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Abstract
Background: Digital Image Correlation (DIC) is based on the matching, between reference and deformed state images, of
features contained in patterns that are deposited on test sample surfaces. These features are often suitable for a single scale,
and there is a current lack of multiscale patterns capable of providing reliable displacement measurements over a wide range
of scales.

Objective: Here, we aim to demonstrate that a pattern based on a fractal (self-affine) surface would make a suitable pattern
for multiscale DIC.

Methods: A method to numerically generate patterns directly from a desired auto-correlation function is introduced. It is
then enhanced by a Mean Intensity Gradient (MIG) improvement process based on grey level redistribution. Numerical
experiments at multiple scales are performed for two different imposed displacement fields and results for one of the patterns
generated are compared with those obtained for a random pattern and a Perlin noise one.

Results: The proposed pattern is shown to lead to DIC errors comparable to those found with the two others for the first
scales, but has much greater robustness. More importantly, the pattern generated here exhibits stable errors and robustness
with respect to the scale whereas these two outputs become significantly degraded for the other two patterns as the scale
increases.

Conclusions: As a result, scale invariance properties of the pattern based on fractal surfaces correspond to scale invariance
in DIC errors as well. This is of great interest regarding the use of such patterns in multiscale DIC.

Keywords Pattern auto-correlation - Coarse-to-fine initialisation - Uncertainty quantification - Large strain -
Speckle optimisation - Pattern generation

Introduction

One of the most important elements in Digital Image
Correlation (DIC) is the pattern deposited on test sample
surfaces, as measurement accuracy depends strongly on
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specific features of this pattern [10, 20, 29, 58]. Depending
on the application, suitable speckles can be generated on
specimen surfaces using a wide variety of experimental
methods. For instance, for large scale applications, an
airbrush or marker pen may be useful [21, 22] while,
for small scale applications, the focused ion beam (FIB)
technique or spin coating can be used [18, 54, 57]. However,
for many of these methods, the operator’s experience may
greatly influence the measurement accuracy obtained [27].
Concurrently, test standardisation and robust measurement
methods are needed in the industrial context. This need
raises demand for methods that are able to generate patterns
with high reproducibility [8, 59].

Consequently, research has sought to define relevant
pattern quality criteria. Some researchers have investigated
the effect of speckle characteristics in detail [20, 35-39],
leading to the definition of an optimal speckle size of
3 to 5 pixels [22]. We wish to point out here that this
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optimality criterion relates only to certain pattern generation
techniques (e.g. airbrush and marker pen). For example, it
relies on the assumption that a typical speckle size can be
defined.

Increasing interest is concomitantly being shown in full-
field measurement techniques that are able to operate at
various scales [4, 24, 32, 43, 48, 56]. These techniques
dramatically reduce both computational time and hardware
requirements. However, in these conditions, it becomes
questionable to define an optimal speckle size in pixels
(since cameras with different magnification levels are
considered).

Some other works have adopted a different approach and
assessed pattern quality on the basis of global parameters
[5, 6, 28]. To date, patterns described as multiscale have
been designed for only two different scales [4, 24] and it
is therefore more appropriate to call them biscale patterns.
Unfortunately, this kind of pattern does not completely fulfil
industrial needs. There is little chance that only two scales
would be enough and that these two particular scales would
be known precisely before the start of experiments. In this
context, a truly multiscale pattern would prove particularly
useful. Also, for DIC displacement measurements, its
multiscale features would make it easier to use initialisation
processes based on a multigrid approach [1, 16, 34].

In this paper, for the sake of simplicity, neither the
process of image capture nor associated problems, such as
scene lighting, will be investigated. We will focus rather on
the generation of a scale-free pattern for texturing objects.
First, some relevant global quality criteria for patterns
are reviewed in “Pattern Quality Criteria”. A method to
numerically generate patterns according to these criteria
is then described in “Multiscale Pattern Generation from
Auto-correlation Function”. Finally, numerical experiments
to assess the measurement accuracy of one of the generated
patterns are described in “Pattern Performance Evaluation”.
This brings us to “Conclusion and Outlook” for some
concluding remarks.

Pattern Quality Criteria

DIC is based on the assumption of grey level conservation
[17]. Let us consider a reference and a deformed state
image, respectively denoted by f and g. DIC aims to identify
the displacement field u such that:

f(xX)=go¢(x) =glx +ulx)), ey

where 2 stands for the Region Of Interest (ROI) and ¢ for
the geometric transformation. From an algorithmic pOiTlt of
view, this problem is usually solved by minimising a DIC
criterion measuring the distance between f and g advected
by u in a given domain 2. For local approaches, classically

Vx € Q,
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referred to as subset-based DIC [23, 47], Q2 corresponds
to a small sub-window (called the Zone Of Interest (ZOI),
subset, interrogation window, etc.). For global DIC [2, 46],
Q tends to stand for the whole ROI. Many different DIC
criteria exist and have been evaluated. Tong [49] showed
that the most robust and reliable criterion was the Zero-
mean Normalised Sum of Squared Difference (ZNSSD),
with:
2
1

e

pixels

f—f 8°¢-g0c9¢
M a(ees)
where f and g o ¢ denote, respectively, the mean value of f

and g o ¢, Af and A (g o 9) denote f and g o ¢ standard
deviation, and M stands for the number of pixels. In the
present work, this ZNSSD criterion is used. Tong [49] also
expressed the relation between this criterion and the Zero-
mean Normalised Cross-Correlation one (ZNCC) defined
as:

oo f-T\[8o2—g°¢
e M—1 pixels Af

A (g o ?)
Since we can write:

Cznssp =2(1 — Cznce)- 4

It is worth pointing out that, for whole-pixel translations,
computing Czycc or the pattern auto-correlation function
at the corresponding point would yield the same results.
Hence, it is consistent to assess pattern quality by means of
criteria based on the auto-correlation function for the ZNCC
(or ZNSSD) cost function, but it should not be forgotten that
the underlying approach remains valid only for whole-pixel
translations.

(2

Cznssp =

)

Criteria Based on Auto-correlation Function

Bossuyt [6] suggested quality criteria based on pattern auto-
correlation. From physical considerations on properties that
an ideal pattern should have (Sensitivity and Robustness),
he deduced the corresponding features of the pattern
auto-correlation function. In the following, the interesting
features of auto-correlation are reviewed.

Main Auto-correlation Peak Sharpness Radius

First, the pattern sensitivity needs to be assessed. For
that purpose, Triconnet et al. [50] defined the main auto-
correlation peak sharpness radii as the principal axes of the
ellipse formed by the intersection of the osculating elliptic
paraboloid in (0,0) and the zero-height plane. The half-
sum of these radii was then used as a quality criterion.
Bossuyt [6] assumes that this criterion is closely related to
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the pattern displacement sensitivity. It may appear logical
that, the smaller the radius, the greater the change in the
auto-correlation function for a given subpixel translation.

Watershed Radius

Then, a good pattern should allow initialisation as far
as possible from the displacement to be measured. To
this end, Bossuyt [6] introduced a criterion based on the
primary auto-correlation peak width to take the pattern
robustness into account. The broader the peak the further
the initialisation may be from the actual displacement and
still avoid undesirable convergence towards local minima of
the cost function. This criterion is the watershed radius and
it represents the radius of a circle with the same area as the
projection of the main auto-correlation peak on a plane. The
interested reader is invited to refer to Bomarito et al. [5] for
more information.

Secondary Auto-correlation Peak Height

Later on, Bomarito et al. [5] suggested taking possible
mismatches or convergence in local minima into account
by considering displacement fields associated with a stretch
deformation. As these displacement fields can lead to
primary correlation peaks that are actually lower than
secondary correlation peaks in a ZNCC criterion, Bomarito
et al. [5] introduced a metric based on the height of the
secondary auto-correlation peak.

Mean Intensity Gradient

In subset-based DIC, a link has been established theoreti-
cally and numerically [29, 55] between the Sum of Square
of Subset Intensity Gradients (SSSIG) and random error.
Additionally, a global parameter based on SSSIG was elab-
orated: the Mean Intensity Gradient (MIG), and numerical
experiments [28] showed improvements in both system-
atic and random errors for higher values of MIG. In the
context of global DIC, such as Finite Element DIC (FE-
DIC), Roux and Hild [40] established the same kind of
relationship between MIG and error standard deviation
theoretically.

The best possible values for SSSIG or MIG are achieved
for checkerboard patterns [5]. Some works followed
this path [15] and it led to a method called Localised
Spectrum Analysis (LSA). However, in a general DIC
context, according to Bomarito et al. [5], these parameters
alone cannot be considered as proper pattern quality
criteria because of the non-uniqueness of the identified
displacement (up to a translation of a whole number of
squares). These patterns cannot be used in a multiscale DIC
framework either as the dynamic range of checkerboard

pattern pictures taken by far-field cameras is drastically
reduced.

For these reasons, both MIG-based and auto-correlation-
function-based criteria will be considered here to generate a
suitable multiscale pattern for DIC, as described below.

Multiscale Pattern Generation from
Auto-correlation Function

Based on the auto-correlation criteria mentioned above,
Bomarito et al. [S] developed an optimisation metric and
a framework to generate an optimal pattern. A Boolean
parameterisation of the pattern was considered for this,
i.e., each pixel could be given the value O or m by the
optimisation algorithm (where m + 1 is the number of
quantisation levels). For each pattern, the auto-correlation
function was computed in order to evaluate the metric.
Thanks to this first step, Bomarito et al. [4] were able
to create a method to generate an optimal biscale pattern
in which two pixel sizes were defined, one for each
camera magnification. However, the generalisation of this
process to more than two different scales does not appear
straightforward, particularly when a reasonable dynamic
range must be obtained at all scales.

In this work, an alternative approach is suggested. We do
not parameterise a pattern and then optimise the associated
auto-correlation function quality criteria, nor do we define
a set of magnification scales. Instead, a suitable auto-
correlation function with appropriate multiscale properties
is taken as an input. Then the associated pattern is generated
directly. This section presents the method used to generate
a fractal speckle pattern with respect to a priori criteria.
The very same method could be employed to define patterns
with user-defined auto-correlation functions.

Auto-correlation Function and Fourier Transform

Let us consider a sampled and quantised pattern:
h:x €0;2n 4+ 117 — h(x) € [0; m]), ©)

where m 41 is the number of quantisation levels (256 levels
with 8 bits), 2n + 2 the number of pixels in both dimensions
and x the pixel centre. i auto-correlation function Ay is
defined as:

Ap:zel-nmn+ 117 = Ap@) € [-1; 1], ©6)

where T = (ty, 1y) is the shift (or translation) vector.
FT(h) denotes h Fourier transform. The inverse Fourier
transform will be denoted by F T-1(-). With such notations,
we can compute the auto-correlation, up to a multiplicative
constant, using the Wiener-Kinchin theorem [42] as follows:

Ap = FT Y (|FT ()%, 7
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where |F T(h)|2 is called h power spectrum. The pattern
Fourier Transform modulus can easily be derived from
equation Eq. 7:

|FT(h)| = FT(Ap)?. ®)

At this point, it may be noted from Eq. 8§ that the amplitude
of the pattern Fourier transform is known at each point of the
frequency domain. However, the phase information cannot
be recovered in the process. In the generation of fractal
surfaces, a uniform [0; 27 ] random phase ¥ is often used
at each point of the frequency domain [12, 41, 51]. For this
reason, we decided to use such a random phase ¥:

FT(h) = FT(Ay)ZelV with j2 = —1. )

For a thorough analysis on the influence of phase on the
pattern obtained, we refer to [7]. Ultimately, the pattern can
be generated from the auto-correlation function by applying
the inverse Fourier transform and discarding the imaginary
part in the previous equation:

h=Re (FT—l (FT(Ah)%ef‘/f)). (10)

In the remainder of this article, unless otherwise stated, s
will stand for the redistributed (in [0; m]) and quantised
version of / of Eq. 10.

Similarities can be found between this numerical way
of generating patterns and the method defined in [13],
which optically generates fractal laser speckles. Very similar
algorithms for generating fractal surfaces can also be found
in the corresponding literature [12, 41, 51]. Additionally,
a random modulus can also be used in Eq. 10. That is,
FT(Ah)% can be multiplied in Eq. 10 by a Gaussian random
variable of zero mean (and possibly, unit variance) as in [41,
51].

In previous works [4-6, 45], the pattern (or its
Fourier Transform) was parameterised in order to optimise
criteria based on the auto-correlation function. Hence, a
computationally expensive inverse problem had to be solved
to generate a pattern from these criteria. In contrast, this
method is a direct way to obtain a pattern from its auto-
correlation features thanks to Fourier Transform properties.

Pattern Generation
Auto-correlation Function Choice

First, it has to be noted that there are necessary conditions
for a function A to be an auto-correlation function. A
non-exhaustive list of required properties is given below:

— the image of A should be included in [—1; 1];
- AQ =1
- Vi, AQ@=A(-D).
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According to these conditions and the criteria defined in
“Criteria Based on Auto-correlation Function”, we choose
a correlation function with circular symmetry, which can
thus be captured by a unidimensional function. Some kind
of power law (e.g. an nth root function) seems to be an
interesting candidate in terms of primary peak sharpness
radius, watershed radius and secondary auto-correlation
peak height. It is indeed ideally sharp (infinite derivative
at the origin) and has no secondary peak. In this work, we
choose to use a power type distribution:

. (nzu)“
@O=1-(—) . (11)

n

where H < 1/2 in order to keep an ideally sharp main
auto-correlation peak and 0 < H in order to have A(0) = 1.

This choice for the auto-correlation function has a direct
implication on the nature of the pattern that we will obtain.
By considering a fractal surface (more specifically a self-
affine surface), it is shown in [44] that the auto-correlation
function is given by the same kind of function as Eq. 11,
where H denotes the Hurst exponent and 0 < H < 1 [12,
44]. Reciprocally, the power spectrum of a surface is given
by the Fourier transform of its auto-correlation function (see
Eq. 7). Hence, the surface associated with A exhibits the
same power spectrum as that of a fractal surface. Thus, by
using Eq. 10 with A, = A we would obtain a fractal pattern
of Hurst exponent H [12, 41, 51]. Such self-affine patterns
show some kind of statistical scale invariance: magnifying
space coordinates x and y by a factor r (x and y become
respectively rx and ry) requires the grey level value to
be scaled by a factor 7¥ to remain statistically identical
[44, 52]. Concurrently, these surfaces are not stationary
[44]. Nonstationary surfaces have auto-correlation lengths
(usually defined as the distance required for the auto-
correlation function to drop from 1 to 1/e ~ 0.37) that
depend on the profile or surface area considered. It is
therefore irrelevant to associate a correlation length with
such patterns, unless it is, for instance, the characteristic
length of the profile or surface used to compute the
auto-correlation (this characteristic length was introduced
in Eq. 11 via the parameter n, which ensures that the
auto-correlation function belongs to [—1; 1]). We expect
a scale-invariant, correlation-length-free pattern to exhibit
interesting properties in the context of multiscale DIC. Let
us finally point out to the interested reader that some of
these multiscale properties for such patterns have already
been evoked in [53].

Also, from [44] and Eq. 10, it is possible to show
that the Root Mean Square (RMS) grey level difference
between consecutive pixels is proportional to n~. This
demonstrates, in this particular case, that the local gradient
is linked to the main auto-correlation peak sharpness radius
defined in “Main Auto-correlation Peak Sharpness Radius”.
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As H decreases, the sharpness radius decreases and the local
gradient increases, which results in better measurement
accuracy.

Conversely, as H decreases, the slope of the auto-
correlation function far from the origin also decreases,
making it more difficult to converge far away from the
optimum. For 0 < H < 1/2, the fractal field is said
to be antipersistent. For 1/2 < H < 1 it is said to be
persistent. In the latter case, this means that an increase of
grey level value over an arbitrary distance along a profile of
h is likely to continue to increase for a comparable distance.
In contrast, in the former case, an increase of grey level
value is expected to be followed by a decrease [12].

Therefore, there is an interesting trade-off between
measurement accuracy and robustness depending on the
value that is chosen for H.

Figure 1 shows slices of different auto-correlation
functions. The solid blue line represents the desired auto-
correlation function A of Eq. 11 forn = 127, H = 1/22
and 7, = 0.

Then, from A(z), with H = 1/22, the pattern #/ is
generated using Eq. 10, and its actual auto-correlation
function Aj, is computed with Eq. 7 after having subtracted
h mean grey level value. In the following, / only stands for
the pattern generated for H = 1/22. A,(0, ty), symbolised
by the orange dashed curve in Fig. 1, can be compared to
the solid blue line of the desired auto-correlation A.

Slice of auto-correlation functions for 7, =0

Auto-correlation value

o3
oL
T ———

~100 -50 0 50 100

Desired auto-correlation
function

Ap (h actual auto-correlation function)
— Fu,030,(h) auto-correlation function

Fig. 1 Comparison between desired (solid blue line, A) and actual
(dashed orange line, Aj) auto-correlation functions forn = 127, H =
1/22 and 7, = 0. The green dash-dotted line is the auto-correlation
function of F 14,030 (h), a MIG-improved version of &

MIG Improvement Method

Since the focus has been placed on the auto-correlation
function, MIG improvements have not been investigated
so far. To remedy this, Figure 2 shows the histogram of
the grey level distribution for different patterns and the
MIG value computed for each of them. More specifically,
Figure 2a shows the grey level distribution of /4 (the pattern
that we generated in “Auto-correlation Function Choice”),
for which a classical bell shape can be observed. This kind
of grey level distribution is not optimal in terms of MIG.
Heuristically, a way of increasing the MIG value would be
to change the shape of the grey level distribution so that a
greater number of pixels reached extreme values. To do this
in practice, we make use of the inverse method [11]. Starting
with the distribution plotted on Fig. 2a, a normal cumulative
distribution function:

H(a(52)

was applied to obtain the uniformly distributed pattern of
Fig. 2b. In all that follows, unless otherwise stated, u
is set to the grey level mean value of image h (before
quantisation), o is a parameter to be chosen, and the grey
level standard deviation of image h (before quantisation) is
denoted by og;. More precisely, it can be seen in Fig. 2b
that a nearly uniform distribution is obtained by applying
F, s to h (before quantisation) for 0 = oy, and a
significant increase in the MIG value, from 23.3 to 58 is
achieved. For the sake of simplicity, the redistributed (in
[0; m]) and quantised version of F, , applied to & (before
h has been quantised) will be denoted F}, (k). The Python
script allowing both 4 and F, ,(h) to be generated is
included as supplementary material of this work for better
understanding.

So as to spread grey levels even more towards extreme
values and improve the MIG of the pattern, we now set o
equal to 0.30¢; when applying F, , to the pattern A (this
choice for the value of o will be explained in “Pattern
Performance Evaluation”). Thus, as 0 < oy, extreme
values are more represented than values in the middle of
the distribution. It can be seen, by observing Figs. 1 and 2c,
that this value for o gives an even better MIG value, and
sharpens the main auto-correlation peak. At the same time -
although the possibility existed of this not being the case -
the auto-correlation function keeps the same global shape.

Fuo:x— (12)

Remark Another path could be followed in order to obtain
any grey level distribution function. From the uniform grey
level distribution of Fig. 2b and by making use of the
inverse method [11] a second time, the desired grey level
distribution could be generated from the pattern 4 as long
as its inverse cumulative distribution function was known.
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Fig. 2 Grey level distributions of 7 and F, ,(h) for different values of o and grey level distribution of a randomly generated pattern. Mean

Intensity Gradient (MIG) is also given for each pattern. Histograms and MIG values are given for n = 127

However, in this case, it cannot be guaranteed that the
pattern auto-correlation function would remain practically
unchanged.

Pattern Performance Evaluation

This section evaluates the suitability of the developed
patterns a posteriori. To do this, we compare one of the
proposed patterns with two others. As in [5], a random black
and white pattern is taken as a reference. In addition, some
numerical experiments are performed on a Perlin noise
pattern for a deeper analysis.

SEM

Multiscale Properties — Coarse Graining

As expected from previous discussions, the patterns
generated exhibit interesting multiscale properties. Figure 3
illustrates this statement by comparing one of the patterns
developed (F, 11,030 (h)) with two other patterns, namely a
randomly generated one (where each pixel can be equal
to either 0 or 255 with a 50% chance) and a Perlin
noise based one with speckles of 3 pixels. For these
three patterns, a 32 x 32 subsampling was computed
from the original 16384 x 16384 pictures. This meant
that the subsampling required a 9-step coarse graining
process (much greater then usual) of the corresponding
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0 10000 0 10000

0 10000
(@) Fu 030, (h), n=8191. (b) Random pattern, n = (c) Perlin noise pattern, n =
8191. 8191.
0 pgway 0
20 20]
403 40
60§ 60
80+ 80 ‘.
0 50
(d) Zoom on a 100x 100- (e) Zoom on a 100x100- (f) Zoom on a 100x100-
pixel square of 3a. pixel square of 3b. pixel square of 3c.

20 20

30 30
0 20 0 20

(g) Subsampling of 3a. (h) Subsampling of 3b. (1) Subsampling of 3c.

w15 , 1000 4 1000
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=4 = =4
100 200 %% 100 200 %% 100 200
Grey level value Grey level value Grey level value
() Grey level distribution (k) Grey level distribution (1) Grey level distribution
of 3g. of 3h. of 3i.

Fig.3 The first column is for a pattern generated using the proposed technique, Fy, 0,35, (). The second one shows a randomly generated pattern
where each pixel has a one-half chance of being equal to 0 or 255. The last column concerns a pattern based on a Perlin noise with a speckle size
of approximately 3 pixels. For each column, the first figure is a picture of the pattern considered for n = 8191. The second picture is a zoom on a
100x 100-pixel square of the 16384 x 16384 pattern. The third one is a subsampling of the pattern considered (each grey level value is equal to the
integer part of the mean over the corresponding 512 x512-pixel square). The last picture is the grey level distribution of the subsampling. Colour
scale for pictures goes from 0 (black) to 255 (white)
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original picture. As a result, each pixel in the coarse image
was the integer part of a mean over more than 260,000
pixels from the original. Unsurprisingly, it led to an almost
uniform grey picture for the random and the Perlin noise
patterns, as shown in Fig. 3h, k, i and 1. However, for
our correlation-length-free pattern, the subsampled picture
dynamic range was still greater than 200 grey levels (see
Fig. 3g and j). A file is included as supplementary material.
It contains a picture of each pattern and the corresponding
grey level distribution along the coarse graining process
described here. This suggests that prospects are good in a
multiscale context where cameras with different levels of
magnification operate simultaneously [32], or in the context
of large transformations.

Monoscale Displacement-field Measurements

In order to further evaluate the performance of one of the
generated patterns (F), 03¢ ol (h)), it is now compared with
the random and the Perlin noise patterns for two different
kinds of displacement fields. The first kind of displacement
field addressed corresponds to subpixel translations and the
second one to stretches. These displacement fields were
chosen because they are exactly represented by the FE
shape functions and do not require any specific care from
an algorithmic standpoint (as opposed to large rotations
for instance [25, 31]). This reduces mesh-dependent and
algorithm-dependent effects as much as possible, the idea
being that similar results may be expected for subset-based
DIC.

From a reference state image f (i.e. one of the three
patterns considered), we generated a deformed state image
g. The process for this generation will be described more in
detail in each corresponding subsection. Then, in order to
account for image noise acquisition, images were assumed
to be polluted by a Gaussian noise [3]. Finally, each picture
was quantified and grey level values above 255 and below 0
were set to 255 and 0 respectively (i.e. m = 255).

Adding Gaussian noise of variance 0,1201- 50 to both images
f and g is equivalent to corrupting only g with a Gaussian
noise of variance 20301. ;e [40]. Consequently, we only
generated noise for g and set the o5, value to 3 grey
levels, which is a conservative approach regarding the
2 grey levels evaluated in [40]. From a practical point
of view, for each measurement, 3 different noises were
drawn and the 3 corresponding displacement fields were
measured using a FE-DIC algorithm [2, 30, 46]. For the
initialisation, a coarse-graining approach with a decreasing
Tikhonov regularisation was used [34]. Basically, the idea
is to aggregate pixels 4 by 4 in order to produce a
coarser image with a smaller number of pixels. This
process can be repeated n times and produces an n-level
multigrid scheme. A DIC problem is solved at each level

SEM

by a top-down approach. The Tikhonov term added in
the DIC functional regularises the DIC displacement field
identification problem, which becomes more and more ill-
posed as the number of pixels shrinks when the same mesh
is used for any level.

The discrepancy between the measured displacement u™
and the imposed one u'"? was evaluated at each node of the
mesh for the 3 measurements corresponding to each noise.
Two quantities of interest were extracted:

— The systematic error expectancy

ey =<%i Z (“L"k_”i(mkp)>’ (3)

k=1 ae{x,y}

— The random error expectancy

N

1 imp

Ue=< T 2 (e _eu)2>’
k=1 ae{x,y}

(14)

where N denotes the number of nodes of the mesh, ”Zlk the
m_easured displacement for node k and direction « € {x, y},
u,;” the corresponding imposed displacement and (-) the
expectancy, in the sense of the mean over the different
noises.

Finally, picture size was set to 256 x 256 pixels (i.e.
n = 127) and an unstructured triangular mesh, containing
132 nodes and 222 elements, was generated (see Fig. 4). The
mesh was located in the centre of f so that high levels of
strain (up to 25%) could be reached without having pixels
initially contained in the mesh moved out of the picture.
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Fig. 5 Systematic and random error expectancies for sub-pixel translations. Results are presented for the random pattern, the initial pattern A,
Fy, 5 (h) for five different values of o ranging from 0.20¢ to o4, and the Perlin noise pattern

Subpixel Translations

The generation of g from f for subpixel translations was
achieved by a phase shift in the Fourier space [33]. In our
framework, 21 subpixel translations ranging from O to 1
pixel in the {x}-direction were imposed by steps of 0.05
pixel. At the same time, the {y}-component of the imposed
displacement was kept equal to 0. The multigrid level was
set to 1 for the initialisation step.

In order to choose the value for o, the influence of this
parameter was studied as shown in Fig. 5. We can observe
a smooth decrease of the curve representing the systematic
error expectancy as o decreases until the curve reaches a
minimum for o = 0.30y,.

Table 1 sums up the performance achieved by
F 12,030 (h) with respect to the random pattern and the Per-
lin noise pattern in terms of systematic and random error
expectancies. In order to conveniently compare all three

Table 1 Comparison of the pattern Fu,030y (h) with the random and the Perlin noise patterns. Each line represents the mean over the 21
translations of Fig. 5, for systematic error expectancy absolute value and for random error expectancy

Pattern Flu,0304 (h) Random pattern Perlin noise (3 pix/speckle)
Mean of the systematic error expectancy absolute value (pixel) 4.19 x 1074 8.60 x 1073 1.89 x 1073
Mean of the random error expectancy (pixel) 1.29 x 1072 1.59 x 1072 1.27 x 1072
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Fig. 6 Systematic error expectancy absolute value and random error expectancy for stretches. Results are presented for F), 030, (h), the random

and the Perlin noise patterns

patterns, for each expectancy, a scalar value is derived from
the 21 measurements as in [5]. These values are the mean
of the systematic error expectancy absolute value and the
mean of the random error expectancy over the 21 subpixel
translations respectively. Thus, using the proposed pattern
generation technique, a 18.9% improvement for random
error and a 95.1% improvement for systematic error can
be obtained with respect to the random pattern. Compared
to the Perlin noise pattern, the random error of the pro-
posed pattern increases by 1.52% while, at the same time,
its systematic error decreases by 77.9%.

In what follows, only F, 14,030, (h), the random and the
Perlin noise patterns are considered.

Stretches

Regarding stretch deformation, we decided to generate
image g from a reference state image f such that g
represented a symmetric stretch along the {x}-direction . It
was performed via an inversion of the transformation ¢.
More precisely, the relation f(x) = g o ¢(x) with ¢(x) =
(x4+&(x —n), y)T had to be inversed. It yielded g(¥) = f o

Q‘l (%) with q_b_l & = (375 +n, )7, where ¢ denotes the
tensile strain and n has been defined in “Auto-correlation
Function and Fourier Transform”. Finally, g was generated
by evaluating f at non-integer pixel positions thanks to

a bivariate spline approximation. Since expected values

Table 2 Comparison of the pattern Fu,030y (h) with the random and the Perlin noise patterns. Each line reports the mean over the first 9
measurements of Fig. 6 (¢ € {0.01, 0.02...0.09}), for either systematic (upper line) or random (lower line) error expectancies

Pattern Fli,030y (h) Random pattern Perlin noise (3 pix/speckle)
Mean of the systematic error expectancy absolute value (pixel) 2.70 x 1074 239 x 1074 2.03 x 107
Mean of the random error expectancy (pixel) 1.37 x 1072 2.12 x 1072 1.19 x 1072
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for the displacement were much higher than for subpixel
translations, we used a two-level multigrid initialisation.
Values for ¢ ranged from 1% to 20% by steps of 1
percentage point.

Figure 6 shows both systematic and random errors for
FM,()_:}ggI (h) (orange diamonds), the random pattern (blue
circles) and the Perlin noise pattern (green triangles) for the
stretch displacement field. For each curve in Fig. 6a and b,
two different regimes are exhibited. A part where subpixel
accuracy for systematic and random error expectancies
is achieved (below 9% stretch for the random and the
Perlin noise patterns, and 18% stretch for our pattern) and
another part where the algorithm obviously converged to
a local minimum since errors are about a pixel or above.
Table 2 is composed in the same way as Table 1 except
that averages for systematic and random error expectancies
were not taken over the whole measurement range but
only over the values where all the curves converged
(i.e. for the stretch strain value ¢ € {0.01, 0.02...0.09}).
The pattern developed in this work is outperformed by
15.0% and 33.2% in terms of random and systematic error
expectancies, respectively, by the Perlin noise pattern for
average values of Table 2 and by 13.3% in terms of
systematic error expectancy absolute value by the random
pattern. However, it should be pointed out that a 35.4%
improvement compared to a random pattern is obtained
for the random error expectancy. But most importantly,
the multiscale property and large watershed radius of the
generated pattern result in its capability to converge to
the global minimum for higher levels of deformation than
either the random or Perlin ones; a 100% improvement in
these levels is achieved by FM,O-Sng (h) compared to these
patterns. This robustness property should be of particular
interest for large deformation applications [9] and, most
interestingly, in applications like metal forming, where
intermediate images between a reference and significantly
deformed images cannot be obtained [14].

Multiscale Displacement-field Measurements

This section aims to demonstrate the suitability of one of
the proposed patterns in a multiscale DIC setup in terms of
expected errors on displacement field measurements. The
process used for this purpose was similar to that described
in “Multiscale Properties — Coarse Graining” and thus
generated a 16384 x 16384-pixel picture for each of the
three patterns considered (i.e. Fy 030, (h) for n = 8191,
the random pattern and the Perlin noise pattern with 3-pixel-
wide speckles, see Fig. 3a, b and c). For each pattern and
for every scale s € [[0; 6], we generated a 1623584 X 1623584-
pixel image via s steps of the coarse graining process used in
“Multiscale Properties — Coarse Graining”. Then from this
aggregated picture only a 256 x 256-pixel portion located

in the centre was considered and extracted. Finally, exactly
the same displacement measurements as in “Monoscale
Displacement-field Measurements” were performed, the
only difference being that, here, & could reach 25% (instead
of 20% in “Monoscale Displacement-field Measurements™).

At this point, for each scale s and each pattern, only
five scalar values assessing the corresponding measurement
accuracy are derived:

— the mean over the 21 sub-pixel translations of the:

— systematic error expectancy absolute value,
— random error expectancy,

— the convergence robustness defined as the highest
stretch strain value where the pattern managed to
converge,

— the mean over the stretch strain values such that all three
patterns managed to converge for the:

— systematic error expectancy absolute value,
— random error expectancy.

Remark For stretches, if a pattern at a given scale did not
manage to converge (even for the smallest stretch strain
value considered ¢ = 0.01), we did not include it.

Figure 7 shows corresponding results with respect to the
scale s for the three patterns. For scales 5 and 6, the Perlin
noise pattern could not converge, even for the smallest
stretch strain value (¢ = 0.01). This can be seen in Fig. 7e,
where the value plotted for the convergence robustness
is 0. Strictly speaking, for these scales, the convergence
robustness of the Perlin noise pattern is not 0 but is less than
0.01. As a result, and as shown in Fig. 7c and d, the Perlin
noise pattern was discarded for scales 5 and 6.

Relatively to the random and the Perlin noise patterns,
and for the range of scales considered, the DIC errors
associated with the pattern proposed in this work do not
depend on the scale s. Except for the steep increase of
the mean of the systematic error expectancy absolute value
between scales 0 and 1 for translations (see Fig. 7a),
our pattern shows stable error values. Regarding the
convergence robustness in Fig. 7e, this output tends to
improve as the scale increases for the proposed pattern
while the opposite trend can be observed for the other two
patterns.

Figure 7c and d show the mean of the systematic
error expectancy absolute value and of the random error
expectancy for stretches for the three patterns considered.
For each scale, these means were computed over the
range of ¢ where all three patterns converged. Additionally,
Table 3 gives the mean of the absolute value of the
systematic error expectancy and the mean of the random
error expectancy over the whole range of convergence

SEM
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Fig.7 Top, results for the sub-pixel translations; means are computed over the 21 translations considered. Middle, results for the stretches; means
are computed only over the stretch strain values where all three patterns managed to converge (except for scales 5 and 6 where the Perlin noise
pattern was discarded): {s = 0,& < 0.08}, {s = 1,& < 0.04},{s = 2, < 0.05},{s = 3,6 < 0.04},{s = 4,e < 0.04},{s = 5,¢ < 0.06},
{s = 6, & < 0.04}. Bottom, convergence robustness and legend. Left, mean of the systematic error expectancy absolute value. Right, mean of the
random error expectancy. Results are presented for F, 14,030 (h), the random and the Perlin noise patterns
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Table3 F, 03s ol (h) results for stretches and the scales considered. For each scale, means are computed over the whole range of convergence of

this pattern

Scale s Mean of the systematic error expectancy absolute value (pixel) Mean of the random error expectancy (pixel)
0 4.98 x 10~* 1.67 x 1072
1 2.26 x 10~* 132 x 1072
2 3.05 x 10~* 1.48 x 1072
3 4.80 x 10~* 1.64 x 1072
4 3.44 x 107* 1.49 x 1072
5 2.74 x 10~* 1.60 x 1072
6 3.48 x 10~* 1.40 x 1072

of our pattern for stretches (i.e. {s = 0,&¢ < 0.17},
{s =1,e <0.16},{s = 2,e < 0.20},{s = 3, < 0.20},
{s =4,6 <025}, {s =5,6 <0.22},{s =6,& <0.25}).
This shows that the errors for the highest strain rates are
similar to those for the smallest ones. If this was not the
case, the values of Table 3 would not be so close to the
values shown in Fig. 7c and d for Fu,oggg, (h).

Remark Error values for Fu,o_3ggl (h) at the scale s =
0 differ quite a bit from the values of “Monoscale
Displacement-field Measurements” (see Tables 2 and 3
for instance). This can be explained by the fact that
the patterns considered are not exactly the same. In
“Monoscale Displacement-field Measurements”, the pattern
was generated with n = 127 to produce a 256 x 256-pixel
picture. In this section it was generated with n = 8191 and
then a 256 x 256-pixel picture was extracted.

Conclusion and Outlook

In this work, a method based on the literature on fractal
surface generation has been introduced. This has been
used to generate patterns directly from a desired auto-
correlation function. Unlike the methods used so far, this
generation process does not require any optimisation loop.
This way of generating patterns has offered the opportunity
to clarify what a good pattern is in a multiscale DIC
context thanks to a priori quality criteria. One of the main
unprecedented ideas that has arisen from these discussions
is that a correlation-length-free pattern, i.e. a pattern with
no typical speckle size, should exhibit interesting multiscale
properties. This new way of considering patterns enables
a family of truly multiscale patterns (and not only biscale
or n-scale patterns) to be defined, based on fractal (self-
affine) statistical scale-invariance. Also, it helps overcome
some limitations linked to defining speckle sizes when
different levels of magnification are involved (usually, a
speckle size of 3 to 5 pixels is recommended). At this point,
a complementary process could be implemented based on

image filtering [26, 60] with parameters set accordingly to
each camera zoom level in order to increase measurement
accuracy at each scale considered. In the present work, a
way has also been found to use the inverse method [11]
to redistribute grey levels for patterns that we generated
in order to improve their MIG value. For the distribution
function used and these patterns specifically, this process
kept their auto-correlation function practically unchanged.

Numerical experiments have been performed for two
different displacement fields in order to assess a posteriori
the quality of one of the patterns generated compared to a
random black and white pattern and a Perlin noise pattern.
These experiments were first performed at a single scale,
and then for multiple magnification up to a factor 64 (2°).
They corroborated the expectations formulated beforehand.
The pattern considered showed DIC errors comparable to
those of the other two patterns for the first scales, but a much
greater robustness. Most importantly, it showed errors and
robustness that were stable with respect to the scale whereas
these two outputs became significantly degraded for the
other two patterns as the scale increased. Making use of the
framework developed here, one may think of performing
a closed-loop optimisation [19]. By considering the auto-
correlation function shape (with Eq. 11 parameterised by
H or even with a different parameterisation) and the grey
level distribution as input parameters, it would be possible to
fine-tune them and optimise error expectancies for specific
displacement fields.
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