frame (e.g., Fig. 2(c:ii-iv) compared to Fig. 2(b:i)) 
and applying our recently developed SpatioTemporally 
Adaptive Quadtree mesh Digital Image Correlation (STAQ-
DIC) image tracking algorithm [38], we successfully recon-
struct the history of full-field material deformations within 
a planar slice during each LIC event. In STAQ-DIC, we 
employ an incremental tracking mode where every two 
consecutive frames are compared to each other to obtain an 
incremental displacement field. In order to more accurately 

Fig. 2  Digital image cor-
relation post-processing for 
laser-induced inertial cavita-
tion in gelatin hydrogels. (a) 
A representative measured 
laser-induced inertial cavitation 
bubble radius versus time curve 
in a 10% gelatin hydrogel. (b) 
The reference virgin material 
and DIC mesh are shown in a 
split view bisecting the bubble 
nucleation site. (c) Insets (ii-iv): 
deformed raw images split with 
generated adaptive quadtree 
meshes at time points 14.0, 
26.0, and 125.0 µs, respec-
tively. (d) Examples of binary 
masks at 14.0, 26.0, and 125.0 
µs corresponding to the data 
are shown in insets (ii-iv). (e–h) 
Measured incremental and 
cumulative radial displacements 
( u

r
 ) at 14.0 µs and 26.0 µs
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resolve the displacement and strain fields near boundaries, 
STAQ-DIC generates an adaptive quadtree mesh based on a 
binary image mask built from the actual raw image, which 
is used to adaptively refine the displacement and strain data 
near the bubble wall. In images Fig. 2(c), black circles are 
shadowgraphs of the actual laser cavitation bubbles pro-
viding a natural and clearly visible boundary between the 
bubble area and the surrounding material. From Fig. 2(c) 
and applying image processing, we generated binary mask 
files to label bubble (black color) and surrounding mate-
rial (white color) areas as shown in Fig. 2(d:ii-iv) for three 
time points: 14.0, 26.0, and 125.0 µs, respectively. These 
binary masks are further used to generate the corresponding 
quadtree meshes shown in Fig. 2(c:ii-iv) [45, 46]. All of the 
images are 400 pixels × 250 pixels in dimension. The coars-
est DIC element size (DIC window spacing) in the generated 
adaptive quadtree mesh here is 8 pixels × 8 pixels while the 
finest mesh element size is 2 pixels × 2 pixels. The displace-
ment for each nodal point in the quadtree mesh is obtained 
by tracking the local neighboring area – i.e., a square subset 
whose center point is the tracked nodal point with a subset 
size of 40 pixels × 40 pixels. If a subset crosses the bub-
ble wall, it will be automatically registered and split along 
the bubble boundary [39]. Only the partial subset for r > R , 
i.e., the part of the subset outside the bubble wall, is used 
to determine the deformation of that subset. All the tracked 
displacement components use a Cartesian coordinate sys-
tem first, which are then transformed to a polar coordinate 
system (i.e., the 2D projection of a 3D spherical coordinate 
system on the center planar slice). The incremental displace-
ment fields are tracked between every two successive frames 
(e.g., the tracked incremental radial displacements at 14.0 µs 
compared to 13.5 µs, and 26.0 µs compared to 25.5 µs are 
shown in Fig. 2(e, f)).

All the tracked incremental displacement fields are further 
interpolated at the same set of material points as in the first refer-
ence frame and are then added together to obtain the cumulative 
displacement fields. The resulting cumulative displacements rep-
resent the net displacement fields between each of the deformed 
images during cavitation (e.g., Fig. 2(c:ii-iv)) and the beginning 
image frame before cavitation (e.g., Fig. 2(b)). For example, the 
cumulative radial displacement fields at 14.0 µs and 26.0 µs are 
shown in Fig. 2(g, h). We also note that the radial displacement 
at the bubble wall is (R − Rsf) , where Rsf is the bubble’s stress-
free radius, which is very close to bubble’s equilibrium radius R0 . 
More details about the bubble’s stress-free radius and equilibrium 
radius will be discussed in “Residual Deformation Fields, Bub-
ble’s Stress-free, and Equilibrium Radii”.

Incremental mode DIC might lead to error accumulation 
when we interpolate cumulative displacement fields. Here we 
apply the thin plate interpolation scheme, and our interpolation 
starts from the last frame’s residual deformation field back-
ward to the very beginning frame. These issues are discussed 

further in “Potential Error Sources”. After obtaining the cumu-
lative displacement field, the displacement gradient at each 
nodal point is calculated by employing a local plane fitting 
method often used in DIC strain calculations [47], which can 
be used to calculate any finite strain measure. The plane fitting 
method uses neighboring data points within a user-determined 
distance. Here, we use 24 pixels or three times the coarsest ele-
ment size in our DIC post-processing. If a local user-defined 
fitting plane intersects the bubble wall, there will be no data 
points available in the bubble shadow area, and its local dis-
placement gradient is computed only using all the available 
tracked displacement results belonging to the surrounding 
material. After calculating the cumulative displacement fields, 
we further compute full-field velocity and acceleration fields 
using the central difference scheme. For each nodal point i in 
the DIC mesh, we denote its cumulative displacements at time 
points tk−1 , tk , and tk+1 as �(i)

k−1
 , �(i)

k
 , and �(i)

k+1
 , respectively. Its 

velocity, �(i) , and acceleration, �(i) , at time tk are

where Δt is the temporal interval in the high-speed cam-
era recorded image sequence and equals 0.5 µs in our LIC 
experiments. All DIC results are summarized in “Results”.

Results

By combining and improving two recently developed exper-
imental techniques, namely, the Embedded Speckle Plane 
(ESP) patterning method [43], and the SpatioTemporally 
Adaptive Quadtree mesh Digital Image Correlation (STAQ-
DIC) [38] method, we measure the full-field kinematic 
deformations of laser-induced inertial cavitation in highly 
compliant gelatin hydrogels at ultra-high strain rates on the 
order of 103 ∼ 106 s −12.

Recorded Laser‑induced Cavitation Bubble 
Dynamics

Examples of typical reference and deformed speckle pattern 
images obtained using the ESP patterning method are shown 
in Fig. 2(b, c), along with their accompanying binarized 

(1)
�
(i)
(tk) =

�
(i)

k+1
− �

(i)

k−1

2Δt
,

�
(i)
(tk) =

�
(i)

k+1
− �

(i)

k−1

2Δt
,

2 The maximum hoop stretches for 6% ∼ 14% gelatin hydrogels are 
between 2.40 and 3.65, which are smaller than previous studies for 
LIC in polyacrylamide [23, 30] or agarose [13] hydrogels. The strain-
rates reported here are estimated numerically following the theoreti-
cal framework in Estrada et al. [30] and Yang, et al. [23] to match our 
LIC experimental observations.
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image masks in Fig. 2(d) used to generate the adaptive 
quadtree meshes. At each time step, the bubble radius 
was determined using Taubin’s method [48]. The experi-
mental measurement of the bubble radius versus time was 
repeated 3–5 times for each of the three different concentra-
tions of gelatin hydrogel, and the results are summarized in 
Fig. 3(a–c). For each radius vs time curve, we have shifted 
the time axis to begin at the moment the cavitation bubble 
radius reaches Rmax to allow for a visibly simpler compari-
son between multiple cavitation experiments. The maximum 
cavitation bubble radii (Rmax) for 6%, 10%, and 14% gelatin 
hydrogels are 184.0 ± 18.2 µm, 175.9 ± 21.1 µm, and 171.0 
± 28.2 µm, and their equilibrium radii (R0) are 52.6 ± 1.3 
µm, 48.9 ± 0.7 µm, and 77.1 ± 1.3 µm, respectively. The 
hoop stretch ratio at the bubble wall ( � ∶= R∕R0 ) versus nor-
malized time ( t∗ ∶= tUc∕Rmax , where Uc =

√
p
∞
∕� is a char-

acteristic velocity, p
∞
= 101.3 kPa is the far-field pressure, 

and � = 1.016, 1.027, 1.038 g/cm3 is the mass density of 6%, 
10%, and 14% gelatin hydrogels, respectively [49]) curves 
are summarized in Fig. 3(d–f). The maximum hoop stretches 
for 6%, 10%, and 14% gelatin hydrogels are 3.29 ± 0.36, 
2.99 ± 0.36, and 2.60 ± 0.19, respectively. Alternatively, 
the bubble radius can also be normalized by the maximum 
bubble radius Rmax , and R∗ ( R∗

∶= R∕Rmax ) vs. t∗ curves for 
each gelatin hydrogel are shown in Fig. 3(g–i). Interestingly, 
we find that all the data points for each hydrogel concentra-
tion nearly collapse onto a normalized master curve during 
the first and second expansion and collapse events, a finding 
that is consistent with our previous work [13, 30].

DIC Results: Displacement and Strain Fields

Using the DIC post-processing routine as described in 
“Digital Image Correlation Post-processing”, we obtain 
displacement fields for all 250 frames of the LIC event.3 All 
events were recorded with a camera frame rate of two mil-
lion frames per second. Because our LIC events are almost 
spherically symmetric, DIC-tracked 2D-projected deforma-
tion fields on the r-� plane where � = �∕2 (cf., Fig. 12) are 
independent of the polar coordinate � . We extract a 10-pixel-
wide vertical slice of each frame’s full-field results (i.e., 
� ∼ −�/2) and concatenate them together to create kymo-
graphs to visualize the spatiotemporal evolution of the 
kinematic fields for each gelatin concentration due to the 
laser-induced cavitation event as shown in Fig. 4. Results 
for 6%, 10%, and 14% gelatin hydrogels are summarized in 
Fig. 4(a), (b), and (c) columns, respectively. The evolution 
of the radial displacement ur , radial velocity vr , radial accel-
eration ar , radial logarithmic strain Err , and circumferential 
logarithmic strain E�� fields for similarly sized bubbles are 
shown in Fig. 4 rows (i-v). The circumferential displacement 
component, u� , and logarithmic shear strain component, Er� , 
are summarized in Appendix 2, Fig. 13, where u𝜃 < 5 µm 
and Er𝜃 < 0.05 . These values are relatively small compared 
to the corresponding quantities in Fig. 4, where ur is up to 

Fig. 3  Results for the measured 
cavitation bubbles in 6%, 10%, 
and 14% gelatin hydrogels. 
(a–c) experimentally measured 
bubble radii vs. time curves 
for various gelatin concentra-
tions, (d–f) the corresponding 
circumferential stretch ratio 
( � ∶= R∕R0 ) vs. normalized 
time ( t∗ ∶= tU

c
∕Rmax ) curves, 

and (g–i) normalized bubble 
radius ( R∗

∶= R∕Rmax ) vs. 
normalized time ( t∗ ) curves. 
Each gelatin concentration was 
measured three to five times to 
obtain statistical information. 
The time axis is shifted such 
that t = 0 occurs at R = Rmax 
so the collapse times can be 
compared
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3 For each cavitation event, there were 5 ∼ 6 frames taken by the 
camera before the laser pulse, which are discarded in the DIC post-
processing routine.
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60 µm and |Err| and E�� are up to 0.50 and 0.30, respec-
tively. Based on these observations, we can claim that our 
LIC events are almost spherically symmetric.

One point to note is that the visualized kymographs are 
created directly from DIC post-processing results without 
additional smoothing or averaging operations. Inspired by 
these kymographs and the experimental justification of 
spherical symmetry in LIC events, in “Circumferentially 
Averaged Fields”, we circumferentially average the full-
field deformation results to examine the radial dependence 
of each of the tracked kinematic quantities.

Circumferentially Averaged Fields

To further examine the spatial dependence of each of the 
DIC-derived kinematic quantities, we circumferentially aver-
age each quantity noting that the full-field data in Fig. 4 is 
nearly spherically symmetric. Figure 5 and 6 show the exper-
imentally measured data (colored dots) and the theoretically 
calculated fields, assuming spherical symmetry and incom-
pressibility, (solid curves) plotted against the radial coordi-
nate normalized by the maximum bubble radius Rmax . Details 
of the theoretical calculations are summarized in Appendix 1. 
Results for the radial displacement ur , radial logarithmic 
strain Err , and circumferential logarithmic strain E�� fields 
for 10% gelatin LIC experiments are summarized in columns 
(ii-iv), respectively. Figure 5(a–c) show fields correspond-
ing to the bubble’s first expansion, first collapse, and second 
expansion regimes; while Fig. 6(a) and (b) show fields corre-
sponding to the first five peaks and collapses. Each subfigure 

contains results from five representative frames, and the cor-
responding frame time point for each curve is shown as a 
circular marker using the same color on the bubble radius vs. 
time plot in column (i) along the same row.

From Figs. 5 and 6, we further fit the circumferentially aver-
aged experimental measurements using piecewise spline func-
tions and compute differences between experimental results 
and their theoretical counterparts, which are plotted in Fig. 7. 
In general, our experimental measurements agree well with 
theoretical predictions when r > 2Rmax , and the overall maxi-
mum displacement and strain differences are smaller than 10 
µm and 10%, respectively.

Discussion

Comments on Gelatin Preparation with Embedded 
Speckle Planes

Previous methods of embedding a speckle plane into a 
gel used a volumetric 3D printing method that utilizes a 
granular material as a continuously deformable scaffold 
[42, 43]. Our improved approach simplifies this process 
by utilizing the thermal reversibility of gelatin to embed 
a speckle pattern. This new process does not require spe-
cialized equipment or knowledge; however, it can only be 
used with thermally reversible gels. The use of crosslink-
ing agents such as glutaraldehyde can be used to create 
a chemically crosslinked gelatin if desired. However, we 
find that gelatin crosslinked by glutaraldehyde will cause 

Fig. 4  Kymographs of kinematic fields in three concentrations, (a) 6%, (b) 10%, and (c) 14%, of gelatin due to a single laser-induced cavitation 
bubble. The kymographs are created by taking a 10-pixel-wide vertical slice of the full-field data symmetric about the center of the cavitation 
bubble for each frame over 250 frames at a camera frame rate of 2 million frames/sec. The resulting (i) radial displacement u

r
 , (ii) radial velocity 

v
r
 , (iii) radial acceleration a

r
 , (iv) radial logarithmic strain E

rr
 , and (v) circumferential logarithmic strain E�� fields are plotted against time for 

all three gelatin concentrations. In all of these kymographs, the cavitation bubble is shown as the black and grey region at the top of each series
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brittle fracture of the gel during cavitation and result in 
non-spherical deformations.

Experimental Findings vs. Theoretical Predictions

DIC methods can be considered low-pass spatial filters that 
average the deformation fields over the size of a given DIC 
subset (40 pixels × 40 pixels or 64 µm × 64 µm in this study). 
Although STAQ-DIC can measure displacements very close 
to complex boundaries, this low pass filtering inherent to 
DIC will still underestimate the true magnitudes of the dis-
placement and strain fields in the near-field of the bubble 
wall since deformations change rapidly in this region. When 
compared to the theoretical predictions we find a difference 
of up to 10 µm in displacement and up to 10% strain in 
the strain measurement results (see Fig. 7). The differences 
between the experimental results and theoretical calculations 

can also come from approximation errors in the theoreti-
cal modeling. For example, we assume that the surrounding 
deformation field is ideally spherically symmetric and the 
surrounding material is incompressible. Though, from our 
measurements, these idealizations still seem to hold true 
within the aforementioned error bounds (see Appendix 2 
Fig. 13 for DIC results on the circumferential displace-
ment and shear logarithmic strain components, u� and Er� , 
respectively).

We also validated our DIC measurements using a syn-
thetic case. First, we numerically simulate the dynamics of 
laser-induced inertial cavitation following the framework 
described in Estrada et al. [30]. The simulated bubble radius 
vs. time curve is plotted in Fig. 8(a) as a black dashed line. 
All the parameters, including surrounding material prop-
erties, cavitation initial conditions, and bubble equilibrium 
states in the numerical simulation are extracted using the  

Fig. 5  (i) Bubble radius vs. time curves and kinematic fields, (ii) radial displacement u
r
 , (iii) radial logarithmic strain (E

rr
) , and (iv) circumfer-

ential logarithmic strain (E��) , are plotted against the radial distance from the center of the cavitation bubble for 10% gelatin. Experimental and 
theoretical results are plotted in columns (ii-iv) using colored dots and colored solid lines, respectively. The rows (a) first expansion, (b) first 
collapse, and (c) second expansion each contain data from five representative frames. The corresponding frame time point for each solid curve is 
shown as a circular marker using the same color on the bubble radius vs. time plot in column (i) in the same row

Fig. 6  (i) Bubble radius vs. time 
curves and kinematic fields, 
(ii) radial displacement u

r
 , (iii) 

radial logarithmic strain (E
rr
) , 

and (iv) circumferential loga-
rithmic strain (E��) , are plotted 
against the radial distance from 
the center of the cavitation bub-
ble for 10% gelatin. Results are 
organized as described in Fig. 5 
and are presented for frames 
corresponding to the first five 
peaks (row (a)) and collapses 
(row (b))
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10% gelatin data sets where the maximum bubble radius, 
Rmax , is 154.1 µm or 96.3 pixels, and the equilibrium 
radius, R0 , is 57.0 µm or 35.6 pixels. Here, we use the same 
µm to pixel ratio as in our experiments such that 1 pixel 

corresponds to 1.6 µm. The surrounding material is mod-
eled as a neo-Hookean Kelvin-Voigt material whose dynamic 
shear modulus is 46.17 kPa and viscosity is 0.088 Pa⋅ s. From 
the numerical simulation results, we interpolate a synthetic 

Fig. 7  Differences between 
the experimentally measured 
kinematic fields and their 
theoretically calculated counter-
parts. Differences for (ii) radial 
displacement u

r
 , (iii) radial 

logarithmic strain (E
rr
) , and 

(iv) circumferential logarithmic 
strain (E��) are plotted against 
the radial distance from the 
center of the cavitation bubble 
for 10% gelatin. The rows (a) 
first expansion, (b) first col-
lapse, (c) second expansion, (d) 
all peaks, and (e) all collapses 
each contain data from five 
representative frames. The 
corresponding frame time point 
for each curve is shown as a 
circular marker using the same 
color on the bubble radius vs. 
time plot in column (i) in the 
same row

26.0 μs
27.0 μs
28.0 μs
30.0 μs
34.0 μs

(a
) 1

st
 e

xp
an

si
on

(b
) 1

st
 c

ol
la

ps
e

(c
) 2

nd
 e

xp
an

si
on

(i) Bubble rad R(μm) (ii) ur error (μm) (iii) Err  error (iv) Eθθ  error

0

50

100

150

14.0 μs
19.5 μs
23.5 μs
25.0 μs
26.0 μs

3.5 μs
4.5 μs
6.0 μs
8.0 μs
14.0 μs

0

50

100

150

0 50 100
t (μs)

50

100

150

1 2
r /Rmax

3

50 100
t (μs)

50 100
t (μs)

1 2
r /Rmax

3 1 2
r /Rmax

3

1 2
r /Rmax

3 1 2
r /Rmax

3 1 2
r /Rmax

3

1 2
r /Rmax

3 1 2
r /Rmax

3 1 2
r /Rmax

3

(d
)A

ll 
pe

ak
s

(e
)A

ll 
co

lla
ps

es

0

50

100

150

0

50

100

150

10

5

0 -0.1

0

0.1
26.0 μs
43.5 μs
59.0 μs
71.5 μs
88.5 μs

14.0 μs
33.5 μs
50.0 μs
64.0 μs
79.5 μs

50 100
t (μs)

50 100
t (μs)

-0.1

0.1

0

1 2
r /Rmax

3 1 2
r /Rmax

3 1 2
r /Rmax

3

1 2
r /Rmax

3 1 2
r /Rmax

3 1 2
r /Rmax

3

10

5

0 -0.1

0

0.1

-0.1

0.1

0

10

5

0 -0.1

0

0.1

-0.1

0.1

0

10

5

0 -0.1

0

0.1

-0.1

0.1

0

10

5

0 -0.1

0

0.1

-0.1

0.1

0

Fig. 8  Validation of the DIC post-processing via a synthetic case. (a) One numerically simulated bubble dynamics R-t curve for laser-induced 
inertial cavitation in a 10% gelatin hydrogel. The radial displacement at the bubble wall is plotted as yellow circles. (b) The reference (⁎⁎) and 
the deformed (⁎) DIC images at the final equilibrium and the Rmax time points. Two DIC local subsets are zoomed-in to show the DIC speckle 
pattern. (c) The STAQ-DIC tracked displacement field (ii) is compared to the theoretical, synthetic deformation field (i) and our 10% gelatin 
experimental results (iii)
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R-t curve with a sampling frequency of 2 million data points 
per second to mimic a high-speed camera capturing images, 
as shown in Fig. 8(a) by the red crosses data points. The dis- 
placement at the bubble wall is plotted as yellow circle sym-
bols as ur(R, t) = R(t) − R0 . The deformation fields in the 
surrounding material follow (5–6), which are further used 
to deform the reference image and interpolate the deformed 
images using a bicubic interpolation scheme. Since the pixel 
grayscale value interpolation might be inaccurate near the 
edges, we crop both the reference and deformed images by 
10 pixels around all boundaries. The reference image at the 
final equilibrium and the deformed image corresponding  
to Rmax are shown in Fig. 8(b:⁎) and (b:⁎⁎), respectively.  
All the images in the time series have the same dimensions 
of 380 pixels × 230 pixels, with the bubble center located  
at pixel [190, 10]. We follow the same STAQ-DIC post- 
processing procedure as described in “Digital Image Corre-
lation Post-processing”, and the reconstructed displacement 
field (ii) is further compared to the theoretical displacement 
field (i) and our experimental measurement (iii) in Fig. 8(c). 
We find that all three displacement fields agree well with 
each other. It is not surprising that the STAQ-DIC tracked 
deformation fields underestimate the true displacements  
near the bubble wall because of its inherent low pass filter- 
ing feature. However, this underestimation only exists in a 
small area where ur > 70 µm; this border is marked using a 
white dashed curve in Fig. 8(c:i).

Residual Deformation Fields, Bubble’s Stress‑free 
and Equilibrium Radii

To experimentally investigate one of the key assumptions 
in our previously published Inertial Microcavitation Rhe-
ology (IMR) technique [13, 23, 30], namely that a stress-
free material state exists when the bubble radius reaches 
its equilibrium point, i.e., at the time when the dynamic 
cavitation oscillations have fully decayed, we measured 
the residual deformation fields using DIC by comparing 
the image frame ∼ 30 seconds after the LIC event to the 
undeformed material frame. In our LIC experiments, the 
cavitation bubbles reach an equilibrium radius, R0 , after 
several expansion-collapse cycles ( ∼ O(100)µs) followed 
by a slower diffusion process ( ∼ O(100)s) that eventually 
dissolves the final bubble. Here we focus on the residual 
deformation fields around the bubble at its equilibrium 
radius R0 after cessation of the cavitation dynamics but 
before the slow diffusion process has sufficient time to 
affect the bubble radius.

For a material holding a spherical cavity to be stress-
free when the naive or virgin state of the material did not 
possess such a cavity, the volume contained by the spheri-
cal cavity must have been consumed during the cavitation 
process. Therefore, to claim that the material surrounding 

the cavitation bubble at equilibrium is stress-free, these 
conditions must be experimentally verified. To directly 
observe the speckle displacement near the bubble wall, 
we take the absolute value of the image grayscale value 
subtraction between the virgin material and the material at 
equilibrium as shown in Fig. 9(b–d). The white speckles 
outside of the dashed red line in the breakout of Fig. 9(d) 
show that the resulting radial displacement of the speckles 
is very small (i.e ∼ 4 pixels or 6.4 µm). This result can 
be explained by considering the amount of material that 
is consumed via chemical reactions and plasma forma-
tion during the nucleation stage of the cavitation event. 
This spherical volume of material should have a radius 
equivalent to a stress-free material condition as shown 
in Fig. 9(e:ii). During the inertial dynamics phase, the 
amount of radial deformation ur in the surrounding speckle 
plane should therefore be measured from this stress-free 
radius and the measured radius of the cavitation bubble 
R(t) following (5–6). At the equilibrium radius R0 , any 
residual stress in the material will cause the cavitation 
bubble to be slightly larger than the radius of the stress-
free material condition.

For each concentration of gelatin hydrogel, we analyzed 
one representative cavitation event and plot its residual 
displacement and strain fields as shown in Fig. 10(rows 
i,ii). Since all the residual deformations appear to be 
spherically symmetric based on our measurements, we 
further average the residual radial displacement and loga-
rithmic strain fields over the circumferential (hoop) direc-
tion (see Fig. 10(rows iii,iv)). We find that there are no 
significant differences in the residual deformation fields 
between the different concentrations of our gelatin hydro-
gels. Furthermore, we fit the stress-free radius using the 
residual radial displacement and strain measurements in 
the surrounding material by solving the following optimi-
zation problems:

The best-fit residual radial displacement and strain results are  
plotted in Fig. 10(row iii) using red dashed curves and (row 
iv) using yellow dashed curves, respectively. Experimental 
results are plotted in gray circles. We also compare these 
results with two ideal limiting cases: the stress-free radius 
is equivalent to the equilibrium radius ( Rsf∕R0 = 1 ), and the 
stress-free radius is zero ( Rsf∕R0 = 0 ). We find that for all 
three different concentration gelatin hydrogels, the ratios of 

(2)
Rsf = min

R0

‖‖‖ r − (r3 − R(t)3 + R3
0
)
1∕3
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,
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3
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0
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)
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stress-free radius to equilibrium radius match experimental 
results ( Rsf∕R0 ∼ 0.8 − 0.9 ) as shown in Fig. 10(rows iii,iv). 
The maximum, final residual logarithmic strain components,  
Err , are about 5% and located adjacent to the bubble wall. 
These strain magnitudes are small compared to those 
encountered near peaks or collapses during the cavitation 
process (see Fig. 6), which supports the idealization of a 
stress-free equilibrium state invoked in IMR [30].

Potential Error Sources

Many experimental and analytical components are involved 
in the measurement of spatiotemporal deformation fields 
(e.g., Figs. 4–6). Each component contributes a potential 
source of error to our results, so we condition all our find-
ings with the following discussion. First, based on our 
two-dimensional, projection-based DIC measurements 
we observe the deformation fields to be nearly spherically 
symmetric for the given boundary and loading conditions 

in our experiments. However, in general, the generated 3D 
cavitation bubbles present out-of-plane motion that may be 
non-spherical depending on the nucleation and boundary 
conditions [16, 33, 50].

Second, DIC-induced biasing (low-pass filter) errors due 
to underresolved displacement field information near the 
bubble wall can also contribute to systematic error accu-
mulation, particularly when calculating very large strains 
near an evolving interface, i.e., the bubble wall [38, 39]. For 
these reasons, we exclude any strain values that are close to 
the bubble wall, i.e., within a distance equal to the length of 
one far-field DIC window subset, i.e., 40 pixels × 40 pixels 
or 64 µm × 64 µm.

Third, incremental mode DIC might lead to error accumu-
lation when we interpolate cumulative displacement fields. 
Here, we compare the cumulative mode DIC results (see 
Fig. 11(i)) and two different interpolation schemes (“Inc-
forward” and “Inc-backward”) which transform incremental 
DIC results into cumulative DIC results. In the “Inc-forward” 
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Fig. 9  Two images are selected from (a) the bubble R-t curve, (b) the virgin reference material, and (c) the equilibrium image and are compared 
via the absolute value of pixel subtraction. (d) The resulting image difference reveals negligible speckle displacement immediately surrounding 
the equilibrium bubble. (e) This can be explained by considering the ablation of the material caused by the plasma reaction occurring at the time 
of nucleation (i-ii). During the inertial dynamics phase (iii), all displacement of the speckle pattern u

r
 must first take the material ablation into 

account when comparing the resulting bubble radius measured in each frame R(t) as it reaches an equilibrium radius R0 (iv) which is assumed to 
exist in a stress-free condition. The fact that the image difference in (d) shows a minimal shift in the speckle position near the bubble wall adds 
evidence to the claim that the material is stress-free
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scheme (see Fig. 11(ii)), incremental DIC results are interpo-
lated from the beginning of the image sequence to the end, 
and then all the interpolated, incremental displacements 
at the same set of material points as in the first reference 
frame are added together to obtain the cumulative displace-
ment. In the “Inc-backward” scheme (see Fig. 11(iii)), we 
start from the end of the image sequence, i.e., the residual 
deformation field after LIC, and interpolate and sum back 
to the very beginning of the image sequence. All of these 
computed cumulative radial displacement ur and logarithmic 
strain Err results are further analyzed and compared. Here, 
we take an LIC event in a 14% gelatin hydrogel sample as 
a representative example, as shown in Fig. 11. We find that 
cumulative mode DIC does not accumulate any errors since 

all the subsequent frames are always compared with the first 
undeformed, reference frame. However, cumulative mode 
DIC only tracks small deformations well (see Fig. 11(i:**)), 
and it cannot solve large deformation fields near the bub-
ble wall where the hoop stretch ratio can be large during 
the bubble’s first expansion-collapse cycle (see Fig. 11(i:*)). 
The “Inc-forward” scheme tracks the first expansion-collapse 
cycle well, but accumulates large errors after the first violent 
collapse (see Fig. 11(ii:***)). The “Inc-backward” scheme 
provides the best overall results since it shows good agree-
ment with the cumulative mode DIC results after the first 
violent collapse, and it is also able to track extremely large 
deformations near the bubble wall during the bubble’s first 
expansion-collapse cycle.

Fig. 10  Residual deformation and strain fields are plotted in the full 
field as well as radial linescans with gelatin concentrations sepa-
rated into columns (a) 6%, (b) 10%, and (c) 14%. (row i) Radial 
displacement u

r
 ; (row ii) Radial logarithmic strain E

rr
 ) as meas-

ured ∼ 30 seconds after the laser-induced inertial cavitation event; 
(row iii) Linescans of the radial displacement profile are over-
layed with theoretical displacement fields corresponding to vari-
ous ratios of the stress-free radius Rsf to the equilibrium radius R0 . 
The  purple dashed lines represent the ratio for the case where no 

material is ablated, and the green dashed lines represent the condi-
tion where the material has no residual stress. The orange dashed 
line represents the best fit of the data based on the theoretical dis-
placement model. (row iv) This analysis is also plotted for the 
radial component of the logarithmic strain, with the yellow dashed 
line representing the fit of the data based on the theoretical field. 
These experimental results align with a fitted ratio of approximately 
Rsf∕R0 ≈ 0.8 suggesting that the material is indeed approximately 
stress-free
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Conclusion and Future Directions

In this paper, we present full-field in-situ deformation meas-
urements of soft viscoelastic materials at ultra-high strain 
rates, i.e., on the order of 103 ∼ 106 s −1 , near an oscillating 
inertial cavitation bubble. To achieve this, we integrated 
and advanced our previously developed embedded speckle 
pattern (ESP) method with our recently developed spati-
otemporally adaptive quadtree mesh digital image correla-
tion (STAQ-DIC) technique. By careful comparison of our 
experimental field measurements with the theoretical kin-
ematics of cavitation in soft matter under the idealizations of 
spherical symmetry and incompressibility, we find generally 
good agreement between the experimental measurements 
and the theoretical predictions. We also find that the use of 
the quasi-equilibrium bubble radius, R0 , is experimentally 
justified in the previous Inertial Microcavitation Rheometry 
(IMR) framework [13, 23, 30, 51], generally incurring no 
more than 5% residual strain compared to the undeformed 
material state prior to laser-induced bubble nucleation. Fur-
thermore, the assumption of spherical symmetry within the 
context of IMR for a sample geometry with dimensions 
much larger than 2 ∼ 3 Rmax seems to be justified according 
to our full-field measurements.

We conclude our paper with some discussion of future 
research directions. First, our approach shown here opens 
up exciting new opportunities for examining more compli-
cated and spatially heterogeneous deformation fields within 

soft materials with full control of the boundary conditions. 
Specifically, our method can be used to measure cavitation 
under different external driving forces [6, 52–56] in various 
material systems and cavitation near different boundary con-
ditions, such as non-spherical cavitation dynamics [12, 16, 
57], multi-bubble dynamics [58, 59], cavitation spallation 
and interfacial cleaning/wear problems [33, 60], cavitation 
along an impedance-mismatched material interface [25, 34, 
61, 62] or in 3D additive manufactured metamaterials.

A clear opportunity exists to utilize our previously devel-
oped IMR framework to allow for the simultaneous char-
acterization of material properties while measuring the 
displacement field due to cavitation. Using a constitutive 
model, these data can be used to calculate the induced stress 
and hydrostatic pressure fields. This IMR framework uses 
the assumption that the surrounding material remains unaf-
fected by cavitation, however, material damage and fatigue 
can accumulate during the bubble’s expansion-collapse 
cycles [58, 63, 64]. The measured kinematic results from this 
method along with known material properties from IMR can 
be used to develop new constitutive models which quantify 
cavitation-induced material damage.

Finally, our experimental technique can be easily extended 
to multiple existing material characterization techniques. The 
resulting high-resolution full-field measurements can also 
be integrated into emerging machine learning/data-driven 
methods to perform computational cavitation simulations 
with high fidelity [65, 66].

Fig. 11  Comparison of three 
different DIC post-processing 
schemes to solve for the cumu-
lative deformation fields
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Appendix 1

Theoretical Kinematic Fields in LIC

Consider a spherical bubble (see Fig. 12) with reference unde- 
formed configuration B
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0
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⩽ 2�} , and current deformed configuration 

B(r,�, �) , {R ⩽ r < ∞, 0 ⩽ 𝜑 ⩽ 𝜋, 0 ⩽ 𝜃 ⩽ 2𝜋} , where 
{r0, r} represent referential and current radial coordinates, 
{�0,�} are referential and current azimuthal angular coor-
dinates, and {�0, �} are referential and current polar angular 
coordinates. The time-dependent bubble radius is R(t), and R0 
denotes the undeformed bubble radius. We assume a spherically 
symmetric motion, in which r = r(r0, t) , � = �0 , and � = �0 , 
and the components of the deformation gradient tensor � in the 
spherical coordinate system are

We assume that the surrounding material is incompress-
ible, so that det(� ) = 1, and the spherically symmetric motion 
is described by

(4)� =

⎡
⎢⎢⎢⎣

�r

�r0
0 0

0
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0

0 0
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0
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.

Equation (5) may be inverted to obtain the reference map 
r0 = (r3 + R3

0
− R(t)3)1∕3 . For a spherically symmetric, 

incompressible motion, the only non-zero components of 
the displacement and the velocity vectors are the radial com-
ponents, and their spatial descriptions are given by

and

where the superposed dot denotes the derivative with respect 
to time t. The spatial description of the radial component of 
the acceleration vector is

Finally, the Hencky (logarithmic) strain tensor is defined as 
� = (1∕2)ln(��

�) . For a spherically symmetric, incompress-
ible motion, the components of the logarithmic strain tensor 
in the spherical coordinate system are

where E�� = E�� , and the spatial descriptions of the radial 
and circumferential logarithmic strain components are

(6)ur(r, t) = r − r0(r, t),
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R2Ṙ
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Fig. 12  Spherical coordinate system {r,�, �}

Fig. 13  Kymographs of kinematic fields in three concentrations, (a) 6%, (b) 10%, and (c) 14%, of gelatin due to a single laser-induced cavitation 
bubble. The kymographs are created by taking a 10 pixel-wide vertical slice of the full-field data symmetric about the center of the cavitation 
bubble for each frame over 250 frames at a camera frame rate of 2 million frames/sec. The resulting (i) circumferential displacement field u� and 
(ii) shear logarithmic strain E

r� are plotted against time for all three gelatin concentrations

Appendix 2

Other DIC Measured Displacement and Strain 
Results
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