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Abstract
Background This paper deals with the possible field of application of ultrasonic Surface Reflection Method (SRM) to 
achieve the mechanical characteristics of isotropic materials. This method is based on the measurement of the amplitude of 
the reflected wave at the interface between reference material and the material to be characterised. Objective: The purpose 
of Part 1 of this paper is to establish the theoretical conditions for the applicability of SRM.
Methods First, the theoretical formulas necessary to obtain the mechanical properties of the material to be tested will be 
established. Then, on the basis of these analytical formulas, the validity of the results for the material to be studied will be 
discussed according to the choice of the mechanical properties of the reference material through uncertainty calculations. 
The measurand error of SRM is then compared to that of traditional methods (transmission, transmission in water bath, 
pulse-echo).
Results The analytical solution to the inverse problem (the mechanical characteristics of the tested medium based on those 
of the reference medium and the waves’ amplitude) will be given. From this analytical solution, an analysis of the measurand 
error will be performed and a method for choosing the reference material will be proposed. 
Conclusions It appears that SRM is better suited than traditional methods in two specific cases: measurement of small devia-
tions of mechanical properties from a reference material or characterisation of high damping materials. In Part 2 of this 
paper, the practical conditions of applicability of the method are described and then applied to different kinds of materials.

Keywords Ultrasonic methods · Measurement error · Viscoelasticity · Surface Reflection Method

Introduction

Ultrasonic methods are commonly used to determine the 
high-frequency mechanical properties of materials [1, 2]. 
Most ultrasonic methods are based on measurements of 
amplitude and time-of-flight of ultrasonic waves through 
a sample of known thickness and density. From these two 

measurements are deduced the wave velocity and attenua-
tion of ultrasonic waves in the considered medium, which 
makes it possible to calculate the mechanical moduli (shear 
and P-wave moduli using respectively transverse and longi-
tudinal waves).

This principle can be implemented using various tech-
niques illustrated in Fig. 1. In the transmission mode, two 
transducers (one emitter and one receiver) are placed face 
to face on both sides of the sample [3–8]. This method is 
quite easy to implement but has some disadvantages. It 
requires access to both sides of the material to be tested, 
which may not be possible for in-situ measurements. 
Moreover the precise determination of attenuation often 
requires several sample thicknesses (in order to avoid the 
influence of transmission coefficients at interfaces between 
transducers and material) and appropriate consideration of 
the ultrasonic beam geometry. The latter problem can be 
addressed by using transmission mode in water bath [9–13]: 
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it is sufficient in this case to make measurements with and 
without a sample in order to determine accurately the attenu-
ation coefficient. Another advantage of this method is that 
the transmission of longitudinal and transverse waves can 
be studied using the same couple of pressure transduc-
ers by simply rotating the sample. However, this method 
is obviously reserved for laboratory tests. A third method 
is more suitable for some in-situ tests in which only one 
side of the material to be tested is accessible. This method, 
called pulse-echo mode [14–18], measures the transit time 
and wave amplitude after reflection on the opposite side and 
only requires a single transducer. However, this method has 
some limitations. If the sample is too thin, the echo may 
overlap with the sensor’s emission signal. Conversely, if the 
sample is too thick, the amplitude of the reflected signal may 
be too small to be accurately measured.

Whichever of the three methods outlined above is used, 
the thickness of the sample must be precisely known, which 
is not always possible in the context of in-situ measure-
ments. Above all, the main limitation of those three methods 
is that once the signal has passed through the material its 
amplitude has to be measurable. Ultrasonic measurement 
of the mechanical properties of high damping materials may 
therefore be impossible [1, 19].

However, a fourth method, presented in [20, 21], has been 
developed to overcome some of these drawbacks: the Sur-
face Reflection Method (SRM). This method is founded on 
the influence of an interface change on the reflected acoustic 
wave. In other words, it is based on the measurement of 
the ratio of the amplitude of the reflected wave at the inter-
face between two materials to the amplitude of the reflected 
wave at the air interface. These amplitudes depend on the 
mechanical properties of each medium. If one of the media 
(named in the following reference material) is known, this 
measurement makes it possible to determine the mechanical 
characteristics of the second. In this method, the incidence 
of the emitted pulse may be normal or oblique [22–25]. The 
measurement accuracy is increased for oblique incidence, 
at the expense of simplicity of implementation. Only the 

normal incidence method is considered in this study. A 
scheme illustrating how the method works is presented in 
Fig. 2.

Given the limitations of the traditional methods described 
previously, the conditions for the applicability of the SRM 
is discussed below. First, this paper focuses on the theo-
retical formulation of the amplitude of reflected waves at 
the interface between two viscoelastic media according to 
the latter’s mechanical characteristics. Subsequently, the 
analytical solution to the inverse problem (the mechanical 
characteristics of the tested medium based on those of the 
reference medium and the waves’ amplitude) is given. From 
this analytical solution, an analysis of the measurand error is 
performed and a method for choosing the reference material 
is proposed.

Theory

Ultrasonic Wave Propagation in Viscoelastic Medium

The propagation of a mechanical wave in a continuous and 
homogeneous medium is governed by Euler’s equation:

Where σ∗ is the complex Cauchy stress, ρ is the density of 
the material, a∗ is the complex acceleration and ∇ is the 
Laplacien operator.

The mechanical behaviour of the material is assumed to 
be linear viscoelastic in the small strain domain with a com-
plex descriptor denoted below by D∗ with real and imaginary 
parts respectively denoted as D′ and Dε . In case of trans-
verse waves (respectively longitudinal waves) D∗ represents 
the complex shear modulus G∗ (respectively the complex 
P-wave modulus M∗ = K∗ + 4G∗∕3 , with K∗ the complex 
bulk modulus). In the case of a plane wave propagating in 
the x-direction, the complex stress is expressed according 
to Eq. 1.

(1)∇� ∗= �a ∗

Fig. 1  Illustration of the main ultrasonic measurement modes

Fig. 2  Illustration of the Surface Reflection Method (SRM)
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where u∗ represents the complex displacement.
From Eqs. 1 and 2 the well-known relationship of propa-

gation of mechanical waves in a continuous medium is 
obtained [26].

In a semi-infinite medium, the stationary solution of Eq. 3 
in case of a harmonic wave of pulsation ω is expressed:

where u0 is the amplitude of displacement at x = 0, � is the 
attenuation coefficient, ω is the wave pulsation and c is the 
wave phase velocity.

By substituting the solution expressed in Eq. 4 in Eq. 2, 
the relationship between the real and imaginary part of D∗ 
on the one hand and attenuation and wave velocity on the 
other hand has been revealed (Eqs. 4 and 5). This system of 
equations establishes the method for determining mechani-
cal properties by ultrasonic transmission (Fig. 1).

Reflection At the Interface of Two Viscoelastic Media

Many authors have studied the mechanisms of reflection and 
transmission of plane waves at the interface between two 
elastic or viscoelastic media [27–29]. Unlike these authors 
whose aim was to investigate the propagation of waves at the 
interface of two known materials, this study focuses on the 
inverse problem and its analytical solution.

Acoustic Impedance

In the present paper, only the case of a normal incidence is 
considered. When an ultrasonic wave reaches the interface 
between two media, it is partially reflected and transmitted. 
The amplitudes of transmitted (denoted ut∗ ) and reflected 
(denoted ur∗) waves depend upon the acoustic impedances of 
the two media in contact and are proportional to the amplitude 

(2)σ∗ = D∗ �u
∗

�x

(3)D∗ �
2u∗

�x2
= ρ

�2u∗

�t2
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j
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of the incident wave (denoted ui∗ ) as illustrated in Fig. 3. In 
what follows, subscript 1 is related to the medium of incident 
wave and subscript 2 to the secondary medium.

The acoustic impedance Z∗ for a viscoelastic medium is 
defined by Eq. 6 [26].

From Eqs. 1 and 6 expressions of real and imaginary parts 
of Z∗ in relation to D∗ and ρ are obtained (Eq. 7).

Conservation Equation At the Interface

Displacement and stress continuity at the interface lead to the 
following set of equations:

By substituting the expression of stress in function of the 
complex impedance (Eq. 6), Eq. 9 leads to:

Which solution is:

(7)�∗ = −j�Z∗u∗ with Z∗ = Zℜ + jZℑ
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Z∗2
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Fig. 3  Scheme illustrating the wave propagation through a two-layer 
medium
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In what follows, equations are expressed in terms of ratios 
U∗

r
 and U∗

t
 with

The real and imaginary parts of the amplitude of transmit-
ted and reflected waves are given by Eq. 12.

Since SRM is based on echo measurements, only the 
reflected wave is of interest. By inverting the system it is 
possible to obtain the complex impedance components of 
medium 2 knowing those of medium 1 and by measuring 
the reflected wave’s amplitude (Eq. 13).

The aim of the method exposed in the present paper is 
to determine the modulus of medium 2. By substituting in 
Eq. 14 the impedance components using their expressions 
in function of the components of modulus, the final relation-
ship is obtained in Eq. 14. To the author’s knowledge, such 
analytical relationship between two viscoelastic media does 
not exist in the literature.

Uncertainty of Measurand and Choice 
of Reference Material

Equation 15 being strongly non-linear, the measurand error 
is also non-linear and can become detrimental for some 
material combinations. The choice of material 1 is therefore 
crucial to ensure that the mechanical properties of material 
2 are measured with an acceptable error margin. The way to 
achieve a given measurement error on U∗

r
 is not discussed 

in this paper. In this section, based on the literal expression 
of measurand error, guidelines to assist the selection of the 
reference material are provided.
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In order to determine the error on the components of the 
module ( D′ and Dε ), it is first necessary to estimate the error 
on the components of acoustic impedance (Eq. 16 obtained 
from Eq. 7).

For the sake of simplicity, the error on the real and imagi-
nary part of the reflected amplitude are set equal and noted 
ΔU . Arguments of Z1

∗ and Z2
∗ are respectively denoted θ1 

and θ2 . The acoustic impedance argument is equal, as usual, 
to half the angle of the loss factor �2

(
tan

(
�2
)
= D2∕D2

)
.

By differentiating Eq. 15, we obtain

where

Figure 4 represents the acoustical impedance moduli ratio 
which corresponds to the minimal error on the determination 
of  D2′ and  D2″ for given values of impedance arguments of 
reference material (θ1) and material to be characterised (θ2): 
(a) and (b) are respectively related to real and imaginary 
part of D2

∗ . Impedance arguments vary in the whole physi-
cal domain from 0° (purely elastic solid behaviour) to 45°.
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Fig. 4  Impedance moduli ratio corresponding to minimal error on  D2′ 
(left) and  D2″ (right) in function of impedance arguments of reference 
material (θ1) and material to be characterised (θ2): (a) Determination 
of  D2′ (b) Determination of  D2”
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It appears that, whatever the impedance arguments of 
materials 1 and 2 are, the optimum value of the moduli ratio 
is always in the range 0.6 to 1.6. To this optimum ratio cor-
responds a minimum error that is plotted in Fig. 5. This 
minimal error depends mainly on the impedance argu-
ment of medium 2. The following analysis is based on the 
assumption of a measurement error of 1% on the reflected 
amplitude. In what concerns the real part of modulus  D2′, 
a minimal error in an acceptable range (i.e. < 10%) is only 
obtained for an impedance argument of medium 2 lower than 
25°. For the imaginary part of modulus  D2″, the impedance 
argument of medium 2 has to be higher than 14°. Hence, 
with an assumption on the measurement error of 1%, both 
components of the modulus can only be determined accu-
rately for an impedance argument in the range 14° to 25°, 
which corresponds to 0.5 < tan

(
𝛿2
)
< 1.2.

Two limit cases will now be investigated: loss modulus of 
medium 1 is null (θ1 = 0°) as illustrated in Fig. 6 and storage 
modulus of medium 1 null ( θ1 = 45◦ ) as presented in Fig. 7.

Figures 6 and 7 represent the error in determining the 
real (a) and imaginary (b) part of the complex modulus of 
material 2 in function of θ2 and log10

(||Z2∕Z1
||
)
 . As in the 

previous case, let us consider a case in which the uncertainty 
of amplitude measurement can be estimated at 1% and the 
error is expected to be less than 10%.

The frontier of the domain of acceptable error (< 10%) is 
symbolised by the thick black line. The fields of applicabil-
ity of the method are similar for the two extreme values of 
θ1 considered. Whatever θ1 and the modulus component, 
the minimum error is in the vicinity of a moduli ratio of 1, 
a result in accordance with previous findings (see Fig. 4).

Nevertheless, a reasonable accuracy is maintained over 
an extended moduli ratio range (0.1 to 10) if material 2 is 
purely linear elastic (only the real part of the complex modu-
lus has to be determined in this case) or purely viscous (in 
which case only the imaginary part of the complex modulus 

has to be determined). However, in the case of a viscoelas-
tic medium with an angle in a median zone, the choice of 
medium 1 is much more restricted to achieve the desired 
accuracy. For instance, let us consider a viscoelastic solid 
whose loss factor ( tan

(
δ2
)
= D2

ε∕D2
� ) is of 1. The corre-

sponding impedance argument would be θ2 = �2∕2 = 22.5◦ . 
In this case, a sufficiently accurate estimation of both D’ and 
D” would only be obtained for an impedance module ratio 
between 0.5 and 2.

The error study highlights that only the storage moduli 
ratio between the two contacting media had an impact on 
the accuracy of the measurand. From this point of view, 
Dε

1 can take on any value. By contrast, a too large vis-
cous component (which causes a very strong attenuation 
in the reference medium) would be detrimental in terms of 
the accuracy of the measurement of the reflected waves’ 
amplitudes. In all cases, a high degree of accuracy in the 
measurement of reflected waves’ amplitudes is required: 
in the most favourable case, the error on the modules is 

Fig. 5  Minimal relative error in function of impedance arguments 
of reference material (θ1) and material to be characterised (θ2): (a) 
Determination of  D2′ (b) Determination of  D2”

Fig. 6  Error in determining the real (a) and imaginary (b) parts of the 
complex modulus of the material to be tested in function of moduli 
ratio when the reference material is purely elastic ( θ

1
= 0◦ ). A profile 

with an isovalue of θ
2
= 22.5◦ is represented on the right side of each 

plot

Fig. 7  Error in determining the real (a) and imaginary (b) parts of the 
complex modulus of the material to be tested in function of moduli 
ratio when the reference material is purely viscous ( θ

1
= 45◦ ). A pro-

file with an isovalue of θ
2
= 22.5◦ is represented on the right side of 

each plot
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four times greater than that on amplitudes. More generally 
speaking, this method can be applied either for longitudi-
nal or transverse waves. In the first case, media 1 and 2 can 
be either fluids or solids. In the second case, media 1 must 
be solid and media 2 can be either solid or fluid. In the last 
case, the applicability of the method implies high ultra-
sonic frequency and high viscosity so that the acoustical 
impedance of the fluid is equivalent to the one of a solid.

Discussion

In the previous section, it is highlighted how to achieve 
the best measurand accuracy by applying the SRM. In the 
following, the accuracy obtained with this method is com-
pared with that of traditional methods in order to deter-
mine the respective fields of application of the different 
methods.

Traditional methods (transmission mode, transmission 
mode in water bath, pulse-echo mode) are based, on the 
one hand, on the measurement of a transit time and a sam-
ple thickness in order to deduce the wave velocity and, on 
the other hand, on amplitude ratio measurements to deduce 
the attenuation. Depending on the method, the amplitude 
ratio most commonly used is as follows:

• Transmission mode: ratio of wave amplitudes travelling 
through samples of different thicknesses

• Transmission mode in water bath: ratio of transmitted 
waves’ amplitudes with and without sample

• Pulse-echo mode: ratio of successive echo amplitudes

The wave velocity c is calculated using Eq. 18, where 
d represents the distance travelled by the wave and t the 
corresponding transit time. The attenuation coefficient α 
is obtained from Eq. 19, where U is the amplitude ratio 
determined according to the considered mode.

Based on Eqs. 5 and 19, the error on D′ and D′′ is 
expressed in terms of the argument of the acoustic 
impedance of the tested material tan(θ) and u (Eq. 20) 
and is plotted in Fig. 8. Only the error associated with 
the determination of U is taken into account. The error 
on c has been considered negligible: an error of less than 
1% is easily achieved, which is small compared to other 
sources of error.

(19)c = d∕t

(20)

{
� = ln(U)∕d for transmission and pulse − echo modes

� = ln(U)∕d + �w for transmission mode in water bath

At a given angle, the minimum error is obtained for a 
value of U = 1∕e = 0.368 . Another noteworthy value is 
the angle θ = 30◦ for which the theoretical error on Dε is 
zero. More generally, an acceptable error (i.e. < 10%) is only 
obtained for sufficiently high values of U. Considering the 
case of a solid with tan(δ) = 1 (corresponding to an angle 
θ = 22.5◦ ), an error of less than 10% can only be obtained 
for a value of U greater than about 0.015.

The conventional modes can be very accurate if the thick-
ness of the samples can be adjusted to obtain a value of 
U sufficiently close to the optimal value of 0.368. Under 
specific conditions, the required sample thickness would be 
so small that it prevent the practical implementation of the 
method. For detailed demonstration, please refer to Part 2.

One way to get around this difficulty is to study the veloc-
ities and attenuations of torsion waves propagating in rigid 
tubes filled with the material to be studied [30]. However, to 
be applicable, this method requires that the material can be 
melted without altering its mechanical properties, which is 
rarely the case for polymers. In addition, the displacements 
have to be high enough to be measured by optical sensors, 
which limits the frequency range of the method.

Conclusion

The aim of this paper is to highlight the potential scope 
of the Surface Reflection Method (SRM). First, analytical 
formulas were established to relate the mechanical char-
acteristics of a sample to be tested to those of a reference 
sample as well as to the amplitude of the waves reflected at 

(21)
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ΔD
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D
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ΔU
= −2tan2(θ)

3−tan2(θ)

1−tan4(θ)
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U ln (U)

���

Fig. 8  Error in determining the real (a) and imaginary (b) parts of the 
complex modulus of the material to be tested against amplitude ratio. 
A profile with an isovalue of θ = 22.5◦ is represented on the right side 
of each plot
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the interface. The error study demonstrated that, in order to 
obtain a given accuracy on the measurands, the moduli ratio 
of the acoustic impedances of the two materials in contact 
had to be close (typically between 0.6 and 1.6). These condi-
tions for the validity of the method apply to both viscoelastic 
and considered elastic materials. Although the error on the 
measurand expected with conventional methods is gener-
ally lower than that of the SRM, the conditions required to 
obtain a given accuracy cannot be met in some cases such as 
the study of the mechanical properties of polymers in rub-
bery state or highly viscous fluids (honey, crude oil, colloid 
suspensions …). The SRM makes the measurement of all 
mechanical moduli achievable over a wide frequency range. 
Other possible fields of application are quality control, the 
measurement of ageing or the study of the durability of 
materials.

Acknowledgment The authors wish to thank: Pascale Lenig-Santoro 
for providing language help, Demathieu et Bard industry for their finan-
cial support, the National Center for Scientific Research (CNRS) and 
the Robert Schuman Institute of Technology, part of the University of 
Strasbourg, for their financial support.

Authors Contribution All authors contributed to the study conception 
and design. Material preparation, data collection and analysis were 
performed by Violaine Tinard, Pierre François and Christophe Fond. 
The first draft of the manuscript was written by Violaine Tinard and all 
authors commented on previous versions of the manuscript. All authors 
read and approved the final manuscript.

Declarations 

Ethical Statement / Conflict of Interest All authors certify that they 
have no affiliations with or involvement in any organization or entity 
with any financial interest or non-financial interest in the subject matter 
or materials discussed in this manuscript.

References

 1. Ferry JD (1980) Viscoelastic properties of polymers. John Wiley 
& Sons

 2. Truell R, Elbaum C, Chick BB (1969) Ultrasonic methods in solid 
state physics. Academic Press

 3. Nolle AW, Sieck PW (1952) Longitudinal and transverse ultra-
sonic waves in a synthetic rubber. J Appl Phys 23:888–893. 
https:// doi. org/ 10. 1063/1. 17023 25

 4. Fujisawa K, Takei Y (2009) A new experimental method to esti-
mate viscoelastic properties from ultrasonic wave transmission 
measurements. J Sound Vib 323:609–625. https:// doi. org/ 10. 
1016/j. jsv. 2009. 01. 016

 5. Lillamand I, Chaix JF, Ploix MA, Garnier V (2010) Acoustoelastic effect 
in concrete material under uni-axial compressive loading. NDT&E 
International 43:655–660. https:// doi. org/ 10. 1016/j. ndtei nt. 2010. 07. 
001

 6. Fan LF, Wu ZJ, Wan Z, Gao JW (2017) Experimental investiga-
tion of thermal effects on dynamic behaviour of granite. Appl 
Therm Eng 125:94–103. https:// doi. org/ 10. 1016/j. applt herma leng. 
2017. 07. 007

 7. Espinosa L, Prieto F, Brancheriau L, Lasaygues P (2019) Effect 
of wood anisotropy in ultrasonic wave propagation: A ray-tracing 
approach. Ultrasonics 91:242–251. https:// doi. org/ 10. 1016/j. 
ultras. 2018. 07. 015

 8. Tinard V, Brinster M, Francois P, Fond C (2018) Experimental 
assessment of sound velocity and bulk modulus in high damping 
rubber bearings under compressive loading. Polym Test 65:331–
338. https:// doi. org/ 10. 1016/j. polym ertes ting. 2017. 12. 010

 9. Ivey DG, Mrowca BA, Guth E (1949) Propagation of ultrasonic 
bulk waves in high polymers. J Appl Phys 20:486–492. https:// doi. 
org/ 10. 1063/1. 16984 15

 10. Kono R (1960) The dynamic bulk viscosity of polystyrene and 
polymethyl methacrylate. J Phys Soc Jpn 15:718–725. https:// doi. 
org/ 10. 1143/ JPSJ. 15. 718

 11. Capps RN (1985) Influence of carbon black fillers on acoustic 
properties of polychloroprene (neoprene) elastomers. J Acoustic 
Soc Am 78:406–413. https:// doi. org/ 10. 1121/1. 392462

 12. Wu J (1996) Determination of velocity and attenuation of shear 
waves using ultrasonic spectroscopy. J Acoustic Soc Am 99:2871–
2875. https:// doi. org/ 10. 1121/1. 414880

 13. Paterson DAP, Ijomah W, Windmill JFC (2018) Elastic constant 
determination of unidirectional composite via ultrasonic bulk 
wave through transmission measurements: A review. Prog Mater 
Sci 97:1–37. https:// doi. org/ 10. 1016/j. pmats ci. 2018. 04. 001

 14. McSkimin HJ, Andreatch P (1962) Analysis of the pulse superpo-
sition method for measuring ultrasonic wave velocities as a func-
tion of temperature and pressure. J Acoustic Soc Am 34:609–615. 
https:// doi. org/ 10. 1121/1. 19181 75

 15. Bastien P (1977) The possibilities and limitations of ultrasonics 
in the non-destructive testing of steel NDT. Int 297–305. https:// 
doi. org/ 10. 1016/ 0308- 9126(77) 90003-7

 16. Afifi H, Marzouk S, Abd el Aal N (2007) Ultrasonic characteri-
zation of heavy metal TeO2 – WO3 – PbO glasses below room 
temperature. Physica B: Physics of Condensed Matter 390:65–70. 
https:// doi. org/ 10. 1081/ PPT- 12001 7922

 17. Hagan CP, Orr JF, Mitchell CA, Dunne NJ (2015) Critical evalua-
tion of pulse-echo ultrasonic test method for the determination of 
setting and mechanical properties of acrylic bone cement: Influ-
ence of mixing technique. Ultrasonics 56:279–286. https:// doi. 
org/ 10. 1016/j. ultras. 2014. 08. 008

 18. Metwally K, Lefevre E, Baron C et al (2016) Measuring mass den-
sity and ultrasonic wave velocity: a wavelet-based method applied 
in ultrasonic reflection mode. Ultrasonics 65:10–17. https:// doi. 
org/ 10. 1016/j. ultras. 2015. 09. 006

 19. Burg EVD, Grill W (2010) Characterization of elastomers with 
transverse sonic waves. Polym Test 29:281–287. https:// doi. org/ 
10. 1016/j. poler testi ng. 2009. 12. 001

 20. Mason WP, Baker WO, McSkimin HJ, Heiss JH (1949) Measure-
ment of shear elasticity and viscosity of liquids at ultrasonic fre-
quencies. Phys Rev 75:936–946. https:// doi. org/ 10. 1103/ PhysR ev. 
75. 936

 21. O’Neil HT (1949) Reflection and refraction of plane shear waves 
in viscoelastic media. Phys Rev 75:928–935. https:// doi. org/ 10. 
1103/ PhysR ew. 75. 928

 22. Yoneda A, Ichihara M (2005) Shear viscoelasticity of ultrasonic 
couplers by broadband reflectivity measurements. J Appl Phys 97. 
https:// doi. org/ 10. 1063/1. 18501 80

 23. Alig I, Sulimma J, Tadjbakhsch S (1997) Ultrasonic shear wave 
reflexion method for measurements of the viscoelastic properties 
of polymer films. Rev Sci Instrum 68:1536–1542. https:// doi. org/ 
10. 1063/1. 11476 43

 24. Chang JJ, Li YY, Zeng XF et al (2019) Study on the viscoelastic-
ity measurement of materials based on surface reflected waves. 
Materials 12:1875–1890. https:// doi. org/ 10. 1063/1. 49187 87

 25. Omata N, Suga T, Furusawa H et  al (2006) Viscoelasticity 
evaluation of rubber by surface reflection of supersonic wave. 

1159Experimental Mechanics (2021) 61:1153–1160

https://doi.org/10.1063/1.1702325
https://doi.org/10.1016/j.jsv.2009.01.016
https://doi.org/10.1016/j.jsv.2009.01.016
https://doi.org/10.1016/j.ndteint.2010.07.001
https://doi.org/10.1016/j.ndteint.2010.07.001
https://doi.org/10.1016/j.applthermaleng.2017.07.007
https://doi.org/10.1016/j.applthermaleng.2017.07.007
https://doi.org/10.1016/j.ultras.2018.07.015
https://doi.org/10.1016/j.ultras.2018.07.015
https://doi.org/10.1016/j.polymertesting.2017.12.010
https://doi.org/10.1063/1.1698415
https://doi.org/10.1063/1.1698415
https://doi.org/10.1143/JPSJ.15.718
https://doi.org/10.1143/JPSJ.15.718
https://doi.org/10.1121/1.392462
https://doi.org/10.1121/1.414880
https://doi.org/10.1016/j.pmatsci.2018.04.001
https://doi.org/10.1121/1.1918175
https://doi.org/10.1016/0308-9126(77)90003-7
https://doi.org/10.1016/0308-9126(77)90003-7
https://doi.org/10.1081/PPT-120017922
https://doi.org/10.1016/j.ultras.2014.08.008
https://doi.org/10.1016/j.ultras.2014.08.008
https://doi.org/10.1016/j.ultras.2015.09.006
https://doi.org/10.1016/j.ultras.2015.09.006
https://doi.org/10.1016/j.polertesting.2009.12.001
https://doi.org/10.1016/j.polertesting.2009.12.001
https://doi.org/10.1103/PhysRev.75.936
https://doi.org/10.1103/PhysRev.75.936
https://doi.org/10.1103/PhysRew.75.928
https://doi.org/10.1103/PhysRew.75.928
https://doi.org/10.1063/1.1850180
https://doi.org/10.1063/1.1147643
https://doi.org/10.1063/1.1147643
https://doi.org/10.1063/1.4918787


Ultrasonics 44:211–215. https:// doi. org/ 10. 1016/j. ultras. 2006. 06. 
019

 26. Kinsler LE, Frey AR, Coppens AB, Sanders JV (2000) Funda-
mentals of Acoustics. John Wiley & Sons

 27. Lockett FJ (1962) The reflection and refraction of waves at an 
interface between viscoelastic materials. J Mech Phys Solids 
10:53–64. https:// doi. org/ 10. 1016/ 0022- 5096(62) 90028-5

 28. Cooper HF (1967) Reflection and transmission of oblique plane 
waves at a plane interface between viscoelastic media. J Acoustic 
Soc Am 42:1064–1069. https:// doi. org/ 10. 1121/1. 19106 91

 29. Schoenenberg M (1971) Transmission and reflection of plane 
waves at an elastic-viscoelastic interface. Geophys J Royal 

Astronom Soc 25:35–47. https:// doi. org/ 10. 1111/j. 1365- 246X. 
1971. tb023 29.x

 30. Simonetti F, Cawley P (2003) A guided wave technique for the 
characterization of highly attenuative viscoelastic materials. J 
Acoustic Soc Am 114:158–165. https:// doi. org/ 10. 1121/1. 15757 49

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

1160 Experimental Mechanics (2021) 61:1153–1160

https://doi.org/10.1016/j.ultras.2006.06.019
https://doi.org/10.1016/j.ultras.2006.06.019
https://doi.org/10.1016/0022-5096(62)90028-5
https://doi.org/10.1121/1.1910691
https://doi.org/10.1111/j.1365-246X.1971.tb02329.x
https://doi.org/10.1111/j.1365-246X.1971.tb02329.x
https://doi.org/10.1121/1.1575749

	The Potential Scope of the Ultrasonic Surface Reflection Method Towards Mechanical Characterisation of Isotropic Materials. Part 1. A Theoretical Analysis
	Abstract
	Background 
	Methods 
	Results 
	Conclusions 

	Introduction
	Theory
	Ultrasonic Wave Propagation in Viscoelastic Medium
	Reflection At the Interface of Two Viscoelastic Media
	Acoustic Impedance
	Conservation Equation At the Interface

	Uncertainty of Measurand and Choice of Reference Material
	Discussion
	Conclusion
	Acknowledgment 
	References


