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Abstract
Background Multiaxial dynamic loadings occur in many industrial cases and multiaxial dynamic test development is thus a
crucial issue.
Objective To meet this challenge, a biaxial compression Hopkinson bar set-up is designed.
Methods The set-up consists of a striker, an input bar, an internal output bar and a co-axial external output tube (surrounding the
internal bar). The internal output bar measures the axial loading of the cross sample whereas the external output bar measures the
transverse one via a mechanism. This mechanism uses two intermediate parts with inclined sliding surfaces.
Results Gauges on the bars enable for force measurements in the set-up, and the sample displacement field is obtained by digital
image correlation. Simple compression tests on cuboid samples inserted between the input bar and the internal output bar give the
sample material behavior. Then, to determine the friction at the mechanism sliding surfaces, identical samples are inserted
between the input bar and the external output bar, and are compressed.
Conclusions Finally, the consistency of the measurements obtained during a biaxial compression test on a cross sample can be
checked from the previously measured parameters and from numerical simulations.

Keywords Biaxial compression dynamic test . Hopkinson bars

Introduction

Multiaxial dynamic loadings usually occur in many industrial
cases such as automotive impacts [1], high-speed forming [2]
or high-speed machining [3]. Multiaxial dynamic test devel-
opment is therefore a crucial issue. Unfortunately, most of the
dynamic tests are uniaxial. For instance, the very common
Hopkinson bar test (which enables for accurate measurements
at high strain rates) uses the uniaxial compression loading
generated by the impact of a projectile.

In order to performmultiaxial tests, many set-ups have thus
been designed to obtain multiaxial loadings from an initial
uniaxial loading device. For example, a radial pressure can
be applied to a cylindrical sample mounted onHopkinson bars

thanks to a confinement device. One can use a pressure vessel
that enables for a controlled quasi-static pressure to be applied
from a fluid [4]. Inserting the cylindrical sample inside a rigid
tube can generate a dynamic radial loading even though the
ratio between the radial pressure and the axial stress strongly
depends on the sample material, in particular on its Poisson’s
ratio [5]. Using a confinement tube made of a perfect plastic
behavior material makes it possible to maintain a constant
radial pressure [6]. A rigid confinement can also be imposed
to a cruciform sample with a pre-loading system [7].

Another idea is to combine shear and compressive load-
ings. An inclined shear/compression specimen [8] or pressure
bars with beveled ends [9] can be used to apply such com-
bined loadings. The combined torsion-compression
Hopkinson bar technique using torsional and compressive
bars at each side of specimen was also reported [10]. It can
also be carried out by blocking a brake on the input bar and by
applying both compression/tension and torsion on the input
boundary of the bar. Then the sudden fracture of the brake
generates both torsion and tension/compression waves [11].
Unfortunately, the difference between the wave celerities does
not enable simultaneous loadings to be obtained [12].

In order to apply biaxial loadings, two perpendicular
Hopkinson bar devices have been built [13]. An explosive is
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used to obtain simultaneous loadings. The system is rather
expensive and difficult to use. Recently, biaxial Hopkinson
bar systems using two impactors were reported to generate
biaxial compression states on samples [14], but obtaining
two simultaneous impacts remains difficult. Another simple
way to apply an equi-biaxial loading is the bulge-test using
Hopkinson bars described in [15]. In this test, the external
boundary of a circular sheet is leant against the tubular bound-
ary of the output bar while the other side of the sheet is sub-
mitted to the pressure of a fluid compressed by the input bar. A
biaxial tensile state is thus obtained at the center of the sheet.
Unfortunately, only sheets can be tested and the displacement
field on the sample cannot be easily measured.

From the short review above, it can be seen that the multi-
axial testing design is still a tough issue. There are no com-
monly admitted testing set-ups and the design of such a test
depend on the aimed loading state and on specimens. This
paper is focused on biaxial compression and a new concept
of Hopkinson bar system has been designed and tested. Its
principle and its characteristics are described in Section 2.
Then, Sections 3 and 4 present respectively the raw experi-
mental results obtained from calibration tests and the analysis
of a bi-axial test thanks to numerical simulations.

Design of the New Set-up

Set-up Characteristics

The designed bi-axial set-up uses a mechanism with interme-
diate parts with sliding surfaces and a cruciform specimen.
This mechanism with sliding surfaces at 45° with respect to
the axial direction was placed between the single input bar, the
internal output bar and the co-axial external output tube
(Fig. 1). After the striker impact on the input bar, the internal
output bar measures the axial loading of the cross sample

whereas the external output bar (the single tube that surrounds
the internal output bar) measures the transversal one via the
mechanism.

Using a single loading impulse avoids the difficulty due to
non-simultaneous impacts occurring with perpendicular
Hopkinson bar devices [13, 14]. Another advantage of such
a design lies in the fact that the ratio between the axial and the
transverse loadings is imposed by the ratio between the exter-
nal and the internal output bar impedances and by the sliding
surface angle of the mechanism.

The pressure bars are made of steel and their characteristics
are given in Table 1. The external and the internal output bars
have nearly the same impedance in order to ensure, on an
isotropic sample, an approximate equality between the inter-
nal and the external loadings, and therefore between the axial
and the transverse loadings, thanks to the mechanism. The
difference between the internal radius of the external output
bar (Rieo) and the internal output bar radius (Rio) is 3 mm,
which is sufficient to place the gauges glued on the internal
bar and their cables. These electrical cables exit from the ex-
ternal bar at the output end (i.e. at the opposite of the set-up).
Nylon bearings are inserted between the two co-axial output
bars and some of them are opened (Fig. 2g) to let a passage to
the cables.

The detailed drawings of the set-up parts are given in Fig.
2. The sample size (boundary to boundary) is 10 mm× 10mm
and its thickness is 5 mm (Fig. 2e). The shape of the parts with
the two sliding surfaces (noted “a” in Fig. 2) has been chosen
to maximize the stiffness. One of this part (the left-hand one in
Fig. 1, in green) is inserted between the input bar and the two
transverse triangular parts (noted “d”) and the other (the right-
hand one in Fig. 1, in red) is inserted between the two trans-
verse triangular parts and the external output bar.

The cylinder noted “b” in Fig. 2 is inserted between the
input bar and the sample, and the cylinder “c” is inserted
between the sample and the internal output bar (see Fig. 1).
Both cylinders apply the axial loading on the cross sample and
the right-hand one in Fig. 1 (the “c”) is free to have an axial
motion relatively to the right-hand part with the sliding sur-
faces (“a”).

Forces and Velocities in the Set-up

Strain gauges are glued at the middle of the input bar and on
the two output bars close to the sample but far enough from
the ends (at 0.374 m on the external bar and at 0.612 m on the
internal one) to be within the Saint-Venant conditions.

After the striker impact, the input bar gauge measures an
incident compressive wave εi followed by a reflected tensile
wave εr. Moreover, the external output gauge measures a
transmitted wave in the external output bar, εet and the internal
output gauge also measures a transmitted wave in the internal
output bar, εit. εi can be seen as a loading imposed to the

Fig. 1 Schematic of the experimental configuration (cut view) with the
relative motion of each part and the applied forces (up). Three-
dimensional (down, left) and uncut (down, right) views without the three
bars
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biaxial set-up whereas εr, εet and εit can be seen as the set-up
response to the imposed loading.

These strain waves have to be virtually transported from
the gauge positions to the interfaces between the bars and the
set-up presented in Fig. 1, down. Thus, εi has to be delayed
and εr, εet and εit have to be shifted forward of the duration
necessary for the waves to propagate from the measurement
gauge to the corresponding interface. Then the Hopkinson
formulae enable for the determination of the forces and of
the velocities at the interfaces from these transported waves
and from the bar parameters given in Table 1:

Fi ¼ −ρiCi
2πRi

2 εi þ εrð Þ ð1Þ
Vi ¼ Ci εr−εið Þ ð2Þ
Feo ¼ −ρeoCeo

2π Reeo
2−Rieo

2
� �

εet ð3Þ
Veo ¼ −Ceoεet ð4Þ
Fio ¼ −ρioCio

2πRio
2εit ð5Þ

Vio ¼ −Cioεit ð6Þ

Fi and Vi are the force and the velocity at the interface
between the input bar and the set-up shown in Fig. 1, Feo

and Veo are the force and the velocity at the external output
bar interface and Fio and Vio are the force and the velocity at
the internal output bar interface.

Under the assumption of an equilibrium state in the set-up,
the axial force in the sample can be assumed to be equal to the
internal output force Fio and the transverse force Ft can be
deduced from the external output force Feo. Indeed, each
transverse triangular part of the mechanism is axially submit-
ted to half Feo and by taking account of friction, the mechan-
ical equilibrium of a transverse triangular part leads to Fig. 3.

As the Fig. 3 upper triangle moves from top to bottom, the
applied friction forces are oriented from bottom to top.
Besides, according to the Coulomb’s laws, the friction force
over normal force ratio is imposed to be equal to the friction
coefficient at the mechanism sliding interfaces, noted f. The
axial projection of the force transmitted by a sliding surface
corresponds to half Feo (the axially applied force) and the
transverse projection corresponds to Ft, which leads to:

Ft ¼ 1− f
1þ f

Feo ð7Þ

Experimental Results

Strain Gauge Measurement and Image Processing

Axial strain gauges are glued on each of the three bars and
the measurement frequency is 500 kHz. The Hopkinson
formulae (eqs. (1), (3) and (5)) permit for the calculation
of the forces at the interfaces between the bars and the set-
up from these measurements. The camera trigger signal is
measured in the same time-basis as the gauge voltages. The
image which was being recorded in the camera at the arrival
of the trigger signal being known, both measurements can
be time shifted.

The speckled samples are observed during the tests thanks
to an SA5 high-speed camera whose frequency is 50 kHz at a
definition of 512 pixels × 272 pixels. Images of the samples
are acquired during the tests. The first one is called reference
image and the displacement between each image and the ref-
erence is calculated thanks to Digital Image Correlation
(DIC). DIC is performed by using the in-house Correli RT3
software [16, 17]. The displacement field is defined over a
finite-element mesh made of triangular 3-noded elements
(T3). The chosen element size is 10 pixels. The mean dis-
placements on the four sample interfaces and the resulting
axial and transverse elongations are determined from DIC.
The displacement is given in pixels, which are converted into
millimeters knowing the sample dimension. In order to control
the uncertainty of the DIC calculation, an elastic regulariza-
tion is used [16, 17].

The relative weight applied to the reference solution can
be seen as the fourth power of a length called the regulari-
zation length. A too high regularization length may lead to
erroneous estimations of the experimental displacement
field because this field is thus constrained to be close to an
elastic solution. As a result, the DIC calculations are proc-
essed with a regularization length decreasing from a value
corresponding to 3 times the element size (30 pixels) to a
value equal to the element size (10 pixels). DIC gives iden-
tical results when the length varies from 30 to 20 pixels but
the results obtained with a 10 pixel length are sometimes a
bit noisy and slightly different from the previous ones. To
reduce the noise, a 20-pixel length is thus chosen for the
processing.

Table 1 Mass densities, tensile-
compressive wave celerities, radii
and lengths of the bars

bar density wave celerity radius length

external internal

striker ρi = 8050 kg.m−3 Ci = 4600 m.s−1 Ri = 11 mm 1.25 m

input 4 m

internal output ρio = 7800 kg.m−3 Cio = 5100 m.s−1 Rio = 6 mm 2 m

external output ρeo = 7400 kg.m−3 Ceo = 5200 m.s−1 Reeo = 11 mm Rieo = 9 mm 2 m
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Identification of the Sample Material Behavior

The samples are made of an AW-2017A aluminum. The ma-
terial stress-strain law is identified from simple compression
tests on cuboid samples (5 mm × 5 mm × 10 mm) inserted
between the input bar and the internal output bar (the external
output bar being removed, see Fig. 4a).

The compression force in the sample (Fig. 4, case a) thus
corresponds to the internal output force Fio. The sample axial
and transverse elongations in the image plan are determined
from DIC. The real cross section (which increases because of
compression), and then the true stress, can thus be calculated.
Meanwhile, the axial logarithmic strain is deduced from the
corresponding axial elongation. These measurements lead to
repeatable axial behaviors.

Identification of the Friction at the Mechanism Sliding
Interfaces

The friction coefficient in the mechanism of this new bi-axial
testing device is a key parameter which has to be determined
under the bi-axial test conditions. In order to reproduce the
reached sliding velocities at the sliding interfaces, identical
AW-2017A cuboid samples are inserted between the input
bar and the external output bar, and are compressed via the
mechanism (the internal output bar being removed, see Fig.
4b). The ratio between the transverse compression force Ft

and the external output force Feo is thus friction dependent
according to relation (7).

The set-up being far too small to insert a cell able to mea-
sure the compression force in the sample, this force will be
deduced from relation (7) and from the Feomeasurement. The
friction coefficient f will be estimated knowing that the force-
elongation laws identified during the axial (Fig. 4a) and the

transverse (Fig. 4b) tests must be the same because the tested
cuboid samples are the same too.

According to Fig. 5, by multiplying the external output
force Feo measured during the transverse test by a constant
ratio, a satisfactory fit can be obtained between the transverse
and the axial tests when the displacements become high
enough. However, for low displacements, the ratio should be
a bit lower to obtain a satisfactory fit. It implies that the friction
is first higher (adhesion phase) and then decreases when the
displacements become high enough (sliding phase), which is
finally consistent with the Coulomb’s law.

Fig. 5 represents typical curves obtained from an axial test
and from a transverse one, chosen as average behaviors. The
transverse curve shows that the adhesion phase is not station-
ary, unlike the sliding one. The friction will thus be identified
only during the sliding phase. The noise of the transverse
force-elongation curve will lead to an uncertainty on the fric-
tion. By fitting, in the sliding phase, the transverse curve
points with the minimal forces and the axial curve, a lower
bound of the friction coefficient is obtained. Inversely, by
fitting, in the sliding phase, the transverse curve points with
the maximal forces and the axial curve, an upper bound of the
coefficient is obtained. One obtains 0.05 < f < 0.09. Such
values are consistent with Vaseline lubricated interfaces. It
finally leads to a 0.87 average Ft/Feo ratio with a 4% relative
uncertainty.

The friction coefficient magnitude and the corresponding
uncertainty knowledge does not matter in itself, but it will
enable for the determination of the transverse force and of
the corresponding uncertainty during the bi-axial test.

Without clearances and without intermediate strains in the
set-up, the corresponding interface sliding velocity should be
equal to the difference between the input velocity and the
external output one, or to the opposite of the transverse sample

elongation rate, both divided by
ffiffiffi
2

p
(because of the 45° an-

gle):

Vint;bars ¼ Vi−Veoffiffiffi
2

p ð8Þ

Vint;sample tð Þ ¼ Δl t−Δtð Þ−Δl t þ Δtð Þ
2

ffiffiffi
2

p
Δt

ð9Þ

Vint,bars is the interface sliding velocity estimated from the
bar interface velocities (relations (2) and (4)) whereas
Vint,sample is the same quantity estimated from the sample elon-
gation Δl. Formula (9) corresponds to a numerical differenti-
ation, t being a measurement instant and Δt the elongation
acquisition time (given by the camera).

These velocity estimations show that a stationary phase
with an interface sliding velocity of around 1 to 3 m/s begins
for an elongation of approximately 0.1 mm, which is consis-
tent with the beginning of the phase with a constant friction
identified in Fig. 5.

√2(1 + )

√2(1 + )√2(1 + )

√2(1 + )

Fig. 3 Equilibrium of a transverse triangular part axially submitted to half
Feo

�Fig. 2 Part drawings (general tolerances: 0.1 mm); (a): parts with the
sliding surfaces, (b): left-hand cylinder, (c): right-hand cylinder, (d):
transverse triangular parts, e: sample, f: bearings, g: opened bearings
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Analysis of the Bi-Axial Test Measurements

An AW-2017A cross sample is tested by using the whole bi-
axial mechanism and the two output bars (see Fig. 1 or Fig.
4c). The forces applied by the bars on the bi-axial set-up are
determined from the strain gauge measurements and from the
Hopkinson formulae and are shown in Fig. 6.

Fig. 6 shows that the input force and the total output force
are in satisfactory equilibrium, despite of the complex 3-
dimensionnal wave propagation phenomena occurring in the
bi-axial mechanism. According to Section 2.2, the axial com-
pression force in the sample corresponds to Fio whereas the
transverse compression force Ft is lower than Feo but almost
equal because of the low friction (in Section 3.3, the estimated
Ft/Feo ratio is roughly 0.87). The obtained transverse and axial
forces (Ft and Fio) being very close, Fig. 6 thus displays that
the force loading path in the sample is rather equi-bi-axial.

As the external and the internal output bars have nearly the
same impedance, the velocities, and thus the displacements, at
the external and the internal output bar boundaries are also
very similar. If there were no clearances and no strains occur-
ring in the mechanism intermediate parts, the transverse dis-
placement of each of the two triangular parts would be half the
difference between the input bar and the external output bar
displacements. The triangular parts moving symmetrically,
the sample elongations, in both directions, would thus be ex-
actly equal to the difference between the displacements at the
input bar and at the output bar interfaces. It displays that the
elongation loading path may be also rather equi-bi-axial.

The cross sample axial and transverse elongations are de-
termined from the images and from DIC. The DIC reference
image and the corresponding meshes on the sample are shown
in Fig. 7.

The obtained elongation time-evolutions and the corre-
sponding transverse-axial loading path can be seen in Fig. 8,
which clearly confirms that an almost equi-bi-axial loading is
imposed to the sample. This bi-axial state can also be seen in
Fig. 9, which also shows the set-up capacities in both
directions.

Formulae (8) and (9) show that the sliding velocity reached
at the interface during the stationary phase is of the order of 1
to 3 m/s, like during the friction identification test. It confirms
the relevance of the friction coefficient value used for data
processing.

Check of the Measurement Consistency
Thanks to Simulations

Material Modelling

A typical result obtained from an axial compression test on a
cuboidal sample (Fig. 4a), and chosen as a reference is report-
ed in Fig. 10.

As there are few measurement points in the elastic phase, a
70 GPa Young modulus and a 0.3 Poisson’s ratio are assumed
(AW-2017A characteristics). A yield stress - plastic strain law
with a 100 MPa elastic threshold, and which exactly fits the

Fig. 4 Schematics of the tests; a:
cuboid sample axially
compressed, b: cuboid sample
transversally compressed, c: cross
sample bi-axially compressed

Fig. 6 Time evolutions of the forces at the interfaces
Fig. 5 Friction identification by fitting the transverse test and the axial
one
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measurements is then chosen (see retained behavior in
Fig. 10). To simplify the modelling, the stress is supposed to
saturate at a 268 MPa threshold value, which also well fits the
measurements. In practice, the axial curves are reproducible
for strains lower than 3%, but a 4% dispersion is observed for
the threshold value. These parameters are implemented in a
Von-Mises elastic-plastic model with an isotropic hardening.
The used software is ABAQUS.

Simulation of the Sample Behavior

Because of its cross-shape, the stress and the strain states in
this sample are heterogeneous. So, to check the force and
elongation measurement consistency, a finite-element simula-
tion must be performed. The calculations are performed with

the Fig. 10 retained behavior. The fact that the model identi-
fication test has been carried out in the same dynamic condi-
tions as the bi-axial test implies that the method remains valid
with a strain rate dependent behavior. If any contact occurs
between the arm free boundaries, it will be supposed friction-
less. According to Fig. 6, the bi-axial set-up, and therefore the
cross sample, are in a satisfactory equilibrium. This equilibri-
um state can be accurately verified by processing a dynamic
explicit calculation. The chosen density is 2800 kg.m−3.

The displacements estimated thanks to DIC calculations
are directly imposed to the sample interfaces (Fig. 11).
Because of the image plan symmetry, only half the sample
has to be modelled (Fig. 12). 8-node linear brick elements
are used. The chosen brick size is 0.25 mm, which leads to
the Fig. 12 mesh.

The dynamic explicit calculations display that the forces
applied at opposite boundaries are almost equal until 60 μs,
and become exactly the same after this duration. The sample
equilibrium assumption being checked, the axial force is de-
fined as the left and right boundary force average and the
transverse force as the upper and lower boundary force
average.

The numerical and the experimental forces in both direc-
tions can then be compared to check the measurement consis-
tency. Because of the behavior dispersion (see Section 4.1), a
4% relative uncertainty must be considered for the numerical
forces. The friction is taken into account by determining the
measured transverse force with the 0.87 estimated Ft/Feo ratio

Fig. 8 Time-evolutions of (the opposite of) the elongations in both
directions (up) and corresponding loading path (down)

Fig. 7 Reference image (left),
mesh used to determine the axial
displacements (right, up) and
mesh used to determine the
transverse displacements (right,
down)

Fig. 9 Sample force-elongation curves in axial and transverse directions
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(see end of section 3.3). The 4% relative uncertainty of this
ratio also leads to a 4% uncertainty of the measured transverse
force. It could be noted that the uncertainty due to friction is
not so high.

In Fig. 13, the numerical forces are obtained at the displace-
ment measurement frequency (i.e. every 20 μs). As expected,
the fit is not perfect at the very beginning of the test because of
the following reasons:

& These is a too weak number of acquisition points in the
elastic phase to accurately measure the brutal increase of
the forces.

& The sample equilibrium being not perfect during the first
60 μs, the axial and the transverse forces in the cross
sample do not exactly correspond to measured forces at

the output bar interfaces (i.e. Fio and Feomultiplied by the
friction dependent ratio).

& The transverse force is determined from the sliding fric-
tion coefficient, and as explained in section 3.3, this meth-
od overestimates the force at the very beginning of the test,
i.e. in the adhesion phase.

However, during the stationary phase, the measurement
consistency is clearly proven. It validates the identified sample
model. Although this processing is not performed to measure
the friction, it also shows that the friction coefficient used to
process the data is consistent.

Simulation of the Whole Apparatus Behavior

The axial and transverse forces in the sample are both deter-
mined from the forces at the interfaces between the output bars

Fig. 11 Imposed boundary displacements (axial ones oriented from left
to right and transverse ones oriented from top to bottom)

Fig. 12 Meshed sample model accounting of the symmetry plan

Fig. 13 Comparison between the experimental forces and the numerical
forces obtained from the measured displacements and from the identified
model

Fig. 10 Stress-strain law identified from a test
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and the set-up. This determination is based on the equilibrium
assumption, which actually implies a quick enough transmis-
sion of the wave through the mechanism. A satisfactory, but
not perfect, equilibrium is experimentally shown in Fig. 6.
However, the incident strain wave εi and the reflected one εr
being rather opposite, as shown in Fig. 15, the input force Fi
determination from formula (1) is very noise sensitive. A sim-
ulation of the whole bar set-up has thus been performed to
study this equilibrium. The used software is still ABAQUS
in its explicit version.

The aluminum sample is supposed to have the properties
given in Sections 4.1 and 4.2. The bi-axial mechanism parts
are supposed to be made of the input bar steel (it is actually the
case) whose Poisson’s ratio is 0.3 (density and wave celerity
given in Table 1), and to remain purely elastic. The same
assumptions are used to model the output bars (densities and
wave celerities also given in Table 1). The striker initial ve-
locity is 6 m.s−1, which is consistent with experimental mea-
surements (Fig. 15). The selected friction coefficient at the
contact surfaces is 0.07, as measured in Section 3.3. The static
and the dynamic coefficients are supposed to be the same.

Because of the two symmetry planes (the cutting plane in
Fig. 1 and the one normal to the section plane and containing
the axis), only a quarter of the system is studied. The bars and
the projectile are modelled by 6-node linear triangular prism
elements (ABAQUS terminology) whose approximate size is
5 mm. The two parts with the sliding surfaces and the tubes
inserted between the sample and the input bar and between the

sample and the internal output bar are modelled by the same
elements but their rough sizes are respectively 10 mm and
2.5 mm. The triangular part is composed of two triangular
prism elements separated by the symmetry plane. The sample
is merely composed of four 8-node linear brick elements: one
corresponding to the center and three corresponding to the
three arms represented in the simplified model. As shown in
Fig. 15, element sizes are thin enough to roughly fit the mea-
surements. The chosen time increment is 0.1 μs.

The experimental results display that the contacts in the bi-
axial mechanism are not perfect. In Fig. 14, a non-negligible
gap can be seen between the sample elongations and the dif-
ferences between the input and the output bar displacements.
As explained in Section 3.4, these quantities would be identi-
cal if there was neither clearances nor intermediate strains.
The numerical equivalent of this gap is lower, and only due
to the elastic strains of the mechanism parts. It implies that the
numerical set-up is a little bit stiffer than the real one.
However, the stiffness remaining in the same order, it enables
to check the general relevance of the set-up.

Fig. 14 Comparisons between the sample elongations and the differences
between the bar displacements

 

 

  

Fig. 15 Experimental and numerical strain time evolutions at the gauge
positions

Fig. 16 Time evolutions of the numerical forces at the interfaces
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The gauges are glued at the middle of the input bar and on
the two output bars at 0.374 m from the interface with the set-
up on the external bar, and at 0.612 m on the internal one. The
experimental and the numerical strain time-evolutions are
compared in Fig. 15. The input gauge first measures the inci-
dent wave εi, and then the reflected wave εr. The external
output gauge and the internal one measure the external trans-
mitted wave εet and the internal transmitted wave εit. εi can be
seen as a loading imposed to the bi-axial set-up whereas εr, εet
and εit can be seen as the set-up response to the imposed
loading. Figure 15 shows that the simulated εi (proportional
to the striker initial velocity) rather fits the experimental one,
despite some spurious oscillations. The numerical transmitted
waves are a little bit higher than the experimental ones, which
is fully consistent with a modelled set-up stiffer than the real
one.

Fig. 16 finally shows that, in spite of numerical oscillations,
the input force and the total output force are in mean equilib-
rium and that both output forces are the same.

The finite element mesh can be seen in Fig. 17. As the
contacts are not perfectly modeled, using a smaller mesh
would be useless to better fit the measurements.

Conclusion

The aim of the study was to check the relevance of a newly
designed Hopkinson bi-axial compression set-up. The sample
axial compression is directly generated by an internal output
bar whereas the transverse compression is indirectly generated
by an external output bar via a mechanism. The friction in the
mechanism is identified in the relevant dynamic conditions
from comparisons between axial and transverse compression
tests on cuboid samples. To reproduce the sliding velocities
reached at the mechanism sliding interfaces during the bi-axial
test, these cuboid samples are made of the bi-axial sample
material. The friction being identified, any sample can now
be tested.

A calibration bi-axial test has been performed on a cross
sample with a simple shape, and therefore easy to model. The

measurements show that the device ensures an approximate
equality between the axial and the transverse loadings, and the
experimental result reliability is proven by a numerical model-
ling of the bi-axial sample. The set-up can therefore be used in
the future for characterization on more complex samples and
materials (which was not the aim of this first study).

Finally, the design of an easily buildable set-up generating
and measuring a rather isotropic dynamic bi-axial loading has
been achieved.
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