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Abstract
Background  Mechanical characterization of materials that solely relies on global responses may overlook important local 
behavior that significantly affects the characterization of material properties. Field displacements such as from digital image 
correlation (DIC) can provide high-fidelity experimental data, which combined with finite element method (FEM) can form 
DIC-FEM inverse method that can better account for complex mechanical properties of materials. Despite its capability, 
the DIC-FEM inverse method has been mainly applied to an elastic-dominant regime even though inelastic deformation is 
important in many engineering materials. Specifically, the DIC-FEM inverse method has not been fully extended to viscoe-
lastic materials due to the complex representation of the time-dependent modulus.
Objective  This study aimed at establishing a DIC-FEM inverse framework to identify constitutive properties of homogeneous  
elastic and viscoelastic materials.
Methods  Two example materials (i.e., polyetheretherketone (PEEK) and a viscoelastic fine aggregate matrix (FAM) with a 
bituminous binder) were selected for the elastic and viscoelastic investigation, respectively. Both were experimentally tested 
using three-point bending incorporated with DIC. FEM simulated the experiment and the Nelder-Mead nonlinear optimiza-
tion algorithm was implemented to solve the inverse problem.
Results  The DIC-FEM inverse method successfully identified Young’s modulus of an example linear elastic PEEK and the 
linear viscoelastic relaxation modulus of FAM.
Conclusions  The resulting DIC-FEM inverse method is applicable to various materials with inelastic deformation and can 
be extended to localized behavior induced by microstructure heterogeneity and fracture.

Keywords  Field displacements · Digital image correlation · DIC-FEM inverse method · Viscoelasticity

Introduction

Mechanical characterization of materials that solely takes 
global responses may overlook important local behavior 
(localized deformation), particularly behavior that signifi-
cantly affects material properties. Although global responses 
are sufficient for identifying mechanical properties in simple 
boundary value problems (BVPs), they can produce mislead-
ing mechanical properties in more complicated BVPs that 

include heterogeneity, anisotropy, and highly localized phe-
nomena, such as fracture. Soft materials are a prime example 
where using global results can result in inaccurate proper-
ties. This is mainly due to higher deformations near loading 
areas relative to the rest of the specimen. Locally-measured 
responses are important to more accurately characterize the 
materials [1].

Local results, such as field displacements measured dur-
ing the experiments, can be obtained using a digital image 
correlation (DIC) technique [2–5]. The local results provide 
higher fidelity information that is useful in accurately charac-
terizing the thermo-mechanical behavior of materials [6–9]. 
DIC was pioneered by Sutton et al. [10, 11]. DIC takes dis-
placements from successive images during the time that a 
specimen undergoes deformation. The perceived pixel move-
ment between images is correlated to equivalent deformation 
gradients. DIC has been used in diverse fields, including rigid 
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body motions, experimental mechanics for displacement 
measurements, and deformation characterization of various 
nonlinear material behavior. For example, full-field kinematic 
measurements from DIC have been used to:

•	 identify material properties and validate constitution in 
soft materials (such as rubber) and heterogenous bio-
logical tissues where traditional methods—such as strain 
gauges—are impractical [9, 12].

•	 experimentally investigate thin films and characterize 
their behavior within a small elastic regime that is other-
wise difficult to gauge [13–15].

•	 detect three-dimensional (3D) out-of-plane behavior for 
circular cylindrical specimens under compression and 
identify the barreling profile [16].

•	 evaluate kinematics and characterize constitutive proper-
ties of fiber-reinforced composite materials and laminates 
[17–19].

Additionally, the field displacement measurements from 
DIC can be integrated with computational model simulations 
such as the finite element method (FEM) to inversely charac-
terize material properties [20–22]; this is done by penalizing 
the objective error function between experimental results and 
computational simulation results [21, 23–25]. The DIC-FEM 
method can be classified as the FEMU (finite element method 
update) [26]. Other local-based inverse methods include the 
I-DIC (integrated DIC) [27] and VFM (virtual fields method) 
[28–30]. The I-DIC used an analytical solution to formulate 
the objective function after DIC results, while the VFM is 
based on the virtual fields method objective function.

The DIC-FEM method can better account for material 
heterogeneity, anisotropy, nonlinear inelasticity, and damage 
by effectively accommodating complicated geometries and 
mechanical properties [12, 31, 32]. The DIC-FEM inverse 
method has been mainly applied to an elastic-dominant regime 
[6, 9, 12, 13, 33–39] and some materials presenting elastoplas-
tic or plastic deformation [40–42]. The DIC-FEM method has 
not been fully extended to viscoelastic materials yet due to the 
complex representation of the time-dependent modulus [43, 
44]. This study proposes a DIC-FEM inverse method with the 
ability to extend characterizing the properties of viscoelastic 
materials. The specific objectives of this study are:

•	 To establish a DIC-FEM inverse framework to identify 
constitutive properties of homogenous elastic and viscoe-
lastic materials.

•	 To validate the resulting DIC-FEM inverse framework 
by employing two example materials: an elastic poly-

etheretherketone (PEEK) and a viscoelastic fine aggre-
gate matrix (FAM) with a bituminous binder.

Research Methodology

To meet the objectives, the methodology shown in Fig. 1 
was adopted. The research method is composed of three 
parts: inputs (selected materials), DIC-FEM framework, and 
output (target material properties). Two example materials 
were selected for the elastic and viscoelastic investigation. 
Subsequently, laboratory testing specimens of each material 
were incorporated with DIC to measure field displacements 
followed by FEM to simulate the testing. ABAQUS [45], a 
commercial finite element analysis (FEA) package, was used 
to model the testing setup (i.e., specimen geometry, loading, 
and boundary conditions) with the corresponding constitu-
tive behavior (e.g., elastic and viscoelastic). The DIC-FEM 
inverse method iteratively modified material properties 
within FEA to minimize the difference between DIC and 
FEM displacement results.

FEA was conducted via a Python script that was 
developed to adaptively control ABAQUS FEA material 
inputs, wait for FEA job completion, and extract kinematic 
results at the specified location (i.e., region of interest 
(ROI) nodes). In parallel, DIC measurement results were 
obtained from the experimental testing using VIC-3D, 
a commercial DIC software, to correspond with spatial 
coordinates of ROI nodes from FEA. Subsequently, MAT-
LAB was used for optimization via the built-in function 
of fminsearch() that implements the Nelder-Mead (N-M) 
solver. Kowalewski and Gajewski [46] showed that N-M 
algorithm is quickly converged when used with DIC and 
FEM data. For each iteration, a batch script was used to 
trigger the Python code, which then performed FEA. The 
iterations continued until a convergence of the objective 
function was achieved.

The objective function for the inverse method was for-
mulated around the spatially matched displacement results 
within a ROI, as shown in Fig. 2. It is noteworthy that the 
ROI was selected in the region of the specimen where higher 
deformation magnitude was expected.

DIC displacement data were analyzed in MATLAB to 
facilitate reducing the inherent noise associated with DIC 
data [47]. For example, a combination of MATLAB built-
in functions such as interp(), dfilt(), and smooth() were 
used to interpolate data, filter and smoothen DIC data to 
prepare for the DIC-FEM inverse method, as exemplified 
in Fig. 3.
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DIC Method

DIC takes successive images during the time that a speci-
men undergoes loading and deducing of field displacements 
and subsequently calculated deformation by correlating (i.e., 
back-calculate) deformation gradients of several sections of the 
image (i.e., subsets) [10, 47, 48]. The success of DIC is thus 
highly dependent on ensuring the uniqueness of the subsets 
to allow convergence of the correlation function. The unique-
ness of subsets was achieved by applying random, contrasting, 
isotropic, and non-repetitive speckles on the surface of the 
specimen.

In this study, a subset DIC was used in which a subset of 
pixels is subjected to a two-dimensional deformation Fig. 4(a). 
Points (x, y) in the reference image correspond to (̃x, ỹ) points 
in the deformed image. The mapping function between the 
two points is [10, 47]:

where u and v are the displacement components that can 
be approximated at different orders using the Taylor series 
expansion method. The second-order expansion around a 
point (x0, y0) leads to the following mapping functions [10, 
47]:

where Δx = (x − xo) and Δy = (y − yo) . There are twelve 
parameters of the mapping function presented in Eq. (2): 
u0 and �0 are displacement components at 

(
xo, yo

)
; ux , vx , uy , 

�y are the components of the first-order gradient; and uxx , 

(1)
x̃ = x + u

ỹ = y + v

(2)

x̃ = xo + uo + uxΔx + uyΔy +
1

2
uxxΔx

2 +
1

2
uyyΔy

2 + uxyΔxΔy

ỹ = yo + vo + vyΔy + vxΔx +
1

2
vyyΔy

2 +
1

2
vxxΔx

2 + vxyΔxΔy

Fig. 1   Framework for the DIC-
FEM inverse method imple-
mented in this study
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vxx , uyy , �yy , uxy , �xy are the components of the second-order 
gradient.

A higher order of approximation yields a more accurate 
representation of the deformation in the subset. Despite 
being a contactless technique, DIC yields highly accurate 
results that can achieve sub-micron (sub-pixel) resolution 
[49]. During image acquisition, there is a possibility of 
light intensity change that can offset the gray-scale values 
of images. To account for the offset, an additional parameter 
� is introduced for offset in the gray-scale value between 
consecutive images. Therefore, the correlation calculates a 
vector P =

{
uo, vo, ux, vx, uy, vy, uxx, vxx, uyy, vyy, uxy, vxy,�

}
 

that represents the 13 parameters (i.e., 12 from Eq. (2) and 
� ) in the mapping function. A least-square correlation coef-
ficient is used in the calculation [47].

As the subsets selected are discrete groups of pixels, 
it is possible to have undesired discontinuities at the sub-
set boundaries, as illustrated in Fig. 4(a). To mitigate this 
issue, a step between adjacent subsets was used to ensure 

the overlap and displacement compatibility [see Fig. 4(b)]. 
The subset DIC method has been used in this study to obtain 
measurement resolutions of 4.8 nm for in-plane measure-
ments [49]. Another study by Lu and Cary [50] obtained an 
accuracy of ± 10–4 per pixel.

DIC‑FEM Optimization Method

The objective function for optimization was calculated as the 
root of the summed squares of the differences between FEM 
and DIC displacements. The Nelder-Mead (N-M) solver [51] 
was adopted for the optimization over other conventional 
solvers—such as the Newton–Raphson solver—due to its 
robustness, derivative-free nature, and ease in incorporating 
constrain functions as part of the objective function [51].

The N-M algorithm uses a simplex to construct ver-
texes (e.g., material properties) around the initial guess; 
this is followed by a replacement of the vertex with the 

Fig. 2   DIC and FEM of an 
example beam specimen with 
a region of interest (ROI): (a) 
DIC with a ROI; and (b) finite 
element model with a ROI

Fig. 3   Example of DIC data 
processing in MATLAB
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highest function value through a series of reflections, 
contractions, and expansions [38, 52, 53]. For example, 
given a vector �  to optimize (e.g., [1.0, 1.0]), N-M com-
poses an initial simplex with vertices: �1 , �2 = �1 + (�, 0)T 
and �3 = �1 + (0, �)T , where the coefficient � controls the 
step size of the algorithm (Fig. 5). Subsequently, the ver-
tex with the highest function value (e.g., �1 ) undergoes 
a replacement process. An iteration is completed once 
a vertex has been replaced. The optimization continues 
until a stopping criterion—such as a decrease between 
two iterations, the maximum number of iterations, or a 
sufficiently small function value Ψu(�) [54] —is met. The 
N-M solver has been successfully used to identify consti-
tutive properties in elastic materials [34, 37].

Since the N-M solver is a constraint-free method, the 
constraints were externally imposed by the penalty method 
[25] in this study; a large number was assigned to the func-
tion value if the � was outside the boundary domain Ω� 
[55]. An example of a reasonable constraint is that the elastic 
modulus is always positive (i.e., E ≥ 0). The final objective 
function is shown as follows:

where Ψu(�) is the objective function, � is a vector of size N 
material properties, uDIC is experimental displacements from 
DIC, uFEM(�) is the computational displacements from FEM 
at � , and ‖ ⋅ ‖2 is the Euclidian norm.

Experimental Test Set‑Up

Figure 6 shows the experimental testing setup used in this 
study. It is comprised of a mechanical testing station and a 
DIC system. The hardware for DIC included a high-capacity 
desktop computer to store images Fig. 6(a), two stereo cam-
eras Fig. 6(b), two light sources Fig. 6(c), and a data acquisi-
tion system (DAQ). The mechanical testing station included 
a desktop computer, a load-frame, a loadcell of 3kN capac-
ity, a testing fixture, and a DAQ. Since the mechanical 
testing station and the DIC were two completely different 
systems, they were synchronized through their respective 

(3)min
�∈ℝN

Ψu(�) =

�
‖uDIC − uFEM(�)‖2 if � ∈ Ω�

10
20

for� ∉ Ω�

Fig. 4   DIC subsets: (a) without 
a step; (b) with a step

Fig. 5   Nelder-Mead Simplex 
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DAQs via BNC cables for load and trigger information com-
munication. As a result, the DIC image acquisition could be 
controlled to commence at the same time as the mechanical 

test is conducted. Linking both systems was important, as 
each DIC image could be coupled with a known loading 
stage for subsequent data analyses.

Fig. 6   Experimental set-up: (a) 
the entire set-up showing DIC 
and mechanical testing station 
(3kN capacity); (b) detailed 
close-up view of the testing 
set-up; and (c) set-up with light 
source

1558 Experimental Mechanics (2022) 62:1553–1568
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The DIC analysis software used in this study was Vic-3D 
v7.0, which used another software called Vic-Snap LS for 
image acquisition during testing. For the DIC processing, 
a computer with quad-core 3.5 GHz Intel i7 CPU, 500 GB 
solid-state and 4 TB disk storage, 32 GB RAM, and Win-
dows 10 operating system. The cameras for image acquisi-
tion were two digital cameras of 2.3 Megapixels with a reso-
lution of 1920 × 1200 pixels at a 162 frame rate. The camera 
had a one-inch sensor and was paired with two Schneider 
Cinegon lenses with a 1.8/16 mm aperture/focal length. The 
lighting system was composed of two white LEDs that illu-
minated the test specimen that was sprayed with a speckle 
pattern. It is noteworthy that before DIC measurement, 
images of a composite grid at several random camera-facing 
angles (e.g., 25) were taken for calibration.

Materials and Sample Fabrication

Polyetheretherketone (PEEK)

PEEK is a thermoplastic semi-crystalline polymer [56]. It 
was selected as the example material for the elastic inves-
tigation. PEEK has a high strength-to-weight ratio and is 
resistant to wear, and it also presents excellent biocompat-
ibility [57]. In this study, PEEK was considered as a homog-
enous time-independent elastic material with the general 
constitutive relationship between stress and strain expressed 
as follows:

where �ij is the stress tensor; v = Poisson’s ratio; �ij is the 
strain tensor; E is the elastic (Young’s) modulus. Note that 
E and v are the only two independent constants to establish 
the stress–strain relationship in the case of PEEK.

(4)�ij =
Ev

(1 + v)(1 − 2v)
�ij�kk +

E

1 + v
�ij

PEEK sample material was commercially acquired from 
Macmaster Carr, and the specimens were machined to 
geometry specifications of 75 mm, 10 mm, and 4 mm for 
length, height, and thickness, respectively. Before testing 
with the DIC, speckle patterns were applied on the speci-
men’s surface by spraying a white base paint; after the white 
layer dried, a speckle of black (sprayed) dots were added. 
Figure 7 shows the PEEK specimen before Fig. 7(a) and 
after Fig. 7(b) application of the speckles. Several spray-
ing techniques were attempted to select the optimal speckle 
preparation method. The condition of the speckle was that it 
should be isotropic, random, statistically homogenous, non-
repetitive, and have high contrast. All the conditions were 
properly met by spraying black dots on a painted white sur-
face. It should be noted that the sizes of the black dots were 
adjusted depending on the size of the specimens in order to 
maintain a high-contrast speckle pattern.

A three-point bending test was performed on the speci-
men with a span length of 60 mm. The geometry of the 
PEEK specimen satisfies the requirement of ASTM D790. 
The testing was conducted at 23  °C in a displacement-
controlled mode with a monotonic loading of 10 mm/min. 
The test terminated with a load of 350 N. It is worth not-
ing that the yield stress for the PEEK is around 120 MPa 
[56, 58, 59]. PEEK remained within the linear elastic region 
throughout the testing in this study. The test setup for PEEK 
is shown in Fig. 8.

Fine Aggregate Matrix (FAM) with Bitumen

FAM is the primary component of typical asphalt concrete 
(AC) mixtures [60]. It was selected in this study as an example 
of viscoelastic material. FAM is considered to be the matrix 
phase within AC mixtures, and it is composed of fine aggre-
gates passing through a No. 16 sieve (mesh size of 1.2 mm) 
and a bituminous binder [61]. Many studies—including Im 
et al. [62], Aragao et al. [63], Kim et al. [64], and Ban et al. 

Fig. 7   Example of DIC sample 
preparation of PEEK: (a) before 
applying speckles; and (b) after 
applying speckles
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[65] —presented time- and rate-dependent viscoelastic behav-
ior of the FAM at different loading conditions. FAM is consid-
ered to be isotropic as the ratio of the specimen geometry to 
maximum particle size is high (i.e., about 30), and particles are 
randomly distributed within the FAM microstructure.

In this study, FAM was considered as an isotropic, 
homogenous viscoelastic material with the general consti-
tutive relationship between stress and strain expressed as 
follows:

where �ij is the stress tensor; v = Poisson’s ratio; E(t) = vis-
coelastic stress relaxation modulus; �ij is the strain tensor; �ij 
= Kronecker delta; and � = integration variable.

The isotropic uniaxial relaxation modulus, E(t), in an 
isothermal condition can be expressed in the Prony series 
representation as follows [66]:

where E∞ and Ei are the spring constants in the generalized 
Maxwell model,�i is the relaxation time, and m is the num-
ber of Maxwell units in the generalized Maxwell model. 
Similarly, the linear viscoelastic creep compliance can also 
be expressed in Prony series as [66]:

where Dg and Dj are the glassy compliance and retardation 
strength, respectively in the generalized Kelvin model, �j is 
the retardation time, and n is the number of Voigt units in 
the generalized Kelvin model. The E(t) and D(t) expressed 
in the Prony series are interconvertible, as shown by Park 
and Schapery [66].

To prepare FAM specimens, fine aggregates were mixed 
with an eight weight percent of the bituminous binder at 
the mixing temperature of 160 °C [60]. The mixed loose 

(5)

�ij =
v

(1 + v)(1 − 2v)

t

∫
0

E(t − �)�ij
��kk
��

d� +
1

1 + v

t

∫
0

E(t − �)
��ij

��
d�

(6)E(t) = E∞ +

m∑

i=1

Eie
−t

�i

(7)D(t) = Dg +

n∑

j=1

Dj

(
1 − e

−t

�j

)

FAM materials were then compacted at 149 °C (compaction 
temperature) to produce a cylindrical sample of 170 mm in 
height and 150 mm in diameter using a Superpave gyratory 
compactor. Before the compaction, the loose FAM mixture 
was cured for two hours at 135 °C to induce short-term aging 
[67]. Beam FAM specimens were then prepared from the 
cylindrical sample by cutting, as shown in Fig. 9(a). In total, 
one cylinder-compacted sample produced 10 beam speci-
mens (150 mm in length, 35 mm in height, and 25 mm in 
thickness). The specimens were then subjected to flexural 
beam creep testing, as shown in Fig. 9(b).

To find the load limit of linear viscoelastic behavior of 
the FAM mixture specimen, a preliminary investigation was 
conducted on the FAM beam specimen by applying different 
levels of constant creep loads (for creep testing). Within the 
linear viscoelastic condition, the beam deflection is directly 
and linearly proportional to the applied creep load, as the 
material satisfies linear viscoelastic conditions [68]. Thus, 
creep tests were conducted at increasing load levels until 
the linearity condition was violated. In this study, the linear 
viscoelastic limit was examined based on the homogeneity 
concept (i.e., linear scaling), where the creep compliance 
D(t) remains identical within the linear viscoelastic range. 
To calculate the time-varying viscoelastic creep compli-
ance D(t) at each loading level, an analytical solution that 
relates the beam deflection to linear viscoelastic properties 
was used. In an attempt to obtain the analytical solution,  
the elastic solution for the Timoshenko beam theory [69] 
was converted into a viscoelastic solution using the elastic– 
viscoelastic correspondence principle [70]. The resulting 
time-varying deflection as a function of the creep compli-
ance is as follows:

where uT(t), Po, and Mo are the deflection at the middle  
center of the beam, creep load, and bending moment, respec-
tively. A, L, I, and Ks are cross-sectional area, span length 
between two supports, the second moment of inertia, and  
the Timoshenko shear coefficient [71], respectively. It should be  
noted that Poisson’s ratio is assumed to be time-independent.  
The bending moment of the simply-supported beam can 
be obtained as Mo = PoL/4, which results in the following 
deflection equation:

As previously mentioned and shown in Eq.  (9), the 
middle-center deflection uT(t) is directly and linearly pro-
portional to the applied creep load Po. It is noteworthy that 
the middle center deflection was easily obtained from DIC. 

(8)uT (t) =

(
PoL

3

48I
+

2Mo(1 + v)

AKs

)
D(t)

(9)
uT (t) = PoB(t)

B(t) =
(

L3

48I
+

2L(1+v)

4AKs

)
D(t)

Load Point

60 mm

1
0
 m

m

75 mm

Thickness = 4 mm

Fig. 8   Three-point bending test set-up for PEEK specimen
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Figure 10 shows the creep compliance D(t) calculated from 
three varying creep loads of 2.5 N, 5 N, and 10 N; all other 
testing conditions remained identical during testing. It 
appears that the creep compliance was similar between the 
two smaller loads of 2.5 N and 5.0 N. Changes were noticed 
beyond 5.0 N, implying an onset of nonlinear viscoelastic 

response. Since an appropriate creep load for the subsequent 
DIC-FEM inverse method should be within the linear vis-
coelastic limit, a sufficiently small creep load that does not 
cause nonlinear viscoelastic deformation is necessary. Based 
on the observation in Fig. 10, a load of 2.5 N was selected 
for the subsequent DIC-FEM inverse method in order to 
ensure linear viscoelastic conditions during FAM testing. 
It should be noted that the creep testing shown in Fig. 10 
was conducted on a representative FAM specimen loaded 
for 1,000 s of creep loading and unloaded for 24 h to ensure 
a full recovery of creep deformation. During the unloading 
period, the specimens were removed from the testing fixture 
to avoid any additional flexural creep resulting from gravity. 
The loading–unloading test sequence of each specimen was 
taken from the smallest load (2.5 N) to the larger loads with 
a careful control of positioning of the specimen, so that each 
creep testing can be conducted at the same boundary condi-
tions. Furthermore, the testing temperature was carefully 
controlled and monitored using an embedded thermocouple 
with a dummy sample.

Fig. 9   FAM testing: (a) sample 
fabrication; (b) three-point 
bending beam test set-up
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Results and Discussion

Elastic Modulus of PEEK

DIC data were analyzed using a subset size of 25 × 25 pixels 
and a step size of 8 pixels Fig. 11(a). Concurrently, the FE 
simulation was conducted using a 0.5 mm mesh of 3-node 
linear elements (CPS3) Fig. 11(b). The FEM boundary con-
ditions were applied via prescribed nodal displacement. The 
plane stress assumption was made as the FEM simulation 
results are compared to 2-D DIC image data, and it was help-
ful to reduce computational costs as the DIC-FEM process 
requires a large number of iterative computation. The mesh 
size was selected after a mesh convergence study. Equa-
tion (3) was then used to construct the objective function 
from DIC and FEM displacement results inside the ROI. For 
the PEEK elastic properties, a total of 697 points were used 
to calculate the objective function at each iteration.

As shown in Eq. (4), there are two independent elastic 
properties (i.e., E and v) for PEEK when one considers a 
homogenous time-independent elastic material. Poisson’s 
ratio was assumed reasonably with a constant of 0.35 [72]. 
This simplification is valid as the three-point beam testing 
that does not consider three-dimensional deformation in 
particular with the anticlastic curvature is not feasible to 
characterize Poisson’ ratio. In this study, both the DIC meas-
urements and FEM model simulations were conducted in 
two-dimensional space. Therefore, the sole identification of 
Young’s modulus of the PEEK from the DIC-FEM inverse 
process is necessary.

The results of the DIC-FEM inverse method to calculate 
Young’s modulus (E) are shown in Fig. 12(a), where the 
optimal E value was 3,951.8 MPa. The resulting modulus 
value was in good agreement with the typical values found 

in the PEEK-related literature [59, 73–75]. Figure 12(a) also 
shows the evolution of the objective function during the opti-
mization process. As shown, the solution converged reason-
ably at approximately 20 iterations. Figure 12(b) presents the 
resulting displacements at the optimized elastic modulus. 
Five different locations were arbitrarily selected to demon-
strate the agreement between DIC experimental results and 
FEM computational simulations. Generally, the displace-
ments were in good agreement at the optimal E value found, 
implying the validity of the DIC-FEM inverse process in 
identifying unknown material properties, such as Young’s 
modulus in this example.

Viscoelastic Relaxation Modulus of FAM

The creep testing was conducted using the predetermined 
creep load (i.e., 2.5 N) with a total creep time of 2,750 s. DIC 
data was analyzed using a subset size of 25 × 25 pixels and a 
step size of 8 pixels. The FE model simulation was conducted 
using a 0.5 mm mesh of 3-node linear elements (CPS3), which 
was determined through a mesh convergence study. The FEM 
modeling boundary conditions were applied via prescribed 
nodal force, and plane stress condition was assumed.

Similar to the elastic PEEK case, there are two inde-
pendent viscoelastic properties (i.e., E(t) and v) for FAM  
when one considers a homogenous time-dependent linear 
viscoelastic material. Tschoegl et al. [76] noted the diffi-
culty in experimentally measuring Poisson’s ratio in viscoe-
lastic materials, and Lu et al. [77] recommended 4-figure  
precision for accurate identification of Poisson's ratio. The 
DIC used in the present study is limited to providing the 
level of accuracy necessary due to the noise level (Fig. 3) 
from displacements. The noise from displacements would 
propagate to strain calculations as well. This limitation can 
be overcome with more accurate DIC technologies such as 

Fig. 11   Horizontal strain ( �xx) 
profile of (a) DIC; and (b) FE 
results
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Fig. 12   Results from the DIC-FEM inverse method for PEEK: (a) evolution of objective function; and (b) comparison of displacements at the 
solution
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Fig. 13   Results from the DIC-FEM inverse method for FAM: (a) evolution of objective function; and (b) comparison of displacements at the 
solution
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low noise cameras, high-resolution speckle patterns, and 
improved DIC algorithm that minimize noise [47]. Further-
more, as indicated earlier, the three-point beam testing that 
does not consider three-dimensional deformation in particu-
lar with the anticlastic curvature is not feasible to effectively 
characterize Poisson’ ratio.

In this study, both the DIC measurements and FEM model 
simulations (plane stress condition) were conducted in two-
dimensional space. Therefore, Poisson’s ratio was assumed 
reasonably with a constant of 0.35 [60, 64], and the relaxa-
tion modulus E(t) was sought through the DIC-FEM inverse 
optimization process.

The main complexity of determining linear viscoelastic 
properties using the DIC-FEM inverse method arises from 
the many Prony series terms required to represent a certain 
relaxation function. To address this, the relaxation function 
was initially postulated to be a generalized power law [62] 
that involved three model parameters (i.e.,,Ep , Eq, and r) for 
the DIC-FEM optimization. The generalized power law is 
shown below.

where E(t) is relaxation modulus, Ep is long-time equilib-
rium modulus, Eq is a regression constant, and r is a regres-
sion constant representing the slope between modulus and 
time.

The generalized power law is in a form of the combina-
tion of the instantaneous and transient parts. Next, the gen-
eralized power law parameters calibrated at each iteration 
automatically generate time-dependent relaxation modulus 
data which were then converted to the generalized Max-
well model represented by the Prony series [Eq. (6)]. This is 
because the FEM model simulation requires the viscoelastic 
relaxation modulus in the form of the generalized Maxwell 
model. The Prony series parameters are composed of ten 
spring constants ( E∞ , and E1 to E9) and nine relaxation 
times ( �1 to �9) which can effectively cover nine decades of 
relaxation time (10–4 s to 104 s). Determination of the Prony 
series parameters was then carried out by employing the 
collocation method proposed by Park and Schapery [66]. By 
adopting the three-step approach (i.e., first with the three-
parameter generalized power law, generate time-dependent 
relaxation modulus data, and then using the Prony series 
for the generalized Maxwell model), the computational cost 
incurred during the iterative process could be significantly 
reduced and the efficiency of the DIC-FEM inverse process 
was increased.

Figure 13(a) shows the convergence of the objective func-
tion, which was calculated from a total of 35 nodes (loca-
tions). As the figure presents, the inverse method rapidly 
converged at around 20 iterations, and the function saturated 
fully at about 100 iterations. Figure 13(b) presents the result-
ing displacements when using the optimized linear viscoe-
lastic property (i.e., time-dependent relaxation modulus). 

(10)E(t) = Ep + Eqt
−rTable 1   Resulting Prony Series 

Parameters from the DIC-FEM 
Inverse Method

Prony Series Parameters

�
i
 (sec) E

i
 (MPa)

1.00E-05 9.25E + 03
1.13E-04 3.28E + 03
1.29E-03 2.72E + 03
1.46E-02 1.51E + 03
1.66E-01 1.15E + 03
1.88E + 00 5.51E + 02
2.14E + 01 3.42E + 02
2.42E + 02 1.83E + 02
2.75E + 03 1.44E + 02
E∞ 4.18E + 02

Fig. 14   Comparison of deflec-
tion results from the FEM, the 
experiment (i.e., DIC), and 
analytical solution calculated 
using results from the DIC-
FEM inverse method
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Five different locations were arbitrarily selected to demon-
strate the agreement between DIC experimental results and 
FEM computational simulations. The results in Fig. 13(b) 
show a varying level of agreement in the vertical displace-
ments resulting from the DIC measurements and the FEM 
model simulations. Generally, the time-dependent displace-
ments were in good agreement, which implies the validity of 
the DIC-FEM inverse process in identifying unknown linear 
viscoelastic material properties, such as relaxation modulus.

Based on the results from the DIC-FEM inverse method in 
Fig. 13, the analytical solution to the displacement at the center 
of the FAM beam specimen was calculated using Eq. (8). The 
resulting Prony series parameters of the generalized Max-
well model are shown in Table 1. Figure 14 shows the results 
from the analytical solution compared to the FEM and DIC 
test results. Both the analytically obtained deflections and the 
FEM deflections that used the linear viscoelastic relaxation 
modulus identified through the inverse method were in good 
agreement with experimental DIC results. The good agree-
ment between the deflection results implies that the DIC-FEM 
inverse method implemented in this study is valid for the char-
acterization of linear viscoelastic properties of materials.

Summary and Conclusions

This study pursued incorporating local field displacements 
into the identification of constitutive properties of linear elas-
tic and linear viscoelastic materials. Local deformation from 
experimental testing using DIC was integrated with FEM 
results to form an inverse problem. This was then solved 
using a nonlinear optimization framework implemented in 
Python, MATLAB, and Batch. The DIC-FEM inverse frame-
work solely utilized field displacements inside a region of 
interest to identify the constitutive properties of two example 
materials: PEEK (elastic) and a bituminous FAM (viscoelas-
tic). Based on the results, the following can be concluded:

•	 DIC proved that field deformation can be effectively cap-
tured and meaningfully used to determine material prop-
erties. Local field displacements were successfully used 
to characterize properties of both linear elastic and linear 
viscoelastic materials after being coupled with compu-
tational FEM simulations and a nonlinear optimization 
algorithm.

•	 The DIC-FEM inverse method successfully identified 
Young’s modulus of an example linear elastic PEEK and 
the linear viscoelastic relaxation modulus of the FAM. 
The constitutive properties that resulted from the DIC-
FEM nonlinear optimization were successfully validated 
through the analytical solutions and representative values 
reported in the literature.

•	 Further studies are recommended to expand the DIC-
FEM inverse method to include fracture, heterogeneity, 
and Poisson effects of materials. Using strains in addi-
tion to displacements is also recommended for a more 
accurate characterization of deformation. The authors are 
currently working on these expansions, and the results 
will be presented in follow-up studies.
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