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Abstract
Background The pattern used in DIC directly influences the quality of the measurement obtained with this technique, so it 
is of prime importance to optimize the geometry of the features characterizing the pattern to achieve the best metrological 
performance.
Objective The primary objective of this study is to quantify the influence of the collinearity between the actual displace-
ment and the pattern image gradient on the systematic and random errors affecting displacement fields measured by DIC.
Methods Poisson Image Editing (PIE), a technique borrowed from the image processing community where it was introduced 
to perform seamless cloning of images, has been employed here to render various patterns whose gradient is globally col-
linear to the displacement field. Directly integrating the displacement field considered as the image gradient does not lead 
to a sufficiently contrasted pattern. A texture is therefore superposed to the displacement field before integration.
Results Different patterns obtained or not by PIE are compared, and it is shown with suitable simulations performed with 
synthetic images that rendering a pattern where the image gradient is globally collinear to the displacement significantly 
reduces the total error affecting the measurements. The value of this improvement depends on the texture added to the dis-
placement field before applying PIE.
Conclusion This study demonstrates that the collinearity between the speckle image gradient and the displacement field reduces 
the error affecting the displacement fields measured by DIC. It also proposes a route to account for this displacement in the 
design of an optimized pattern when a priori knowledge on the direction of the displacement is available. If not, it is shown 
that a small checkerboard inlayed in a larger one leads to a metrological performance much better than that obtained with a 
classic random pattern, and close to that achieved with an optimized pattern for which the displacement field is accounted for.

Keywords Digital image correlation · Displacement field · Metrology · Pattern optimization · Poisson image editing · 
Uncertainty quantification

Introduction

Digital Image Correlation is a full-field measurement 
technique which has widely spread in the experimental 
mechanics community. The main reason is that it enables 

experimentalists to measure, within certain limits, displace-
ment and strain fields on the surface of specimens subjected 
to various types of tests.

Assessing the metrological performance of this technique 
has attracted many researchers for the last 40 years, and vari-
ous parameters influencing this performance have been stud-
ied in the literature. The main ones are the subset size, the 
order of the shape functions modeling the displacement within 
the subsets, the way camera sensor noise propagates to the 
final maps, and the strategy employed to minimize the opti-
cal residual over the subsets to retrieve the displacement. It 
seems that the influence of the speckle pattern used to mark 
the specimens has only recently been addressed in the lit-
erature. However, understanding the influence of the pattern 
characteristics on the errors impairing displacement maps 
provided by DIC is a chief issue that must be tackled in order 
to propose patterns which are optimal for such measurements. 
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Several metrics have been proposed in the literature in order 
to assess the suitability of a given pattern for DIC, the quality 
of the measurements being estimated by the random and the 
systematic errors affecting the displacement maps [1]. The 
most simple quality metrics for speckle patterns rely on rel-
evant geometrical characteristics of the speckles covering the 
surface of interest such as the mean speckle size, the evenness 
of the size distribution, the average number of speckles per 
subset, the standard deviation of the gray level distribution 
within each subset or the mean fluctuation of the gray level 
in each subset [2–6]. More global parameters have also been 
introduced in the literature. For instance, Shannon entropy 
is a quantity reflecting the degree of feature information in a 
speckle pattern, and it has been observed in [7] that the higher 
this quantity, the lower the measurement errors. Other relevant 
parameters rely on the speckle image gradient. Indeed the 
norm of this quantity is involved in the denominator of differ-
ent predictive formulas estimating the propagation of camera 
sensor noise to final displacement maps given by DIC. In this 
spirit, it is proposed in [8] to consider the Sum of Square 
of Subset Intensity Gradients (SSSIG) and in [9] the Mean 
Intensity Gradient (MIG). These quantities must be as high 
as possible to minimize sensor noise propagation. Features 
of the auto-correlation function of the speckle image can also 
be considered as global indicators. For instance, according 
to [10], the first peak of this function must be as sharp as pos-
sible, while the height of the largest secondary peak of this 
function must be as low as possible in case of large deforma-
tion [11]. Some authors also propose to combine some of the 
quantities defined above to form new and more reliable qual-
ity metrics. This is all the more relevant as some criteria, for 
instance those based on image gradient such as the SSSIG and 
the MIG, favor high contrasted patterns to minimize sensor 
noise propagation, but the systematic errors caused by inter-
polation increase in this case [12]. It is therefore necessary to 
combine various criteria to find a reasonable tradeoff between 
contradictory constraints. In [11], it is proposed to consider 
i- the SSSIG, ii- the radius of the flat zone surrounding this 
peak, which corresponds to patterns relatively insensitive 
to initial guess for the iterative minimization of the optical 
residual (this zone, called “watershed”, is reported to give 
optimal patterns correlated to the height of the first peak), and 
iii- the height of the largest secondary peak of the autocor-
relation function. This procedure has been extended in [13] 
to optimize multiscale patterns. In [14], the inhomogeneity of 
the gray level distribution, the mean square deviation of this 
distribution and the standard deviation of the speckle particles 
size distribution have been considered to form a global quality 
metric. The reader is referred to [15] for a detailed overview 
on these criteria.

The next step is to resolve what could be considered as an 
inverse problem, namely how to design a pattern correspond-
ing to a desired value for one of the criteria defined above 

or for a combination of some of them. Considering the best 
possible values for these criteria, answering correctly this 
question is a critical issue since the response would provide 
optimal patterns for DIC with respect to the chosen criterion. 
In [10], speckle patterns are designed in such a way that a 
sharp auto-correlation peak and a broad correlation margin 
are obtained at the same time. These patterns exhibit neither 
feature too small to be resolved by the imaging system nor 
large featureless zones. In [16], a Gaussian-type power spec-
trum with adjustable spread, scaling and noise is associated 
with a phase angle of diameter-controlled speckle pattern in 
order to drive pattern generation by inverse Fourier transform. 
Patterns suitable for multi-scale DIC measurements are also 
generated in [17] directly from an auto-correlation function 
featuring desired properties. In [18], it is proposed to consider 
checkerboards as ideal patterns because they lead to the high-
est possible SSSIG and MIG, and thus to the lowest impact of 
sensor noise in displacement maps. This type of pattern being 
periodic, the minimization of the optical residual is switched 
from the spatial domain to the frequency domain, which 
causes the interpolation errors as well as the bias due to the 
pattern itself to virtually vanish [19–21], and leads the mini-
mization procedure to be quasi-direct [22, 23], thus dramati-
cally speeding up the numerical resolution of the problem.

In this context, the objective of this paper is to investigate 
a route, which seems not to have been explored so far since it 
consists in adapting to the sought displacement field the pat-
tern deposited onto the surface of the specimen. Indeed, DIC 
relies on a minimization procedure of the so-called optical 
residual which is, under its simplest form, the squared dif-
ference between the gray level distribution within a subset 
considered in the reference image on the one hand, and its 
counterpart in the image of the deformed pattern on the other 
hand. This minimization procedure is performed iteratively 
with respect to the sought displacement. It can be shown that 
the quality of the gradient descent is driven by the collinear-
ity between image gradient and actual displacement. In other 
words, the better this collinearity, the higher the robustness 
of the minimization procedure, thus the better the quality of 
the result found at the end. The first motivation of this work 
is therefore to define patterns, which are tailored to a given 
DIC problem so that image gradient and displacement are as 
collinear as possible, to observe if the quality of the measured 
displacement fields is really improved, and to quantify this 
improvement in this case. Some a priori knowledge on the 
sought displacement is therefore required. This point could be 
considered as contradictory with the fact that the displacement 
field is the sought quantity. However, this remark also holds 
for the integrated version of DIC, for which the displacement 
field is described by a type of function known a priori. DIC 
provides in this case the parameters which govern the solu-
tion, which automatically improves the robustness of the latter. 
Refs [24] and [25] are typical examples. In the first reference, 
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the closed-form solution for the displacement field obtained 
within the framework of elasticity in the vicinity of a crack tip 
is used [26]. In the second reference, the displacement field 
is assumed to be Euler-Bernoulli-like to measure the warp-
ing of a workpiece caused by the release of residual stresses 
during milling. Another route to get a priori knowledge on the 
displacement field is to perform a dummy test with a classic 
version of DIC applied with a classic random speckle pattern 
deposited onto the specimen, or to perform instead a finite 
element calculation. This dummy test or FE calculation would 
then provide a first approximation of the displacement field. 
This first estimate could then be leveraged to define a pattern, 
which would be used to mark another specimen and perform 
a second test. With this second test, the errors caused by the 
pattern in the DIC calculations would be minimized.

The paper is organized as follows. The statement of the 
problem is first briefly given in “Why to Use a Pattern Such 
that Image Gradient is Collinear to the Displacement?”, with 
an emphasis on the impact of collinearity between image gra-
dient and actual displacement on the quality of the final result. 
The way the pattern can be suited to a a given displacement 
field is discussed in “Poisson Image Editing: a Tool to Define 
Patterns Suited to a Given Displacement Field”. The technique 
adopted here is the so-called Poisson Image Editing. The dif-
ferent patterns discussed in this study are then presented in 
“Patterns Considered in this Study and Quality Assessment of 
the Displacement Field Returned by DIC”. They are split into 
two types. The first one gathers patterns which do not depend 
on the displacement field, which is not the case of the second 
type. A synthetic problem, namely an open-hole specimen 
subjected to a tensile test, is therefore chosen to illustrate the 
approach. The metrological performance of DIC applied on 
these different patterns is then discussed in “Simulations”, and 
the improvement brought about by patterns accounting for the 
displacement field in their definition is estimated. The results 
of some experiments are finally presented in “Experiments”.

Why to Use a Pattern Such that Image 
Gradient is Collinear to the Displacement?

In [20], the authors propose a formula, which directly gives 
the link between displacement uncertainty and image gra-
dient. Under mild assumptions, the following equation is 
established in this reference:

where:

• � is an upper bound of the standard deviation of the noise 
affecting the displacement maps;

(1)� =
1

cos�(�DIC,∇I)

√
2�2||Σ||max

• � is the standard deviation of the “image noise”, this 
image noise being here assumed to have the same stand-
ard deviation at any pixel;

• ∣∣ ⋅ ∣∣max is the max norm of a matrix, thus for any matrix 
A of dimensions M × N , ∣∣ M ∣∣max= max ∣ Mij ∣;

• Σ is a 2 × 2 matrix such that Σ =
(∫

Ω
∇I⊗ ∇IdS

)−1 , 
where I  is the reference image, Ω the subset and ⊗ the 
outer product.

Equation (1) above can be regarded as a weighted form of 
the image noise propagation model proposed in [27], the 
weights being equal to the inverse of the cosine between 
image gradient and displacement provided by DIC. The 
better the collinearity, the higher the value of this cosine 
and the lower the noise propagation, thus image gradient 
and displacement should be as collinear as possible. It is 
also worth noting that the angle between image gradient and 
actual displacement is involved in the model predicting the 
so-called pattern-induced bias (see details in [21]) but this 
link is not explicit, so it can only be said that collinearity 
between image gradient and actual displacement influences 
this type of systematic error.

Poisson Image Editing: a Tool to Define 
Patterns Suited to a Given Displacement 
Field

Principle

The problem at hand is to define a pattern in such a way 
that the orientation of the image gradient is as collinear 
as possible to the displacement, the direction of the latter 
at any point being a priori known. However, other con-
straints shall also be accounted for to obtain high-quality 
DIC measurements. In particular and as recalled in the 
introduction, sensor noise propagation is inversely pro-
portional to image gradient, so the latter quantity must be 
sufficiently high to limit noise propagation. We will see 
in “Patterns Considered in this Study and Quality Assess-
ment of the Displacement Field Returned by DIC” below 
that directly integrating the displacement field considered 
as the image gradient leads to a rather smooth image. As 
such, it cannot be used as a pattern deposited onto a speci-
men for DIC measurement. A texture shall therefore be 
superimposed to this displacement. The main problem is 
to seamlessly account for the high-contrast texture while 
integrating the displacement, the latter giving the global 
direction of the image gradient. The method employed 
here to reach this goal is inspired by that proposed in [28], 
where images are touched up by manipulating the gradient 
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field of the luminance image, more precisely by attenuat-
ing the magnitude of large gradients, and then resolving 
the Poisson equation to render the modified image. This 
approach was then extended in [29], where the so-called 
Poisson Image Editing (PIE) was introduced to perform 
seamless cloning of images. This method is now very 
popular in the image processing and computer graphics 
communities, as illustrated by various types of examples 
dealing for instance with local illumination changes [30], 
concealment  [31], object insertion  [32], image stitch-
ing [33], texture flattening [29] or seamless tiling [29]. 
These examples illustrate the versatility and the power of 
PIE to clone images. However, it seems this technique 
has never been used so far to define patterns for DIC. We 
therefore briefly explain below how it works. The proce-
dure consists in searching for a function I  whose gradient 
is the closest, in the least squares sense, to a given “guid-
ance vector field”, a term coined by the authors of the 
seminal paper for this approach [29]. This guidance vector 
field, denoted here by g , is supposed to be differentiable. 
This leads to the following variational problem

where :

• R represents the image domain;
• C

2(R) represents the set of real functions twice differ-
entiable over R;

• I  is the unknown image to be retrieved.

Neumann boundary conditions are considered in [28], while 
Dirichlet ones are used in [29]. Since we have here an a 
priori knowledge on the displacement and since the latter 
serves as a guide for constructing the desired image I  , it 
seems logical to use here Neumann boundary conditions.

The unique solution I  of this minimization problem 
satisfies the Euler-Lagrange equation associated to this 
variational problem. This leads to the so-called Poisson 
equation [28]:

with homogeneous Neumann boundary conditions, which 
write as follows:

where �R is the boundary of the domain R over which the 
image is defined. Equation (3) is nothing but the so-called 

(2)min
I∈C2(R)∫R

∥ ∇I − g ∥2 dx

(3)ΔI = divg,

(4)∇I ⋅ n ∣�R= 0,

Poisson equation, which is of broad utility in various 
branches of physics.

Resolution

Various numerical strategies have been proposed in the 
literature to resolve the problem defined above. Since we 
deal here with complete images which are rectangular by 
essence, the Fourier approach described in [32, 34] is well 
adapted. The main steps of this method are given in this 
section.

Since the procedure relies on the Discrete Fourier 
Transform (DFT), it is recalled that the DFT of any peri-
odic bidimensional function X, which represents here an 
image defined over a grid of dimensions M × N , is defined 
as follows :

with i2 = −1 , and the Inverse Fourier Transform :

It is also recalled that the Fourier transforms of the partial 
derivatives of any function X are merely equal to :

The guidance vector g being in general not periodic, the 
first step is to define from g a so-called “extended guidance 
vector” denoted by � , which is periodic. This is made by 
duplicating both the components of g by applying a mirror 
symmetry to each of them, with respect to a vertical line 
for gx and an horizontal line for gy , see Fig. 1(a) and (b). 
This leads the extended guidance vector � to be periodic, 
see Fig. 1(-c). Following the procedure defined in [35], a 
zero padding is also applied so that the Neumann boundary 
conditions are satisfied.

J  is obtained by taking the DFT of both sides of the Pois-
son equation given in equation (3) applied to J  instead of I  . 
This leads to :

(5)X̂(u, v) =

M−1∑
x=0

N−1∑
y=0

X(x, y)e
−2�i

(xu
M

+
yv

N

)

,

(6)X(x, y) =
1

M × N

M−1∑
u=0

N−1∑
v=0

X̂(u, v)e
2�i

(xu
M

+
yv

N

)

.

(7)�̂X

�x
(u, v) =

2�iu

M
X̂(u, v) and

�̂X

�y
=

2�iv

M
X̂(u, v).

(8)

[(
2�i

M

)2

u2 +

(
2�i

N

)2

v2
]
Ĵ(u, v)

=

(
2�i

M
u

)
Ĝx(u, v) +

(
2�i

L
v

)
Ĝy(u, v).

1096 Experimental Mechanics (2022) 62:1093–1117



The DFT coefficients characterizing the Fourier transform 
of the solution of the Poisson equation are therefore defined 
by :

J (0, 0) is a constant of integration. It is chosen to be equal 
to the mean value of the output image I  . Taking the inverse 
Fourier transform of Ĵ  provides an image denoted by J  , and 
this “big” image contains the sought image I  as well as its 
duplicates. I  is therefore extracted form J  by removing the 
duplicates and the zero padding.

Patterns Considered in this Study 
and Quality Assessment of the Displacement 
Field Returned by DIC

Procedure

Different patterns were studied here. Two cases will be dis-
tinguished. Patterns of “Type 1” which are “classically” 
defined, thus independently of the actual displacement 
field, were considered first. The actual displacement field 
was then taken into account in the design process of the 
patterns of “Type 2”, so that the gradient the pattern image 

(9)Ĵ(u, v) =

⎧
⎪⎪⎨⎪⎪⎩

�
2�i

M
u
�
Ĝx(u, v) +

�
2�i

N
v
�
Ĝy(u, v)

�
2�i

M

�2

u2 +
�
2�i

N

�2

v2

, u = 1⋯ (M − 1), v = 1⋯ (N − 1),

J(0, 0) ∈ ℝ, u = 0, v = 0.

is as collinear as possible to the direction defined by the 
actual displacement. The procedure described in “Poisson 
Image Editing: a Tool to Define Patterns Suited to a Given 

Displacement Field” above was used to design these latter 
patterns.

These different patterns were considered in turn to 
define reference images. These reference images were then 
deformed through a given displacement field described in 
“Displacement Field Under Study”. The gray value at the 
pixels of the deformed images were obtained by numeri-
cally integrating the value of the gray level in the reference 
image, at the points which are the preimages of the 3 × 3 
Gauss points regularly spaced in any pixel of the image of 
the deformed configuration, and by taking the closest inte-
ger value of the result. The coordinates of the preimages 
were obtained by using a fixed-point algorithm. Note that 
when the gray level distribution in the reference images was 
given by a closed-form equation, such as for Patterns #2-4 
described below, the gray level at any pixel of the reference 
images was also obtained by numerically integrating the 
value returned by the closed-form expression at the Gauss 
points, so that the procedure used to obtain these images was 
the same as that used for the other images.

0 0 0

-c-b-a

d-

Fig. 1  Schematic view illustrating the construction of � , J  and I  . a- Mirror symmetry + zero padding applied to gx to construct �x . b- Mirror 
symmetry + zero padding applied to gy to construct �y . c- resulting vector � . d- Image I  is obtained by considering the top right quarter of J  
and removing the zero padding
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DIC was applied by using first-order subset shape func-
tions. The subset size was equal to 21 pixels and the shift 
between two measurements was set to one, as in recent stud-
ies dealing with the ultimate performance of DIC, see [36] 
for instance. The parameters which govern the DIC calcula-
tions are gathered in Table 1, as suggested in [37].

Estimation of the Systematic and Random Errors 
for Each Pattern

Any pair of reference/deformed image was processed by 
DIC and two types of errors, namely the systematic error 
and the random error, were evaluated. The systematic error 
was assessed by comparing the displacement field returned 
by DIC and a reference displacement field. However, DIC 
cannot do better than providing the actual displacement 
field convolved by a Sawitzky-Golay filter, as stated in [38], 
numerically verified in [22] and finally demonstrated in [21]. 
This Savitzky-Golay filter is driven by the order of the subset 
shape function and by the size of the subset used in the DIC 
calculation [39]. Consequently, the systematic error was esti-
mated by subtracting pixelwise the displacement field given 
by DIC and the reference displacement field convolved by 
the Sawitzky-Golay filter corresponding to the subset size 
and the degree of the subset shape functions used for the 
DIC calculations (see Table 1). The mean value of the norm 
of the vector representing this difference at any pixel enables 
us to assess the systematic error. This mean value is denoted 
by Ms . It will be provided in the results presented below.

For each pattern, the random error was estimated by cal-
culating the standard deviation of the difference between 
the displacement maps obtained with noisy images and their 
counterparts obtained with noiseless images. This standard 
deviation was estimated pixelwise for both Ux and Uy by 
using 100 pairs of reference/deformed images, each of them 
being affected by different copies of the noise. The global 
standard deviation for all the images, denoted by �g , was 
finally estimated by considering the standard deviation of the 
norm of the random part of the displacement at any pixel, 
thus:

where M × N is the size of the images, �x and �y represent 
the standard deviation of the displacements Ux and Uy along 
the x- and y-directions, respectively. xi and yj , 
i = 1⋯M, j = 1⋯N are the coordinates of the pixels where 
these two quantities are estimated. The noisy images were 
obtained by adding a heteroscedastic noise to reliably mimic 
typical sensor noise of actual linear cameras [40, 41]. In this 
case, the variance �2 of the camera sensor noise is an affine 
function of the brightness s, thus �2 = a × s + b . We have 
here a = 0.0342 and b = 0.2679 to be consistent with the 
values already used in the DIC Challenge 2.0,  [42] for 
instance. Finally, the Root Mean Square Error (RMSE) 
defined by RMSE =

√
M2

s
+ �2

g
 was calculated and consid-

ered as a global indicator of the performance of each 
pattern.

The two types of pattern considered in this study are now 
described in turn in the following sections.

Case 1: Patterns of Type 1 Designed Independently 
of the Actual Displacement Field

Pattern #1: “Classic” speckle

Random speckle patterns are generally used for DIC meas-
urements. According to [2], a good speckle pattern should be 
highly contrasted, stochastic and isotropic. We consider here 
the speckle represented in Fig. 2(-a) as a typical example.

Recent open-source tools have been recently proposed 
in the literature to design and print random speckle patterns 
suitable for DIC, see [43–45] for instance. We employed 
here the speckle image rendering program described in [45] 
to obtain a speckle image. This image was then integrated 
by using the numerical procedure described in [46], apart 
from the fact that 3x3 Gaussian numerical integration was 
performed instead of a Riemann sum because the former 
is expected to be more accurate than the latter. The refer-
ence speckle image was not deformed with the procedure 
described in [46] because this latter technique is only avail-
able for random speckle patterns and not for periodic ones 
such as those discussed in this study (checkerboards for 
instance). The same procedure was therefore used to obtain 
the whole set of eight image patterns for the sake of consist-
ency It can be checked that as suggested in [47, 48], the 
dots are sampled with about 3 pixels, and choosing a subset 
size of 21 pixels leads to have about 3 dots in average along 
each direction.

(10)�g =

�∑M

i=1

∑N

j=1
�2
x
(xi, yj) +

∑M

i=1

∑N

j=1
�2
y
(xi, yj)

M × N

Table 1  Experimental DIC settings and performances

* SSD: Sum of Squared Differences

Technique used 2D image correlation

Subset Size 21 × 21 pixels
Shift 1 pixel
Shape function First-order
Interpolation function Spline polynomial
Correlation criterion SSD*

Pre-smoothing applied to the images None
Camera 8 bit, 6576 × 4384 pixels
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Pattern #2: speckle optimized according to [10]

The distribution of the dots in the preceding pattern is ran-
dom. It is somewhat arbitrary to choose this one instead 
of any other that the reader could consider as being better. 
Hence we chose here a random pattern generated with the 
procedure proposed in [10] since such patterns are often 
considered as optimal in the DIC community. Such a gray 
level distribution, denoted here by Ispk1 , is represented in 
Fig. 2(-b). It was obtained by using the rendering program 
used in [49]. The specklesize parameter driving the fine-
ness of the texture was chosen to be equal to 6 pixels. It 
can be seen on the closeup view that this type of pattern is 
random despite its marbled aspect.

Pattern #3: checkerboard

A good pattern should be highly contrasted. This can be 
achieved with neighboring pixels featuring the largest pos-
sible difference between their gray levels. As discussed 
in [11], the best pattern with respect to this criterion is the 
checkerboard. However, the problem is that checkerboards 
are periodic, so DIC cannot successfully process them if the 
actual displacement is greater than the period of this pattern. 
In addition, strong image gradient may potentially increase 
interpolation bias [12]. We propose however to examine this 

case for two reasons. First DIC can be successfully applied 
on this type of pattern for displacements remaining lower 
than the period of the checkerboard in amplitude, so this 
case gives an idea of the ultimate performance that can be 
achieved with DIC. Second, as discussed in [22] and under 
mild assumptions, the minimization of the optical residual 
can advantageously be switched from the spatial to the fre-
quency domain in this case. In this case, the displacement 
field is not extracted from the images with DIC, but with a 
spectral method [18, 22, 50]. According to those references, 
the benefit is threefold. First, displacement greater in ampli-
tude than the period of the checkerboard can be measured. 
Second, the calculation time is much lower than that of DIC. 
Third, the metrological performance is similar to that of DIC 
when the displacement is lower than the period [23], which 
means than considering this type of pattern gives an idea of 
the metrological performance which could be reached with 
a spectral method for any value of the displacement. Inves-
tigated further this comparison between DIC and spectral 
methods is out of the scope of this paper. The reader inter-
ested in this comparison is referred to [22, 23, 50].

Checkerboard patterns can easily be generated by using 
the following periodic function fCKB0

(11)fCKB0
(x, y) = cos

(
2�

p0
x

)
cos

(
2�

p0
y

)

Fig. 2  Patterns of types 1 and 2
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where p0 is the period of the checkerboard. As discussed 
in [23, 50], choosing p0 = 6 pixels is a value leading to a 
good tradeoff between the unavoidable effect of the Point 
Spread Function of the lens, which decreases the contrast in 
such images if the size of the dots is small [51], and the need 
for using low values of the period such as p0 = 6 to get a 
small spatial resolution. The value of fCKB0

 lying between −1 
and +1, the gray level distribution for a checkerboard, 
denoted here by ICKB , is obtained by considering 
ICKB =

255

2
×
(
fCKB0

+ 1
)
 for images defined with a gray 

depth of 8 bits. The gray value at any pixel of the deformed 
images was obtained by numerically integrating the value of 
the gray level given by the continuous function at the 3 × 3 
Gauss points regularly spaced in any pixel of the image, and 
by taking the closest integer value. A checkerboard obtained 
with a value of p0 = 6 pixels is shown in Fig. 2(c).

Pattern #4: small checkerboard inlayed in a larger one

As recalled above, pure checkerboard patterns cannot be 
used with DIC if the sought displacement is greater than 
its period p0 . As explained in [11], it is necessary to depart 
from this pattern so that DIC becomes able to retrieve dis-
placement greater in amplitude than p0 . We propose here 
to consider a second checkerboard featuring a much larger 
period than the one shown in the preceding case, so that 
coarse graining as described in [52] applied on this pat-
tern provides a first rough but reasonable estimation of the 
displacement. This rough estimation is then used to fix the 
initial values for DIC applied without coarse graining. This 
pattern is merely obtained by keeping the same period of 
the checkerboard described above (thus 6 pixels), and by 
slightly enlarging the signal over one half of this period over 
squares, which are much greater in size than those of this 
first checkerboard. These bigger squares form another check-
erboard with a period p1 , which is much larger than p0 . In 
addition to returning displacements lower in amplitude than 
p0 = 6 pixels, DIC can reliably return displacement which 
can at most be equal to the period of the large checkerboard. 
The period p1 of this large checkerboard is chosen here to 
be equal to 8 times that of the small checkerboard, thus to 
p1 = 6 × 8 = 48 pixels. This choice is arbitrary. It is only 
driven by the maximum displacement that is expected to be 
correctly measured by DIC.

Denoting by fCKB1
 the modulating function of the large 

checkerboard of period p1 , fCKB1
 has the same expression as 

fCKB0
 in equation (11) above, but p0 is changed into p1 . The 

following modulating function fCIC has been used to gener-
ate the large checkerboard inlayed in the small checkerboard. 
It depends on both the generating functions of the small and 
large checkerboards fCKB0

 and fCKB1
 . Thus

.
a is parameter used to adjust the difference in intensity 

between the two types of big squares in the large checker-
board of period p1 . Compared to the precedent case, we can 
see that this bi-periodic modulation is defined piecewise, 
with a different affine function over each part of the domain. 
It can be checked that fCIC lies between −1 and 1, as the 
other modulation functions defined above. This enables us 
to define the image ICIC of the large checkerboard inlayed in 
the small checkerboard by scaling fCIC between 0 and 255, 
thus ICIC =

255

2
× (fCIC + 1) . This pattern becomes a mere 

checkerboard (like Pattern #3) if a = 1 . We chose here a = 2 
so that the two types of big squares forming the large check-
erboard of period p1 can easily be distinguished. Figure 2(-d) 
shows the pattern obtained with this procedure with a = 2.

Case 2: Patterns of Type 2 Designed by Accounting 
for the Actual Displacement Field

The idea is now to design patterns suited to a given dis-
placement field by using the procedure explained in “Poisson 
Image Editing: a Tool to Define Patterns Suited to a Given 
Displacement Field” above. Image gradient shall therefore 
be taken into account in some way in the design procedure 
of the patterns. Since these patterns now depend on the dis-
placement field, it is necessary to examine the performance 
of this approach with an example for which the displacement 
is known a priori. We considered here the case of an open-
hole specimen subjected to a tensile test. We first briefly 
recall the closed-form expression for the displacement field 
obtained in this case. This analytical displacement field will 
then be used to design the patterns of Type 2 studied here.

Displacement Field Under Study

Closed‑form solution

We consider an open-hole specimen, see schematic view 
in Fig. 3.

We assume that the closed-form expression for u is given 
by the solution obtained by integrating the equations avail-
able in elasticity (equilibrium, constitutive equations, rela-
tionship between displacement and strain components) in 

(12)

fCIC =

⎧
⎪⎪⎨⎪⎪⎩

fCKB0
if fCKB1

≤ 0

2a

1 + a
fCKB0

+
1 − a

1 + a
if fCKB1

> 0 and fCKB0
> 0

2

1 + a
fCKB0

+
1 − a

1 + a
if fCKB1

> 0 and fCKB0
≤ 0
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the case of an infinite plate with a hole, this plate being 
subjected to a homogeneous tensile loading [53]. The spec-
imen shown in Fig. 3 is not really infinite in dimension, 
so the displacement field proposed here is not exactly the 
one that occurs in the specimen shown in Fig. 3. However, 
this approximation has no impact on the discussion on the 
results offered below. The closed-form expression for the 
displacement displacement in polar coordinates ( e

r
,e

�
 ) is 

given by [53]:

where a is the radius of the circular hole, (r, �) are the polar 
coordinates, E is the Young’s modulus of the constitutive 
material, � its Poisson’s ratio and �∞ the traction applied 
along the boundary. Further calculations being carried out 
in Cartesian coordinates, the solution given by equation (13) 
above shall be converted from polar to Cartesian coordi-
nates, which gives:

Note that this solution is given with an origin for the dis-
placement placed at the center of the hole. In practice how-
ever, the actual origin depends on the point which remains 
fixed. Constant values denoted by �x and �y can therefore 
be added to ux and uy , respectively. This choice is arbitrary 
but it drives the location of the origin considered for the 
displacement. These values will be carefully discussed later 
on in the paper.

(13)
ur(r, �) =

�∞

2E

[
(1 + �)

(
a2

r
+

(
r −

a4

r3

)
cos 2�

)
+ (1 − �)r +

(
4a2

r
cos 2�

)]

u�(r, �) = −
�∞

2E

[
(1 + �)

(
1 +

a4

r4

)
r + (1 − �)

2a2

r

]
sin 2�

,

(14)
{

ux = ur cos � − u�sin �

uy = ur sin � + u�cos �
.

Direct integration of the normalized displacement field

Obtaining an image with a gradient which is proportional to 
the actual displacement field is merely obtained by integrat-
ing the two components of this displacement field given in 
equation (15). This displacement is normalized to have the 

same magnitude at any point. Indeed, it is worth remem-
bering that only the direction of the gradient (and not its 
modulus) is necessary here to align as much as possible the 
gradient of the pattern with the displacement. The gradient 
of the sought image denoted by I  is therefore expected to be 
close if not equal to the guidance vector g such that:

where ||u|| denotes the norm of vector u . This integration is 
performed by resolving numerically the Poisson equation as  
described in “Poisson Image Editing: a Tool to Define Patterns  
Suited to a Given Displacement Field”, and by considering here  
that the origin is at the center of the hole (thus �x = �y = 0 ). 
The image I  given by this procedure is depicted in Fig. 4.

(15)

g =
u

||u||
=

u√
(ux)

2 + (uy)
2

Fig. 3  Schematic view of the open-hole specimen under study
Fig. 4  Image I  obtained by considering that the guidance vector is 
equal to the normalized displacement 

u

||u||2 , u being defined by equa-

tions (13)–(14)
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The main remark is that the contrast of this image is too 
poor to be used alone as a pattern for DIC measurement. In 
fact, I  is much too smooth and a texture shall therefore be 
superimposed in some way. The solution was to increase 
the local gradient of this pattern while globally keeping the 
direction given by the gradient of I  . Directly multiplying 
image I  obtained above by the modulation functions gener-
ating checkerboard patterns like Patterns #3 and # 4, namely 
fCKB0

 and fCIC defined in equations (11) and (12), and rescal-
ing the result to have a gray level lying between 0 and 255, 
automatically increases the local gradient of I  . The problem 
is however that the amplitude of the contrast in the resulting 
images would be low in the regions where the amplitude of 
I  is low itself. The idea was therefore to modulate directly 
the gradient of I  . Two routes were investigated to reach this 
goal. The first one was to plot the level lines of I  because 
the direction of these lines and their normal directly give 
the local orientation of the displacement. The second one 
consisted in multiplying in turn the displacement field by 
the modulation functions of Patterns #3 and 4, and then in 
integrating the resulting product by using PIE, so that both 
the effect of the actual displacement and the texture are 
accounted for in the gradient of the resulting pattern. These 
approaches are briefly described in the following sections.

Pattern #5: level lines of I

Level lines can easily be deduced from I  by using the mod 
function of Matlab and thresholding the result. These level 
lines were serrated so that the image gradient along the 
direction perpendicular to the lines of greatest slope was not 
null. A typical example is shown in Fig. 2-e. It was obtained 
with �x = −6 pixels, �y = 0 to be consistent with other dis-
placement fields discussed below.

With this pattern, a problem is that the gray level distri-
bution is flat between two consecutive lines, which is not a 
good point. Other patterns were therefore defined by inlay-
ing various checkerboard images between these lines but the 
performance of DIC applied on this type of pattern was quite 
low, so these patterns are not presented here.

Patterns #6 to #8: Poisson image editing 
on the displacement field modulated with Patterns #2 to #4

Principle The second route considered here was to enhance 
the contrast by multiplying the displacement field in turn 
with the modulation function considered for Patterns #2 
to #4. The modulation functions are fCKB0

 and fCIC for Pat-
terns #3 and #4, respectively. For Pattern #2, this is a func-
tion fspk1 , which is easily deduced from the gray distribution 
Ispk1 for this pattern:

The product of the displacement field by this modula-
tion function does not change the local gradient, which is 
therefore still given by the displacement alone. However, 
after applying PIE, it can be checked that the gradient of 
the resulting pattern is locally dominated by the gradient of 
the modulation function used to enhance the local contrast. 
It means that with this approach, the objective of aligning 
image gradient with the displacement field with can only 
be reached at a global level and not really at the local one, 
“global level” meaning for instance for a checkerboard a 
zone containing an integer number of periods.

Pattern #6, which is obtained by multiplying the displace-
ment field by fspk1 deduced from Pattern #2 (see equation 
(16)) and applying PIE, is depicted in Fig. 2(-f). Patterns #7 
and #8 need special attention. They are discussed in the fol-
lowing two paragraphs.

Removing the fading effect for Pattern #8 For Pattern #8, 
the modulation of the gradient must be considered with care. 
Indeed, the mean value of fCIC , which is the modulation 
function used in this case, is not null. Resolving the Pois-
son equation leads this non-null mean value to give rise to 
linear expressions of x and y in the gray level distribution 
of the resulting image. These expressions cause a fading of 
the checkerboard pattern to occur, and the contrast of the 
local texture is eventually low. This issue was overcome by 
directly removing this mean value from fCIC , thus giving a 
new modulation function denoted by f ′

CIC
 . The mean value 

of fCIC was estimated piecewise to elaborate f ′
CIC

 , over the 
squares forming the large checkerboard for Pattern #4. This 
procedure significantly diminishes the contrast between 
bright and dark large squares for the pattern directly deduced 
from f ′

CIC
 . Hence DIC directly applied on this type of pattern 

gives results which are worst than those obtained with  fCIC . 
On the contrary, when Poisson Image Editing is applied, this 
“fading effect” is removed and the contrast is enhanced. This 
eventually leads DIC to converge in any case, and obtained 
results are better than those got with Pattern #4, see “Simu-
lations” below.

Problem caused by ∣ gx ∣=∣ gy ∣ for Patterns #7 and #8 For 
Patterns  #7 and  #8, a specific problem arises when ||||
�I

�x
× fCKB0

|||| =
||||
�I

�y
× fCKB0

|||| , where ∣ x ∣ denotes the absolute 

value of x. The same phenomenon occurs for Pattern #8 
when 

||||
�I

�x
× f �

CIC

|||| =
||||
�I

�y
× f �

CIC

|||| . Indeed, in this case and con-

sidering that the origin is at the center of the hole, 
( �x = �y = 0 ), PIE provides a pattern with a texture oriented 
along the ± �

4
 directions in some zones. If these zones are 

(16)fspk1 =
(
Ispk1 − mean

(
Ispk1

))
∕255
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too wide, image gradient is mainly oriented along one direc-
tion only over some subsets when applying DIC, which 
causes instabilities to occur along the direction perpendicu-
lar to this nearly unique gradient orientation. In other words, 
the displacement rendered by DIC is more prone to noise. 
The problem can be resolved by applying two types of 
corrections:

• Correction 1: searching for the corresponding zones, 
which is quite an easy task since they are characterized 
by an image gradient oriented along the �

4
+ k

�

2
 direc-

tions, k being an integer. These points are collected and 
the local orientation at these points is replaced by a con-
stant angle close but different to �

4
+ k

�

2
 . The new angle 

is indeed chosen to be equal to the value along the border 
of the region gathering the points where the displacement 
gradient belongs to one of the following sets: 
(
�

4
+ k

�

2
± �), � ≠ 0 . It means that within this region, 

image gradient is constant and is not rigorously aligned 
with the displacement. Another consequence is to induce 
a discontinuity in the image gradient in the middle of 
each of these regions, with an amplitude equal to 2� . 
Figure 5 shows the different regions affected by this cor-
rection for three particular values for � , namely 
� =

�

24
,
�

12
 and �

6
 . The location of the discontinuity 

affecting image gradient is also visible at the middle of 

each region characterized by � = ±
�

24
 . The effect of this 

correction is illustrated in Fig. 6. It can be seen that both 
the systematic error and the random error decrease as 
� increases. The closeup views in Fig. 6(a) shows one of 
the zones of the pattern where the errors are maximum. 
It is worth noting that in this zone, the pattern reduces to 
some parallel lines. The gradient is clearly oriented along 
a direction close (if not equal) to �

4
 , so the gray level 

derivative along the lines themselves is tiny, thus not suf-
ficient to insure a robust determination of the displace-
ment by DIC in this zone. The effect of an increasing 
value of � is illustrated in Fig. 6(d), (g) and (j). A line 
breaking the regular arrangement of the pixels along the 
−
�

4
 progressively emerges, which provides an increasing 

robustness in the determination of the displacement by 
DIC. Slight welts are also visible. They are caused by the 
modulation of the image gradient by the displacement, 
which is accounted for in the construction of the pattern.

• Correction 2: changing the arbitrary values of �x and �y . 
These quantities were defined in “Displacement Field 
Under Study” above. They directly influence the local 
gradient orientation at any point since they determine the 
location of the origin of the displacement defined in 
equation (14) above, and used to build up the pattern. 
Thus changing them is a convenient way to adjust the 
local image gradient orientation so that it is neither equal 
nor nearly equal to ±�

4
 at any point of the field under 

interest. It also means that the pattern itself also changes.
  This remark underlines the fact that the pattern 

returned by PIE depends on the choice of the origin cho-
sen to define the displacement which gives the global 
orientation of the image gradient. For real experiments 
however, a difference may exist between the real origin 
and the one which is used to define the pattern by using 
PIE, for instance if the specimen is sliding within the 
grips of the testing machine in the case of a tensile test. 
The question is to know to what extent this mismatch 
between these two origins (the assumed one used to ren-
der the pattern and the real one) impacts the quality of 
the results. The following simulation was performed to 
answer this question in a particular case. The value of 
(�x, �y) was first arbitrarily chosen to be equal to 
(�x, �y) = (−6, 0) pixels and PIE was applied to render a 
pattern which was such that the image gradient orienta-
tion was neither equal nor nearly equal to ±�

4
 at any 

point of the zone around the hole. The displacement 
considered for deforming the pattern was then succes-
sively equal to (−6, 0) ,  (−9, 0) ,  (−9,−3) and 
(−12,−6) pixels. A mismatch is therefore deliberately 
introduced in the last three cases between the origin of 
the displacement field used to design the pattern and the 

Fig. 5  Three different angular portions for Correction  1. The differ-
ent regions affected the correction are reported along with the cor-
responding value of �
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Fig. 6  Effect of Correction 1. From the left to the right: pattern, systematic error and random error after correction of the gradient direction. From the 
top to the bottom: no correction ( � = 0 ), � =

�

24
,
�

12
,
�

6
 . On the left-hand side, the vertical rectangles bounded by white lines correspond to the zones 

where the closeup views are given
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origin of the displacement field actually deforming this 
pattern. The errors found in each case is reported in the 
diagram depicted in Fig. 7. It can be seen that nearly the 
same result is obtained in each case. This is probably the 
consequence of the fact that changing the origin only 
slightly changes the orientation of the displacement 
field, the actual one being mainly dominated by the ori-
entation of the loading itself since we deal here with a 
tensile test. Moreover, strain fields do not change when 
changing the location of the origin.

The RMSE obtained after applying Correction 1 with 
� =

�

6
 is equal to 1.46 E − 03 . The RMSE after applying 

Correction 2 is equal to 1.23 E − 03 , which means that the 
latter is more efficient than the former. This result is likely 
due to the fact that in the first case, image gradient is not 
rigorously collinear to the actual displacement over the zone 
impacted  by  the  cor rec t ion .  In  conclus ion , 
(�x, �y) = (−6, 0) pixels was used to render Patterns #5 et #8 
discussed above and depicted in Fig. 2. It is also worth men-
tioning that this type of correction shall be used only if the 
texture is oriented along one of the ±�

4
 directions, which was 

the case in the example discussed here. If this is not the case, 
no correction is applied (see Fig. 8).

Simulations

Procedure

The objective here is to illustrate with some examples to what 
extent using a pattern rendered by the procedures defined 
above improves the quality of the results obtained by DIC used 
with a classic speckle pattern. We consider the open-hole spec-
imen defined in “ Displacement Field Under Study” above. 
The different patterns were considered in turn to define the 
reference image. These images where then deformed through 
the displacement field defined by equations (13) and (14). 
Two values for the displacement of the left- and right-hand 
sides were chosen. The first value is ± 3 pixels. It corresponds 
to a case for which the displacement remains lower than the 
period of the checkerboard characterized by p0 = 6 pixels. 
The second one is equal to ± 12 pixels. It is greater than p0 
but lower than p1 characterizing the large checkerboard since 
p1 = 48 pixels. These two cases are referred to as the “small” 
and the “large” displacement cases, respectively.

All pairs of reference/deformed image were processed by 
DIC by using the settings described in Table 1. Noisy and 
noiseless images were considered in turn and the systematic 
and random errors as defined in “Estimation of the System-
atic and Random Errors for Each Pattern” were estimated for 
each pattern, which enabled us to compare their performance.

Fig. 7  Errors for different loca-
tions of the origin
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Results

Figures 8 and 9 show the spatial distribution of the system-
atic error obtained for Patterns of types 1 and 2, respec-
tively, and Figs. 10 and 11 the distribution of the random 
error. They concern the small displacement case. The 
maps obtained in the large displacement case are gathered 
in Figs. 12 and 13. The same colorbar is adopted for all 
the patterns in order to facilitate the comparison between 
the results. The systematic and random errors are given in 
Fig. 14. The following comments can be drawn from these 
results:

• For small displacements, ranking the different patterns 
with respect to their RMSE leads to the following order 
when going from the best to the worst: #3, #8, #7, #4, 
#6, #2, #1, #5. The checkerboard (Pattern #3) is the best 
one, which confirms the conclusion given in [11, 23]. 
This is due to the fact that such a pattern exhibits a high 
image gradient [11], and that the pattern-induced bias 
is observed to be lower for periodic patterns like check-
erboards than for classic random speckle patterns [19, 
21]. The checkerboard pattern is closely followed by 
Pattern #8 ( RMSE = 1.23E − 03 for the latter instead 
of 1.21E − 03 for the former). The systematic error is 

smaller with Pattern #8. This is probably due to the fact 
that the orientation of the displacement is accounted 
for in the design of Pattern #8, which is not the case 
for Pattern #3. The random error is however lower for 
Pattern #3, which is logical since the image gradient is 
the highest possible in this case, but combining both the 
systematic and random errors gives the advantage to Pat-
tern #3 with a small gap. The problem is that DIC does 
not converge with Pattern #3 for large displacements. A 
spectral method should be used instead [23] but includ-
ing the results obtained in this case is out of the scope of 
the present paper. The reader is referred to [23] for more 
details.

• For large displacements, DIC converged only for five pat-
terns, and ranking them with respect to the RMSE leads 
to the following order: #8, #4, #6, #2, #1. By combining 
the results obtained in both the small and the large dis-
placement cases, Pattern #8 can be considered as the best 
pattern for DIC of the eight examined here.

• Comparing Patterns #8 (RMSE = 1.23E − 03 for small 
displacements and RMSE = 1.20E − 03 for large dis-
placements) and #4 (RMSE = 1.97E − 03 and RMSE 
= 1.89E − 03 , respectively) shows that accounting for the 
displacement in the definition of the pattern leads to a 
decrease of the RMSE of 38% and 37% for the small and 

Fig. 8  Distribution of the 
systematic error for the four pat-
terns of type 1. Small displace-
ment
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large displacement cases, respectively. The same remark 
holds for Patterns #6 (RMSE = 2.47E − 03 and RMSE 
= 2.83E − 03 , respectively) and #2 (RMSE = 3.14E − 03 
and RMSE = 3.55E − 03 , respectively), with a decrease 
of the RMSE of 21% and 20% for the small and large dis-
placement cases, respectively. This bears witness to the 
fact that accounting for the displacement in the pattern 
design improves the metrological performance of DIC.

• Comparing Patterns #7 ( RMSE = 1.34E − 03 ) and #3 
( RMSE = 1.22E − 03 ) shows that on the contrary, apply-
ing PIE to the checkerboard alone does not improve the 
metrological performance for small displacements. Sub-
tracting both patterns (not shown here) shows that the 
displacement accounted for in the design of Patterns #7 
does not really impact it, which is not the case for Pat-
terns #6 and #8 or  #2 and #6. A possible reason is that 
the frequency of the checkerboard in Patterns #7 is too 
high to be influenced by PIE. The fact that the welts in 
Patterns #8 affects the border between the two types of 
checkerboards involved in Patterns #4 seems to show that 
PIE only affects frequencies lower than the frequency of 
the checkerboard alone.

• As mentioned above, DIC converged for only five pat-
terns (#1, #2, #4, #6 and #8) in the case of large dis-

placements. The reasons are as follows. Pattern #3 being 
periodic, DIC converges to a local minimum in the large 
displacement case. For Pattern #5, DIC does not converge 
to the solution because there is no gradient between the 
level lines in some zones. Tightening these lines is not 
really possible, the distance being already quite small in 
some regions of this pattern, see Fig. 2(-e). Attempts to 
inlay local contrast in these flat zones by adding a check-
erboard of various periods did not improve the results. 
DIC does not converge for Pattern #7 because the perio-
dicity of the small checkerboard is not sufficiently modi-
fied by the modulation by the displacement.

• Comparing the results obtained with Patterns #1 and #2 
illustrates the improvement brought about by controlling 
the shape of the random speckles as proposed in [10]. 
Observing the spatial distribution for the systematic error 
in Fig. 8(a) and (b), and for the random error in Fig. 10(a) 
and (b), shows that the systematic error diminishes when 
going from Pattern #1 to #2, while the random error is 
slightly lower for Pattern #1.

• The total error is about 7 times greater for Pattern #1 than 
for Pattern #8 ( 9.01E − 03 and 1.23E − 03 , respectively). 
As a general remark, this illustrates the benefit of using 
optimized patterns in DIC instead of classic random ones.

Fig. 9  Distribution of the 
systematic error for the four pat-
terns of type 2. Small displace-
ment
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Numerical Evidence of the Influence of Image 
Gradient Orientation on the Quality of the Results 
Obtained with DIC

We propose here to illustrate and quantify the effect of col-
linearity between image gradient and displacement field by 
reconsidering the best pattern above, namely Pattern #8. 
Indeed, special attention was paid to perfectly aligning the 
image gradient with the displacement field given by equa-
tions (13) and (14). The idea here is to consider a pattern, 
which is expected to be the worst case if the objective is to 
align both fields. Indeed, we considered an image, for which 
the gradients are perpendicular instead of collinear to the 
displacement field. For this, the normalized displacement 
given by equation (15) was rotated at any point by �

2
 . This 

new normalized displacement was multiplied by the modulat-
ing function of Pattern #4, and the result was integrated by 
applying PIE, which gives Pattern #8bis. Both Patterns  #8 
and  #8bis are depicted in Fig. 15. The RMSE value for Pat-
tern #8 is equal to 1.23 E − 03 pixel while its counterpart for 
Pattern #8bis is equal to 1.49 E − 03 pixel, which is 21% 
higher. Interestingly, the systematic error is nearly the same 
for both patterns. Only the random pattern increases when 
considering Pattern #8bis instead of Pattern #8. This result 

supports the rationale that the image gradient should be col-
linear to the displacement, and quantifies the benefit of this 
approach in this particular case. As a final remark, the reader 
might be surprised to see that the RMSE value for Pattern #4 
( RMSE = 1.97E − 03 ) does not lie between the RMSE values 
of Patterns #8 and #8bis. The reason is the local average of 
the gray level distribution is removed for Patterns  #8 
and #8bis, as explained in “ Patterns #6 to #8: Poisson Image 
Editing on the Displacement Field Modulated with Patterns 
#2 to #4”, which is not the case for Pattern #4. Applying the 
same averaging procedure to Pattern #4 causes DIC not to 
converge in the case of large displacements, so the corre-
sponding results are not reported here.

Experiments

The objective here is to observe the quality of the displace-
ment and strain fields obtained experimentally when using 
some of the patterns discussed above. With experiments, the 
ground truth remains however unknown appart from the case 
of solid-rigid body motions, for which it can only be said 
than the strain field is expected to be null. Discussing both 
the systematic and the random errors in this case, as we did 
above with synthetic data, is therefore not really possible. 

Fig. 10  Distribution of the ran-
dom error for the four patterns 
of type 1. Small displacement
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Another concern is the possibility of depositing in some way 
the desired patterns. No technical solution was available in 
the laboratory to print patterns in which intermediate gray 
levels should be thoroughly mastered. This is mainly the case 
for patterns of type 2. As a consequence, we only focused 
our investigations in the following on comparing the effect 
of sensor noise propagation to the displacement and strain 
maps. Two cases were considered: the case of a completely 
random pattern as Pattern #1, and Pattern #4, with two check-
erboards featuring each a different scale. The first pattern was 
obtained by merely spray painting the specimen in white with 
a uniform layer, and then in black with droplets randomly 
distributed. Pattern #4 was deposited by first spray painting 
the specimen uniformly in white and then by using a laser 
engraver fed by a file containing the geometric description of 
this pattern. Full details concerning the performance obtained 
with the patterns obtained with this laser engraver are availa-
ble in [54]. We considered two open-hole specimens (one for 
each type of pattern) made in aluminum. Their dimensions 
were 200 × 50 × 1.5 mm3 . The diameter of the hole was equal 
to 15 mm. Both specimens were subjected to a tensile test 
performed with a Zwick-Roll tensile machine. The camera 
used to capture the images was a Prosilica GT 6600 featuring 
a CCD sensor of size 6576 × 4384 ≃28.8E+06 pixels, with a 
gray depth equal to 8 bits. The lens was a Nikkor Micro 200 

F4 AF-D. Two LED light sources were placed symmetrically 
along the left- and right-hand sides of the specimen under 
test. The camera was fixed in such a way that the border of 
the specimen was aligned with the rows of pixels of the cam-
era. The displacement-controlled loading rate was equal to 
1 mm/mn. The shutter time and the aperture of the lens were 
adjusted in such a way that the best contrast was obtained in 
the images (see Fig. 16).

Figure 17 shows the typical displacement fields measured 
during the test for a force equal to 3000 N. Similar aspects 
and values for the displacement fields are obtained with 
these two patterns.

100 pairs of images were recorded in each case and the 
100 corresponding displacement fields were then extracted 
with DIC. The standard deviation was calculated pixelwise 
for each component of the 100 displacement maps. The 
mean value of the x- and y-displacement was first subtracted 
from respectively the ux and the uy displacement distribu-
tions in order to get rid of potential micro-vibrations (at 
least those causing small translations to occur), as in simi-
lar studies dealing with noise estimation in displacement 
maps, [18, 54] for instance. It can be observed in Fig. 18 
that these maps are not uniform. The low-frequency spatial 
fluctuations of the standard deviation are due to the non-
uniformity of the light over the front face of the specimen. 

Fig. 11  Distribution of the 
random error for the four pat-
terns of type 2. Small displace-
ment. DIC did not converge at 
some points, see subfigure (a). 
The corresponding points are 
considered as outliers in the 
calculation of the systematic 
and random errors
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Fig. 12  Distribution of the systematic error for the patterns of type 1 or 2 converging in the case of large displacement
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Fig. 13  Distribution of the random error for the patterns of type 1 or 2 converging in the case of large displacement
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(a)

(b)

Fig. 14  Error observed for the different patterns
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Another remark is that the standard deviation of the noise is 
significantly greater for the classic random pattern than for 
Pattern #4, which is in agreement with what was predicted 
in the previous section. This is confirmed by considering the 
histograms of these four standard distributions, which are 
plotted in Fig. 19 with the same scale along the horizontal 

axis. These histograms are not symmetric and somewhat 
irregular, which is probably due to the fact that the para-
sitic micromovements were not perfectly removed from the 
displacement fields. The noise level is also slightly higher 
along the loading direction (namely x-direction) as in simi-
lar studies, [18, 54] for instance. The most striking remarks 

Fig. 15  Pattern #8 and Pattern #8bis. Pattern #8bis is obtained in a way similar to Pattern #8 but image gradient is rotated by �
2

 before applying 
Poisson Image Editing
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are i- the fact that the histograms are narrower for Pattern #4 
than for the classic random pattern, which is certainly due 
to the more regular aspect of Pattern #4, and ii- that they 
are shifted to the left in the second case, which means that 
the noise level is lower. This is confirmed by comparing the 
global standard deviation reported in the caption of the four 
sub-figures. The noise is indeed nearly twice lower with 
the second pattern. The ratio is greater than that observed 

with the simulations, see the random errors for Pattern #1 
and #4 in Fig. 14(a) and (b) which are 40 % and 60% for 
Pattern #1 for small and large displacements, respectively, 
but the random speckle is not the same for the simulations 
and for experiments. Both the numerical and the experimen-
tal results confirm however that Pattern #4 leads to better 
performance than Pattern #1 in terms of level of the random 
errors.

Fig. 16  Closeup view of the 
patterns deposited on the two 
tested specimens

Fig. 17  Displacement field 
obtained with a classic random 
speckle (top) and with Pat-
tern #4 (bottom)
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Fig. 18  Standard deviation of 
the displacement retrieved at 
each pixel of the displacement 
maps for the classic random 
speckle (top) and for Pattern #4 
(bottom)

Fig. 19  Histogram of the stand-
ard deviation of the displace-
ment retrieved at each pixel of 
the displacement maps for the 
classic random speckle (top) 
and for Pattern #4 (bottom)
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Conclusion

The quality of the displacement and strain fields obtained 
by DIC with various patterns were compared in this study. 
We first mainly focused on the influence of the collinear-
ity between the displacement field and the image gradi-
ent of the pattern. Synthetic patterns with maximum and 
minimum degrees of collinearity estimated globally were 
obtained by Poisson Image Editing (PIE). The displace-
ment was modulated by different textures to increase the 
image gradient, and make DIC utilisable with patterns 
provided by PIE. The conclusion is that the higher this 
global collinearity, the lower the error. The improvement 
brought about by adjusting at best this collinearity has 
been found to be equal to 21% compared to the worst case. 
Future work should consider other particular cases of dis-
placement fields to consolidate this first result. Another 
problem is to have a printing device able to deposit such 
patterns on the surface of specimens to be tested, the chal-
lenge being here to precisely control the local gray level 
gradient.

As a general remark, the best pattern for measuring 
displacement fields is a mere checkerboard, which has 
been confirmed once again in the present study in case 
of displacement with an amplitude lower than the period 
of the checkerboard. DIC cannot measure displacement 
greater in amplitude than the period of such a pattern, 
but this hurdle can easily be overcome by switching the 
minimization of the optical residual from the spatial to the 
frequency domain, and using a spectral method to find the 
solution, as documented in recent papers. We also showed 
in this study that it was possible to “adapt” the checker-
board pattern to DIC by associating two checkerboards, 
each of them having a different period. In this case, DIC 
converges to the solution if the amplitude of the displace-
ment is lower than the highest of the two periods, and the 
metrological performance is close to the one obtained with 
a simple checkerboard processed with DIC for a displace-
ment lower in amplitude than its period.
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