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Abstract
Background It is common practice to use various residual stress measurement methods to complement each other and fully 
define a through-thickness stress distribution. Incremental hole-drilling (IHD) and X-ray diffraction (XRD) are two of the 
most widely used techniques. Although IHD readily provides stress data to some depth, the method is susceptible to large 
stress uncertainties near the surface. XRD, in contrast, is most suited to finding near-surface stresses.
Objective Constrain the residual stress distributions obtained through series expansion by using XRD measurements, thereby 
obtaining full depth stress measurements with reduced uncertainty near the surface.
Method The proposed method enforces suitable relationships between the amplitude coefficients of the series expansion 
such that the resultant stress distributions match the XRD measurements. The method is demonstrated on an aluminium 
alloy 7075 specimen of 10 mm thickness that underwent laser shock peening treatment.
Results Strong correlation in calculated residual stress distributions was found between the proposed method, standard series 
expansion and the regularized integral method. The proposed method has reduced stress uncertainty near the surface when 
compared to both standard series expansion and integral methods of IHD due to its incorporation of near-surface XRD data.
Conclusions The proposed method allows XRD measurements to be rigorously incorporated into IHD results. The effect of 
XRD uncertainty on the overall IHD stress distribution is localised to the near-surface measurements.

Keywords Residual stress · Incremental hole-drilling · Series expansion · X-ray diffraction

Introduction

Laser Shock Peening (LSP) is a surface treatment technique 
that uses pulsed, high intensity, laser irradiation to generate 
beneficial residual compressive stress at and near the sur-
face. This can improve resistance to fatigue [1] and crack ini-
tiation and propagation [2]. The residual stress distribution 
induced by LSP can be challenging to measure accurately 
since it usually exhibits steep variations near the surface and 
a local minimum within the first 0.4 mm from the surface. 
The magnitude and distribution of the LSP-induced com-
pressive stress depends on the combined effects of the laser 
specification and numerous LSP parameters. It is, there- 
fore, important to be able to accurately measure the result- 

ing residual stress distribution so that the effects of these 
parameters can be determined. X-ray diffraction (XRD) and 
incremental hole-drilling (IHD) are two of the most com-
monly used methods to measure these residual stresses [3].

XRD is a non-destructive, near-surface measurement 
technique that can be used to determine the residual stress 
from the strain and associated X-ray elastic constants in 
a crystal lattice [4]. XRD measurements are made with 
the plane stress assumption where the stress normal to the 
surface is zero [5]. High energy X-rays, which penetrate 
a small distance below the surface, are used to irradiate a 
specimen. Crystal lattice planes diffract the X-rays accord-
ing to Bragg’s Law and detectors record the intensity of 
the diffracted rays at different angular positions as they 
rotate around the specimen. A widely used method is the 
sin

2 � approach [6] where the lattice spacing is measured 
for a range of �  tilts. Lattice spacing is plotted against 
sin

2 �  and the stress is determined from the slope of a 
linear or elliptical least-squares fit to the data. Large grain 
sizes can adversely affect the XRD measurement since 
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fewer grains within the irradiated volume contribute to 
the diffraction peak. This results in lower peak intensities 
and reduced accuracy in location of the peaks [5]. The 
texture of the material is also important since it can cause 
large variation in diffraction peak intensity between � tilts. 
This effect can be mitigated somewhat by using appropri-
ate � tilts and by oscillation in � by typically ±2◦ such that 
grains over a larger area contribute to the measurement 
[5]. Since X-rays penetrate some depth into the specimen, 
the measured strain and residual stress is essentially an 
average over the penetration depth of a few microns below 
the surface, up to 20-30 µm for aluminium alloys [7]. The 
surface roughness of the sample should clearly, therefore, 
be smaller than the penetration depth [8]. The penetration 
depth depends on various parameters such as the linear 
absorption coefficient of the material, �  tilt, diffraction 
peak intensities and Bragg reflection angle [4]. If measure-
ment of a residual stress profile beneath the surface layer is 
required, successive XRD measurements with removal of 
layers between measurements is necessary [3, 5].

Residual stress measurements from XRD can be prone  
to relatively high uncertainty since the technique is sensitive 
to small variations in the crystal lattice [4, 9] and to errors 
arising from the possible difficulty in determining the posi-
tion of the diffraction peak [5], operator skill, uncertainty 
in alignment and equipment calibration. Therefore, a robust 
experimental technique is required to minimise the effect 
of various measurement uncertainty sources [10]. A thor- 
ough uncertainty estimation for XRD is difficult since many 
uncertainty sources are non-quantifiable [5]. The main XRD 
uncertainty sources have been investigated by inter-laboratory  
comparisons [11] with 16 participating laboratories  
using 21 different XRD instruments. The largest sources of 
measurement uncertainty were found to be associated with 
the peak fitting software and the operator. Total measure-
ment uncertainty in the region of ±20 MPa is common [9, 
12].

IHD is a semi-destructive residual stress measurement 
technique and has an ASTM Standard Test Procedure, 
ASTM E837-13a [13]. The method of determining the 
through-thickness variation of all three in-plane stress com-
ponents is based on the assumptions that the stress compo-
nent normal to the surface is negligible, and that no signifi-
cant residual stress is induced by the IHD process. Stressed 
material is removed from the hole being drilled, with the 
consequent release of strain which is typically measured 
using a strain gauge rosette. Since the strain measurements 
are taken some distance from the location where stressed 
material is removed and because the strain field around the 
hole is not uniform, an inverse solution is required to cal-
culate the residual stress distribution from the incremen-
tal strain measurements. The inverse solution makes use 
of ‘calibration coefficients’ that can be determined using 

finite element (FE) calculations for known through-thickness 
stress distributions [14]. The integral method is the most 
widely used computational method for IHD and is used in 
the ASTM standard. It assumes that unit pulses of uniform 
stress exist at each incremental hole depth when determining 
the calibration coefficients [13, 15]. This assumption does 
not have a substantial detrimental effect when making many 
small depth increments and identifying the stress depth at 
the mid-step depth, especially when combined with Tik-
honov regularization [16]. Tikhonov regularization is usu-
ally employed to remove noise artefacts from the residual 
stress distribution by allowing a misfit between the measured 
strain data and that used in the inverse solution. The extent 
of regularization must be carefully considered, however, as 
it can distort the calculated stresses [13].

Significant work has been done to extend the use of the 
integral method with IHD to nearly all applications and to 
correct common errors such as hole bottom fillet radius [17], 
hole offset [18–20], plasticity effects [21, 22] etc. Experi-
mental and analytical studies have been conducted [23] 
which have found that errors arising from localised yielding 
around the hole are negligible if the residual stress is below 
70% of the yield strength of the specimen material. However, 
when the residual stress exceeds this limit, errors of 10% 
to 30% have been reported [23]. This limit may be insuf-
ficient for stress distributions with high gradients [21] and a 
limit of 60% of the yield strength is more appropriate [24]. 
IHD with the integral method has been successfully used 
to measure residual stresses induced by shot peening [25] 
and LSP [26] in aluminium with good correlation to XRD 
measurements. Small depth increments can be used with 
Tikhonov regularization to capture the LSP-induced residual 
stress profile which varies steeply beneath the surface. The 
continuity characteristics of the regularized integral solution 
also allow the interior data to be extrapolated to the surface 
and, with modern fine-increment drilling, the distance to be 
extrapolated is small.

Series expansion [14] is an alternative to the integral 
method, where it is assumed that the residual stress distribu-
tion can be expanded into stress distributions defined by power 
series. The inverse solution makes use of least-squares curve 
fitting and the method is therefore more tolerant of measure-
ment noise. It is beneficial to the least-squares solution to have 
many more strain measurements, through the use of small 
depth increments, than coefficients of series orders that need 
to be determined by the inverse solution [27]. A recent inves-
tigation using eigenstrain [28] has shown that series expan-
sion remains stable at higher orders and can reduce the overall 
stress uncertainty, provided that a sufficient number of depth 
increments are used and convergence of the solution is found 
by comparing the stress distributions and associated uncertain-
ties of a number of series orders. While series expansion can 
directly provide an estimate of the residual stress at or near the 
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surface, the extrapolated stress distributions are susceptible to 
high uncertainty near the surface due to the series being less 
constrained at their ends. Additionally, since the first hole drill-
ing increment accumulates the effects of the stresses within 
that depth, both integral method and series expansion results 
are effectively slightly removed from the exact surface.

While XRD can be used to determine the important sur-
face stresses, measurement of the residual stress distribution 
beneath the surface requires successive layer removal and 
XRD measurements on each new surface. This reduces the 
utility of the method in this situation. In contrast, a physical 
characteristic of the IHD method is that it is susceptible to 
large stress uncertainties near the surface, independent of 
the stress computation method used. This is primarily due 
to uncertainty in establishing the the zero depth datum of 
the measured strain data which similarly affects both series 
expansion and integral methods. To overcome this limitation  
of IHD, a method of incorporating near-surface XRD meas-
urements into a set of IHD measurements is proposed in this 
work. While the integral method is easier and more prac- 
tical to use in most situations, incorporating near-surface 
XRD measurements is more easily achievable using series 
expansion than the conventional approach because series 
expansion makes use of mathematical functions to describe 
the stress distribution throughout the depth. This facilitates 
the constraint of the series to match the XRD data in a math-
ematically rigorous way. The method is demonstrated on 
an aluminium alloy 7075 plate of 10 mm thickness with 
a rapidly varying through-thickness stress distribution 
induced by LSP. Power series expansion of eigenstrain is 
generated through the use of temperature variations to obtain 
calibration coefficients using FE calculations. Constrained 
least-squares error minimisation is employed in the inverse 
solution to determine the amplitudes of each term in the 
eigenstrain series that results in a best fit to the measured 
data, while satisfying the near-surface stress conditions of 
the XRD measurements. These amplitudes are used with the 
far-field stress distributions generated by each contributing 
eigenstrain series to completely define the residual stress 
distribution. Uncertainties are estimated through the use of 
Monte Carlo simulation.

Existing IHD Computational Methods

Integral Method

The integral method is well known and fully documented 
in the ASTM Standard Test Procedure, ASTM E837-13a 
[13], and is therefore only briefly described here. Calibration 
matrices, ā and b̄ , are used to calculate the residual stresses 
from the released strains. The ā and b̄ matrices can be deter-
mined by FE calculations for the release of unit equi-biaxial 

and shear stress at each incremental depth, respectively. The 
ASTM standard provides calibration tables for 20 depth 
increments and suggests the use of Tikhonov regularization 
[16] to remove noise artefacts from the calculated stress dis-
tributions. Tikhonov regularization is employed by using 
the tri-diagonal ‘second derivative’ matrix, c, in the form:

where the number of rows is equal to the number of depth 
increments used.

Equations  (2)-(4) are used to calculate the residual 
distributions.

where P is the vector of through-thickness isotropic (equi-
biaxial) stresses, Q is the 45◦ shear stresses, T is the x-y 
shear stresses and p, q and t are combination strain vectors 
[13]. The Cartesian stresses at each depth increment can be 
found from P, Q and T [13].

The extent of regularization can be varied using the 
factors �P , �Q and �T . Zero values for these factors apply 
zero regularization and increasing values progressively 
smooth the stress results. The amount of regularization that 
is applied can be optimised iteratively using the Morozov 
Discrepancy Principle [16]. Insufficient regularization leads 
to noise artefacts in the calculated stresses, while excessive 
regularization can distort the stress results. A misfit exists 
between the regularized strains that correspond to the cal-
culated stresses (P, Q and T) using Equations (2)-(4) and the 
experimental combination strains p, q and t.

Series Expansion

The FE method is used to generate known far-field stress 
distributions, S, resulting from applied eigenstrains which 
vary in the through-thickness direction according to power 
series in each of the three in-plane strain components. The 
calibration matrix, C, is determined from the strain response 
at each strain gauge location as the depth of the hole is 
increased for each applied eigenstrain [28]. The experimen-
tal strain vector, �meas , is used with the calibration matrix in 

(1)[c] =

⎡
⎢⎢⎢⎢⎢⎣

0 0

−1 2 − 1

− 1 2 − 1

− 1 2 − 1

0 0

⎤
⎥⎥⎥⎥⎥⎦

(2)
(
[ā]T [ā] + 𝛼P[c]

T [c]
)
{P} =

E

1 + 𝜈
[ā]T{p}

(3)
([
b̄
]T[

b̄
]
+ 𝛼Q[c]

T [c]
)
{Q} = E

[
b̄
]T
{q}

(4)
([
b̄
]T[

b̄
]
+ 𝛼T [c]

T [c]
)
{T} = E

[
b̄
]T
{t}
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a least-squares inverse solution to determine the amplitude 
vector, A:

where A contains the amplitudes of the applied eigenstrain 
functions that best match the experimental strain response.

The calculated amplitude vector is used to determine 
the residual stress distribution vector, �res , for the specimen 
using Equation (6) [28]:

Constrained Series Expansion

The method proposed in this work is to constrain the near-
surface stress solution, �surface , of the series expansion 
method to the measurements obtained from XRD:

where matrix Q comprises three rows representing each of 
the stress components and which is extracted from the stress 
matrix, S, at the depth of the XRD measurements.

where j is the component of eigenstrain, and n is the order 
of the applied eigenstrain.

The imposition of constraints onto the series solution 
means that the amplitude coefficients, A, are not all inde-
pendent. It is necessary, therefore, to split these terms 
into independent and dependent terms. Matrices A and Q 
are therefore decomposed into Â and Ā , and QA and QB , 
respectively:

where Â represents the vector of independent amplitude 
coefficients, Ā represents the vector of dependent amplitude 
coefficients, and QB is a square invertible matrix. Equa-
tion (7) can now be rewritten as:

(5){A} =
(
[C]T [C]

)−1
[C]T

{
�meas

}

(6)
{
�res

}
= [S]{A}

(7)

{
�surface

}
=
{
�XRD

}

or

[Q]{A} =
{
�XRD

}

(8)[Q] =
�
Ssurface

�
=

⎡
⎢⎢⎢⎣

S1xx0
⋯ S1xy0

⋯ S1xxy0
⋯ S1xjn

S1yx0
⋯ S1yy0

⋯ S1yxy0
⋯ S1yjn

S1xyx0
⋯ S1xyy0

⋯ S1xyxy0
⋯ S1xyjn

⎤⎥⎥⎥⎦

(9){A} =

{
Â

Ā

}
, [Q] =

[
QA ∶ QB

]

Therefore:

The experimental strain vector, �meas , is used with the matrix 
of calibration coefficients in a constrained least-squares 
inverse solution to determine the vector of independent 
amplitude coefficients, Â . In vector-matrix form:

Finally, the amplitude vector, A, containing the amplitudes 
of the applied eigenstrain distributions which best match the 
experimental strain response, while ensuring that stress mag-
nitude near the surface is constrained to the results obtained 
using XRD can be found using Equation (11). The calculated 
amplitude vector is used with the stress matrix, S, to deter-
mine the residual stress distributions using Equation (6). 
The use of a least-squares approach reduces sensitivity to 
strain measurement errors and subsequent uncertainty in 
calculated stress. To achieve a robust least-squares fit, the 
number of terms in �meas must be significantly greater than 
in Â . Therefore, it is beneficial to use small experimental 
depth increments to obtain a large strain data set. The most 
appropriate series order can be determined from the size and 
convergence of the associated uncertainties in the residual 
stress distributions [29].

Practical Example

Specimen and LSP

A rolled aluminium alloy 7075-T651 plate was reduced from 
15 mm thickness to 10 mm by machining 1 mm from the top 
face of the plate and 4 mm from the bottom before preparing 
individual specimens of 60 mm × 60 mm. The mechanical 

(10)

[
QA

]{
Â
}
+
[
QB

]{
Ā
}
=
{
𝜎XRD

}
[
QB

]{
Ā
}
= −

[
QA

]{
Â
}
+
{
𝜎XRD

}
{
Ā
}
= −

[
QB

]−1[
QA

]{
Â
}
+
[
QB

]−1{
𝜎XRD

}

(11)
{A} =

[
I

−
[
QB

]−1[
QA

]
]{

Â
}
+

{
0[

QB

]−1{
𝜎XRD

}
}

= [G]
{
Â
}
+ {H}

(12)

{
𝜖meas

}
= [C]{A}{

𝜖meas
}
= [C]

(
[G]

{
Â
}
+ {H}

)

[G]T [C]T
{{

𝜖meas
}
− [C]{H}

}
= [G]T [C]T [C][G]

{
Â
}

(13)

{
Â
}
=
(
[G]T [C]T [C][G]

)−1
[G]T [C]T

{{
𝜖meas

}
− [C]{H}

}
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properties and the chemical composition of aluminium alloy 
7075-T651 are shown in Table 1.

LSP treatment was applied to the upper face of the speci-
men at the National Laser Centre (NLC) of the Council for 
Scientific and Industrial Research (CSIR) in Pretoria, South 
Africa, using a Quanta-Ray Pro Spectra Physics (QRPSP) 
Nd:YAG laser. The specifications of the laser and the param-
eters used during LSP are shown in Table 2. A 1.5 mm spot 
diameter, with a spot density of 5 spots/mm2 (70% spot over-
lap), was used to attain a power intensity of 1.5 GW/cm2 
with an equidistant raster pattern as the spot sequence strat-
egy. LSP was applied to an area of 11.25 mm × 11.25 mm. 
In this work the LSP step and scan directions are represented 
by the x and y directions, respectively.

XRD

Laboratory XRD was used to obtain the near-surface resid-
ual stresses to constrain the IHD measurements. The sin2 � 
method [6] was performed using a Proto iXRD (Proto Man-
ufacturing Inc.,Taylor, Michigan USA) instrument at the 
CSIR. Lattice spacing of the {311} planes was measured for 
7 angles between -27◦ and +27◦ using Cr-K� radiation with 
a wavelength of 2.291 Å at a Bragg angle of approximately 
139◦ . Measurements were taken using a 2 mm round aper-
ture at 0 ◦ , 45◦ , and 90◦ with respect to the LSP raster pattern 
to obtain the in-plane stress-tensor. At each tilt angle, the 
sample was oscillated by ±3◦ in � to improve counting sta-
tistics and reduce the effect of large grain sizes and texture in 
the aluminium specimen. The residual stresses were calcu-
lated for plane stress conditions using X-ray elastic constants 
of 1

2
S2 = 19.54 ×  10-6  MPa-1 and S1 = -5.11 ×  10-6  MPa-1 for 

the {311} lattice plane. The XRD information depth was 
estimated to be 10.5 µm [31].

IHD

The Sint Technology Restan MTS 3000 incremental hole-
drilling machine, with a high-speed pneumatic turbine, was 
used to conduct IHD. A tungsten carbide inverted cone end 
mill with a diameter of 1.6 mm was used to cut the hole in 
the centre of the LSP area. The hole diameter was measured 
after IHD as 1.78 mm using the built-in microscope and 
micrometers of the Restan MTS 3000. Drilling ceased at a 
depth of 1.2 mm since the region of high compressive stress 
resulting from LSP lies close to the surface and the sensi-
tivity of the surface strain measurements greatly decreases 
beyond a depth of approximately half the hole diameter.

Six element rectangular HBM foil strain gauge rosettes 
of type 1.5/350M RY61 were used for the IHD experiment. 
The use of a six element rosette somewhat mitigates the 
effect of drilling offset errors. Temperature compensa-
tion was employed by connecting each active gauge of the 
1.5/350M RY61 rosette to the corresponding gauge of a 
dummy 1.5/350M RY61 rosette, attached to the same speci-
men type, in a quarter bridge configuration using a National 
Instruments data acquisition system equipped with a SCXI-
1520 strain gauge card. The experimentally measured strain 
variations at the x, y and 45◦ strain gauge locations are pre-
sented in Fig. 1.

Computational

The 1.5/350M RY61 strain gauge rosette used in this work 
has a different geometry to those specified in the ASTM 
standard and the hole diameter of 1.78 mm lies outside the 
suggested range of 1.88 - 2.12 mm [13]. The calibration  
coefficients must, therefore, be determined using FE analy- 
sis since the ASTM calibration coefficients are not applica- 

Table 1  Mechanical properties 
and chemical composition of 
aluminium alloy 7075-T651 
[30]

1 Average value
2 Maxmimum value

Young’s Modulus Poisson’s Tensile Yield Chemical composition Wt. (%)

(MPa) ratio Strength (MPa) Al1 Cr1 Cu1 Fe2 Mg1 Mn2 Si2 Ti2 Zn1

71700 0.33 503 89.3 0.23 1.6 0.5 2.5 0.3 0.4 0.2 5.6

Table 2  Laser specifications and LSP parameters

QRPSP Laser Specifications LSP Parameters

Laser Wavelength Pulse Energy Spot Spot Size Power Inten- Spot Coverage

Type (nm) Frequency (Hz) Range (J) Shape Range (mm) sity (GW/cm2) Diameter (mm) (spots/mm2)

Nd:YAG 1064 20 0.2-1 ◦ 0.5-2.5 1.5 1.5 5
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ble in this particular case. In general, however, it is possible 
in principle to obtain the necessary series expansion coef-
ficients through numerical integration of the ASTM coeffi-
cients, provided that the plate thickness and hole diameters 
are within the guidelines specified by the ASTM standard. 
There was, however, no real benefit to be gained from inte-
gration of unit pulse coefficients in this particular case. 
The additional computation required to obtain the coeffi-
cients for series expansion was negligible since this merely 
required the inclusion of additional load cases within the 
FE model required to obtain the coefficients for the integral 
method. The calibration coefficients were calculated using 
MSC Nastran FE analysis. The specimen was modelled 
using 124 HEX8 type 3D elements through the thickness, 
24 elements of 50 µm height through the first 1.2 mm from 
the surface and 100 elements through the remaining thick-
ness with linearly increasing element height towards the 
bottom of the plate. While the use of a 2D model would 
have offered benefits in terms of reduced run times and 
finer discretization of the r-z plane with a modest number 
of elements, the computational time requirement in this 
study was not a limitation. It was consequently elected to 

use 3D modelling as was done by Alegre et al. [32] who 
found very good agreement with the ASTM coefficients for 
the case of thick samples with a coarser mesh than used in 
this work, and who found that results were practically unaf-
fected by further mesh refinement. FE models with hole 
diameters between 1.70 mm and 1.90 mm, with 0.05 mm 
spacing increments, were used such that calibration matri-
ces for any experimental hole diameter within this range 
can be found by interpolation. A quarter model was used 
with symmetric and anti-symmetric boundary conditions 
depending on the applied loading. Eigenstrain distributions 
for the series expansion method were applied to the FE 
model by means of through-thickness temperature varia-
tions defined by power series functions and dummy thermal 
expansion coefficients. Elements in the first 1.2 mm below 
the surface were assigned a coefficient of thermal expan-
sion of unity in the x, y or in-plane shear direction and the 
remaining elements were assigned a coefficient of thermal 
expansion of zero.

Each applied eigenstrain distribution results in mechani-
cal strain redistribution which generates a through-thickness  
stress distribution. For illustrative purposes, the stress dis- 
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Fig. 1  Strain variation with depth in the x, y and 45◦ strain gauge directions
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tribution in the x direction due to eigenstrain generated 
by a  2nd order temperature variation in the x direction is 
presented in Fig. 2. The mesh around the hole, on the top 
surface, and the position of the strain gauge grid loca-
tions (highlighted) are also presented. The displacements 
of all the nodes in the region of the strain gauge grid loca-
tions were determined for each loading condition and hole 
depth. The nodal displacement data was then used with 
surface spline interpolation to determine the displacements 
around the perimeter of each grid. This allows calculation 

of the calibration coefficients from the longitudinal and 
transverse strains at each strain gauge location, includ-
ing correction for the effect of transverse sensitivity [29]. 
IHD was simulated by incrementally removing layers of 
elements from the region of the hole.

A total of 47 depth increments of 25 µm, including 
zero depth, up to a maximum depth of 1.15 mm were used 
experimentally. The additional strain data points beyond 
1 mm were used in the series expansion approach to some-
what constrain the series at depths approaching 1 mm and 
so reduce the stress uncertainty in this region. Addition-
ally, Equation (5) of the series expansion approach requires 
that �meas and C follow the same depth distribution. Since 
the depth increment used in the computational work to 
determine C was twice that used experimentally, spline 
interpolation was used to double the number of coefficients 
in C since these coefficients vary smoothly with depth.

As the order of series expansion is increased, the least-
squares fit to the experimental strain data is improved 
as can be seen in Fig. 3 for the x direction strain gauge, 
where a  4th order series expansion is not able to accurately 
fit the experimental strain data and a higher order series 
must be used. Although a  6th order series is able to fit the 
experimental strain data fairly accurately, this alone does 
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x
 distribution generated by  2nd order eigenstrain in the x direc-
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not guarantee convergence to a stress solution and higher 
order series may be required. In this instance, both  9th and 
 10th order series are able to accurately fit the experimen-
tal strain data and can be said to have converged. Since 
higher order series can become unstable, however, it is 
crucial that a series order which can fully describe the 
actual residual stress distribution is found before instabili-
ties become apparent. A robust uncertainty analysis of the 
residual stress distribution is, therefore, required so that 
convergence can be assured.

The FE model used for series expansion was also used 
to determine the calibration matrices for the integral 
method by using PLOAD4 cards to apply an equi-biaxial 
stress (for matrix ā ) and a pure shear stress (for matrix b̄ ) 
to the face of the hole for every loading increment at each 
incremental depth. For the integral method, every second 
experimental strain datum was used such that the 50 µm 
depth increments correspond with the calculated ā and b̄ 
matrices from the FE model.

Propagation of Uncertainties

Uncertainty in the calculated stress distributions was esti-
mated through the use of Monte Carlo simulation as per 
JCGM 101:2008 [33]. Only the predominant experimental 
and computational uncertainty sources are considered in 
this work, provided in Table 3. Although other uncertainty 
sources such as the uncertainty in measured hole diameter 
[28] and hole offset [34], for example, can be easily incor-
porated, their effects on the stress uncertainty are negligi-
ble compared to the uncertainty sources considered here 
[28]. Ten thousand Monte Carlo trials were simulated for 
each order of the constrained and standard series expan-
sion approaches and for the integral method.

XRD measurement uncertainty reported by the Proto 
software only includes the estimated uncertainty associ-
ated with statistical errors and the elliptical least-squares 

fit of the sin2 � plot. The larger than usual uncertainty is 
due to the adverse effects of large grain sizes in aluminium 
alloy 7075-T651, and the texture and high stress gradient 
near the surface due to the effects of the LSP process on 
the aluminium material [5].

Each IHD strain measurement was adjusted for the 
uncertainty in its respective depth increment, and all 
were adjusted for the uncertainty in zero depth. Spline 
interpolation was then used to determine the strains at the 
depth increments inherent to the C or ā and b̄ matrices 
and referenced to the zero depth of that trial. The misfit 
between the least-squares solution of each series order and 
the experimental strain data was included as an additional 
measurement uncertainty at each incremental depth. The 
misfit due to the use of Tikhonov regularization with the 
integral method was treated similarly. The C and S matri-
ces were appropriately scaled according to independent 
variations in material properties within each Monte Carlo 
trial. Uncertainty in the material properties was included 
in the integral method within Equations (2)-(4).

The strain vector ( �meas ), calibration matrix (C), stress 
matrix (S) and XRD measurements of each Monte Carlo 
trial were used with Equations (13), (11) and (6) for the con-
strained series method and Equations (5) and (6) for stand-
ard series expansion to determine the stress distribution for 
that trial. The calibration matrices ( ̄a and b̄ ) of each Monte 
Carlo trial were used with Equations (2)-(4) in the case of 
the integral method. The stress uncertainty at a particular 
depth was determined for each method by evaluating the 
standard deviation in the calculated stress at that depth from 
the ten thousand Monte Carlo trials.

Selection of Series Order

A practical challenge when using series expansion is the 
discontinuous nature of the stress results as the series order 
is increased. At lower orders, large changes occur between 

Table 3  Uncertainty sources 
and their assigned probability 
density functions

xi Description p(xi) Type Nominal value,
uncertainty

�xXRD Stress in the x direction from XRD measurements Normal B 60.4 MPa, 33.5 MPa
�yXRD Stress in the y direction from XRD measurements Normal B 70.4 MPa, 15.4 MPa
�xyXRD Shear stress from XRD measurements Normal B -58.5 MPa, 38.7 MPa
E Young’s Modulus Normal B 71700 MPa, 3%
�
12

Poisson’s ratio Normal B 0.33, 3%
zk Incremental depths Rectangular B 25 µm, 0.5 µm
z
0

Zero depth Rectangular B 0 µm, 10 µm
�m Indicated experimental strain Normal B Figure 1, 1.6%
�noise Experimental noise Normal A Figure 1, 1 µm/m
FE Finite element calculations Normal B 0, 2%
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each stress distribution in the sequence. In general, how-
ever, low order series expansion should not be used. Instead, 
series expansion of high enough orders should be used such 
that the variation in stress distributions from order to order 
becomes negligible as the series converge. The issue of 
convergence therefore becomes a paramount consideration. 
The series order that best approximates the residual stress 
distribution for the experimental strain data was determined 
as the series order with the lowest RMS uncertainty, from 
those series orders that have converged [29]. The calculated 
stress distribution and associated uncertainty in the x direc-
tion for orders 2 to 15 of the constrained series method are 
shown in Fig. 4. The uncertainties in all figures correspond 
to ±2 standard deviations. The uncertainty bounds in the 
y direction for orders 2 to 15 are similar to those in the x 
direction and the corresponding figure is therefore omitted 
in the interest of brevity. All stress uncertainty bounds in 
Fig. 4 are plotted using light grey such that convergence of 
a number of orders gives rise to darker areas. The remaining  
light grey areas correspond to low order series,  2nd to  5th 
order, which are unable to describe the actual stress distribu- 
tion, and to higher order series where the uncertainty bounds 
start to diverge due to increasing instability. It is clear in 
Fig. 4 that as the series order increases from 2 to 5, the series  

converge towards the actual residual stress distribution. The   
6th order series has the lowest total uncertainty, but it has  
not converged and can therefore not be selected, similarly 
for the  7th and  8th order series. The orders 9 to 11 have  
converged and the  9th order series is selected as the best 
solution for this experimental data set as it has the lowest 
total RMS stress uncertainty of the series orders that have 
converged. Interestingly, the best series order for use in the 
standard series expansion method is one lower than that in 
the constrained solution. This difference arises because the 
imposition of constraints removes a degree of freedom from 
the solution in each stress direction and so an additional 
term is required in the constrained solution to get the same 
descriptive capability.

Results and Discussion

The least-squares fits of the constrained  9th order series 
to the experimental strain data are shown in Fig. 5 with 
associated uncertainties. The strain uncertainty due to the 
inability of the constrained  9th order series to exactly match 
the measured strain data is included in this figure. The cal-
culated stress distributions and associated uncertainties of 

Fig. 4  Overlap of the uncertainty bounds in �
x
 for  2nd to  15th order series
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the constrained  9th order series are shown in Fig. 6. The 
solid line corresponds to the the mean value of the calcu- 
lated residual stress for all Monte Carlo simulations at each 
depth increment and the dashed lines are the upper and lower  
uncertainty bounds which correspond to ±2 standard devia-
tions of the Monte Carlo simulations. As expected, the LSP-
induced residual stress distributions in the x and y directions 
are similar and the shear stress is close to zero. It is clear 
that a large tensile stress exists near the surface and that 
the combination of LSP parameters used in this particular 
study did not result in the desired compressive stress on the 
surface. Plasticity effects were not included since the maxi-
mum mean compressive stress is only 63% of the material 
yield strength. The FE model shown in Fig. 2 revealed that 
the maximum von Mises stress during material removal was 
505.5 MPa on the flat base of the hole when the hole depth 
was 0.25 mm. This stress, although some 0.4% above yield, 
will not have any meaningful impact on the results and, in 
fact, some small unmodelled hole-bottom fillet radius would 
have existed at this corner of the hole, reducing this stress 
concentration somewhat in practice.

The calculated stress distributions and associated uncer-
tainties of the standard series expansion and regularized 

integral methods are shown with those obtained using the 
constrained series method in Figs. 7 and 8. The magnitude  
and form of the residual stress distributions and uncer- 
tainties compare favourably. Standard series expansion 
defines the residual stress distribution well but exhibits 
high uncertainty in stress near the surface since curve fit-
ting methods tend to give their least reliable results at their 
ends. It is evident from Figs. 7 and 8 that standard series 
expansion does not offer any significant benefit over the 
integral method for near-surface stress measurement. It is 
clear that at the first stress datum of the integral method, 
the stress result and accompanying uncertainty of the stand-
ard series expansion and integral methods are the same. 
There is therefore no comparative advantage between the 
two methods on this front. In the case of the constrained 
series, the instability near the surface is reduced but at the 
expense of greater instability elsewhere, in particular the 
region of maximum compressive stress. The constrained 
series method significantly reduces the uncertainty in stress 
at the surface from 109.1±73.4 MPa to 123.8±43.0 MPa in 
the x direction and 118.3±72.4 MPa to 133.0±20.8 MPa 
in the y direction. Imposition of constraints on the regular-
ized integral method should also be possible and would 
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Fig. 5  Least-squares fits to the experimental strain data using the constrained  9th order series
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presumably yield similar results to those obtained using 
constrained series expansion. Additionally, the continuity 
condition of the regularized solution and the small depth 
between the surface and the XRD data should enable a good 
estimation of the surface stress, similar to series expansion, 
and again it is expected that these answers would be similar. 
Table 4 shows the RMS uncertainty in stress over 1 mm for 
each computational method arising from each uncertainty 
source as well as the combined uncertainty, u(Z).

Table 4 shows that zero depth position and noise in the 
experimental strains are some of the largest sources of 
uncertainty in stress. The series expansion methods are more 
tolerant of noise in the strain data due to least-squares curve 
fitting. Interestingly, the constrained series is less effected 
by noise in the experimental strains and zero depth position 
since it achieves a more stable fit to the strain data near the 
surface. However, the XRD measurements that help con-
strain the series near the surface introduce an additional 
stress uncertainty over the 1 mm depth which increases the 
total uncertainty of the constrained series to slightly above 
that of the unconstrained series. With more accurate XRD 

results in less textured material such as steel, this additional 
uncertainty is reduced and the overall uncertainty for the 
constrained series is lower than that of the standard series 
expansion approach. For illustrative purposes, Table 5 pre-
sents the breakdown of RMS stress uncertainty through the 
1 mm depth and the respective surface stresses with their 
accompanying uncertainties resulting from varying only the 
uncertainty in XRD results of Table 3 across a broad range 
of magnitudes which include the typical value of ±20 MPa 
[9, 12]. As expected, the total uncertainty decreases with 
improved XRD accuracy until, at an XRD uncertainty of 
about ±20 MPa, the constrained series method outperforms 
standard series expansion. The uncertainty in surface stress 
also reduces with improved XRD accuracy, but cannot be 
eliminated entirely because of the inherent uncertainty in 
IHD results. As can be seen in Fig. 9, the effect of XRD 
uncertainty on the stress distribution is localised to the near-
surface measurements. The IHD uncertainty dominates as 
the hole depth increases so that the XRD uncertainty has 
little to no effect on the stress uncertainty below a depth of 
about 0.1 mm.
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Table 5  Breakdown of RMS 
uncertainty in stress resulting 
from reducing only the 
uncertainty in XRD results

Total uncertainties [MPa] Surface stresses [MPa]

�x �y �xy �x �y �xy

Series Expansion 15.625 15.249 4.392 109.1±73.4 118.3±72.4 -10.3±22.2
Constrained Series, u(XRD) = 40 MPa 17.452 17.078 9.194 124.1±51.7 133.4±51.8 -72.4±50.3
Constrained Series, u(XRD) = 30 MPa 16.231 15.928 7.218 123.1±38.0 133.5±38.5 -72.7±37.5
Constrained Series, u(XRD) = 20 MPa 15.553 15.153 5.488 123.5±26.3 133.5±26.6 -73.2±25.6
Constrained Series, u(XRD) = 10 MPa 15.142 14.704 3.941 123.3±14.8 133.3±14.6 -73.0±12.7
Constrained Series, u(XRD) = 0 MPa 14.950 14.541 3.315 123.4±7.5 133.2±7.3 -73.0±1.2
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Table 4  Breakdown of RMS uncertainty in stress arising from each uncertainty source, xi

xi Contribution to u(�x)[MPa] Contribution to u(�y)[MPa] Contribution to u(�xy)[MPa]

Constrained 
Series

Series Expan-
sion

Integral 
Method

Constrained 
Series

Series Expan-
sion

Integral 
Method

Con-
strained 
Series

Series Expan-
sion

Integral 
Method

XRD 7.423 - - 3.656 - - 8.338 - -
E 4.996 5.084 4.962 4.682 4.800 4.656 0.118 0.128 0.108
�
12

1.499 1.539 1.194 1.522 1.551 1.194 0.065 0.054 0.000
zk 0.652 0.734 1.338 0.630 0.704 1.314 0.050 0.051 0.001
z
0

11.827 12.240 10.214 11.551 11.936 9.892 0.458 0.568 0.278
�m 2.668 2.716 2.650 2.501 2.558 2.487 0.062 0.062 0.057
�noise 4.781 5.265 11.141 4.775 5.256 11.174 2.853 3.700 3.728
FE 4.703 4.788 3.261 4.409 4.509 3.058 0.110 0.109 0.072
Misfit 1.153 2.374 3.543 1.384 2.744 4.420 1.575 2.237 2.464
u(Z) 16.698 15.625 17.044 14.972 15.249 16.939 8.965 4.392 4.157
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Conclusions

The IHD method is prone to high uncertainty in near-surface  
residual stress measurements, irrespective of the com-
putational method employed. A hybrid method has been 
developed that makes use of near-surface XRD measure-
ments to constrain the least-squares solution of IHD series 
expansion and thereby reduce the stress uncertainty near 
the surface. This allows the complete stress distribution up 
to 1 mm depth to be fully defined with increased accuracy 
using IHD. A comprehensive demonstration of this com-
putational method for IHD has been performed on an alu-
minium alloy 7075 plate of 10 mm thickness that underwent 
LSP treatment. The use of constrained series expansion was 
compared to the widely used regularized integral method, 
and standard series expansion. While there is a strong corre-
lation in the calculated stress distributions of all three com-
putational methods, the constrained series expansion method 
significantly reduces the uncertainty in residual stress in the 
near-surface region because of its incorporation of XRD data 
from this region. It is believed that integral method computa-
tions would be stabilised similarly if XRD surface stress data 
were used to impose constraints on the regularized solution.
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