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Abstract
Digital volume correlation (DVC), the volumetric extension of the popular digital image correlation (DIC) technique, is a
powerful experimental tool for measuring 3D volumetric full-field displacements and strains. Most current DVC algorithms
can be categorized into either local or finite-element-based global methods. As with most experimental approaches, there
are drawbacks with each of these methods. In the local method the subvolume deformations are estimated independently and
the computed displacement field may not necessarily be kinematically compatible. Thus, the deformation gradients can be
noisy, especially when using small volumetric subsets. Although the global method often enforces kinematic compatibility,
it generally incurs substantially greater computational costs than its local counterpart, which is especially significant for
large volumetric data sets. To address these shortcomings, we present a new hybrid DVC algorithm, called augmented
Lagrangian digital volume correlation (ALDVC), which combines the advantages of both the local (fast computation time)
and global (compatible displacement field) methods. This new algorithm builds on our recent work on the augmented
Lagrangian digital image correlation (2D-ALDIC) technique and solves the general motion optimization problem by using
the alternating direction method of multipliers (ADMM). We demonstrate that our ALDVC algorithm has high accuracy and
precision while maintaining low computational cost, and is a significant improvement compared to current local and global
DVC methods. ALDVC is a computationally efficient algorithm to measure 3D volumetric displacements and strains. An
open-source Matlab implementation is freely available.

Keywords Digital volume correlation (DVC) · Augmented Lagrangian · Alternating direction method of multipliers (ADMM)

Introduction

Digital Volume Correlation (DVC) is one of the most
popular experimental methods for measuring 3D, volumet-
ric full-field deformations in solid materials. Deformations
are computed by tracking motions between successive 3D
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image volumes. Volumetric images are typically recon-
structed from image stacks captured by computed X-ray
tomography (CT) [1, 2], magnetic resonance imaging (MRI)
[3], 3D confocal microscopy [4, 5], neutron tomography
[6], or other 3D volumetric imaging techniques [7]. DVC
can be viewed as the volumetric 3D extension of 2D Digital
Image Correlation (2D-DIC). In contrast to 2D-DIC, which
is limited to measuring 2D in-plane deformations, or 3D-
DIC that measures in-plane and out-of-plane displacement
on a surface, DVC measures 3D deformations within vol-
umetric images. Although the mathematical formulation of
DVC can be derived using the same fundamental minimiza-
tion process as for 2D-DIC, the computational cost of DVC
is dramatically larger due to the additional dimension.

Currently, several algorithms exist to compute full-field
displacements via sub-voxel correlative techniques [8–10].
Most of these methods are broadly categorized into either
local or global methods. In the local methods, the full
volume is first divided into a collection of smaller, local
subsets, where each local subset is typically assumed to
undergo an affine deformation. All of the subset motion
field equations are solved independently, i.e., a residual
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between a given subset image pair containing the reference
and deformed bodies is minimized. This has followed
from early DVC algorithms, i.e., Bay et al. [1], which
were used to measure rigid translations of local subsets.
Cross-correlation based implementations are often chosen
for simplicity and computational efficiency; however, with
large stretches, shears, or rotations, the matching can
become degenerate, leading to poor motion reconstruction
performance. Bar-Kochba et al. [8, 11] improved the FFT-
based method to extend rigid translations to piecewise
affine deformations by incorporating correlation filters and
an iterative image deformation method (IDM) adapted
from the fluid mechanics Particle Image Velocimetry (PIV)
community, e.g., Scarano et al. [12].

Besides FFT-based implementations, Gates et al. [9]
employed a first order shape function with 12 Degrees
of Freedom (DoFs) for each local subset and optimized a
similarity matching function approximated by voxel-wise
summations of intensities. Although it contains 12 DoFs
per subset it is computationally attractive since it can be
implemented with an inverse compositional Gauss-Newton
(IC-GN) scheme that affords rapid convergence [9, 13].
The voxel-wise IC-GN method can also straightforwardly
be extended to higher-order local subset shape functions.
For example, recently Wang et al. [14] applied both first
and second order shape functions to local subvolumes and
established a set of criteria for selecting the order of the
shape function in a self-adaptive way.

All of the methods described above are local methods;
for each case, the local 3D subvolumes are generally much
smaller in size than the full volume. The deformation of
each subvolume can be solved relatively quickly and inde-
pendently, thus scaling via parallelization is easily imple-
mentable. However, because the deformation of each sub-
volume is obtained independently, the individual deforma-
tion fields from each subvolume may not be kinematically
compatible with each other, which can lead to noise when
calculating the strain field. A number of low-pass filter-
ing and smoothing schemes along with other sophisticated
regularization schemes have been proposed to address this
issue [15–18]. Regardless of the choice of displacement dif-
ferentiation scheme and smoothing, the computation of the
local strain fields is typically unrelated to the underlying
DVC mathematical optimization problem of obtaining the
displacement field in the case of the local methods.

When using a global DVC approach, the full deforma-
tion field is generally represented using a basis set, often
discretized based on a finite element formulation (e.g., 8-
node hexahedron (HEX8) elements [10] or 4-node tetrag-
onal (T4) elements [19]), such that the full image domain is
analyzed together to obtain the coefficients relative to this
basis set. However, this approach is usually computation-
ally expensive and often difficult to implement in parallel,

especially for large volumetric data sets. Furthermore, most
global DVC algorithms usually provide some level of regu-
larization to further decrease displacement noise and speed
up convergence. This can be effective, but spatial depen-
dencies of the displacement and strain fields may become
excessively smoothed depending on the level of regulariza-
tion used. Global DVC approaches therefore often require
extreme care in application if inhomogeneous deforma-
tions are to be expected, although techniques such as
adaptive mesh refinement (e.g., [20]) can ease the process.

Recently, a new hybrid local and global image registra-
tion method was developed that matches 2D subsets locally
while enforcing full-field kinematic compatibility among all
subsets as a global constraint in an augmented Lagrangian
form. This technique is called Augmented Lagrangian Dig-
ital Image Correlation (ALDIC) [21], and it combines
the advantages of both the local (fast and easily paral-
lelized) and the global (guaranteed kinematic compatibil-
ity) methods. This method has been shown to work well
when combined with image compression techniques [22]
and can be easily combined with a self-adaptive meshing
algorithms [20]. In this paper, we extend this augmented
Lagrangian-method to the 3D volumetric case (ALDVC),
assess its performance, and compare it with other popu-
lar DVC methods. Specifically, we introduce an auxiliary,
globally compatible displacement field and introduce the
constraint that this displacement field and its gradients
equal the locally correlated displacement values. The aug-
mented Lagrangian approach mentioned above, specifically
the alternating direction method of multipliers, has been
used previously to solve a variety of constrained minimiza-
tion problems [23, 24]. It augments the objective functional
linear Lagrangian multipliers of the constraints along with
quadratic penalties of the constraints for convenient imple-
mentation and numerical stability. It generally performs bet-
ter than the penalty method, which adds quadratic penalties
with very large penalty coefficients to guarantee accuracy,
risking an ill-conditioned problem.

We implement the formulated augmented Lagrangian
DVC optimization problem using the alternating direction
method of multipliers (ADMM), which is a form of operator
splitting [25, 26]. In each ADMM iteration step, we
successively decompose the global optimization problem
into two subproblems: the first (subproblem 1) is computed
locally and in parallel, and the second (subproblem 2)
focuses on solving the auxiliary deformation field, which
is computed globally but remains computationally efficient.
Penalty coefficients are updated automatically after each
ADMM iteration to satisfy optimality conditions.

This paper is structured as follows. We begin by
providing the mathematical background and 3D-DVC
optimization formulation in the “Problem Formulation”
section. Next, we introduce our new augmented Lagrangian
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DVC, or ALDVC, method and describe its implementation
in “Augmented Lagrangian DVC (ALDVC) Method”. We
then assess the performance of our new method using both
synthetically and experimentally generated homogeneous
and inhomogeneous deformation fields. Finally, we provide
a brief summary, and address limitations and future
directions in the “Conclusions” section.

Problem Formulation

Consider a domain � ∈ R
3 undergoing a general

deformation y : � → R
3. As seen in Fig. 1(a), let X denote

the reference or undeformed coordinates of any voxel X
in � and y(X) denote the current image or current voxel
position. Suppose we have a speckle pattern with grayscale
value f (X) in the reference domain, and the corresponding
grayscale value g(y) in the current configuration, the image
can be written as

f (X) = g(y(X)). (1)

The DVC problem is the inverse problem of finding the
deformation mapping y(X) that uniquely maps an image
in the reference configuration, f (X), to an image in the
deformed configuration, g(y). The above inverse problem
can be solved by maximizing the cross correlation function
(CCC) or minimizing the sum of squared differences (CSSD),

CCC =
∫

�

f (X)g(y(X))dX → maximize over y : �→R
3.

(2)

CSSD =
∫

�

|f (X) − g(y(X))|2 dX

→ minimize over y : � → R
3. (3)

Generally, the 3D volume images are in units of voxels
taking discrete values, so we can either replace the integrals
in equations (2) and (3) with a voxel-wise sum, or
interpolate the 3D volume images (typically with tri-cubic
polynomials or tri-cubic splines [27]) whenever sub-voxel
grayscale values are needed.

In general, most DVC algorithms can be cast into either
of two categories, local methods (see Fig. 1(b), left column;
Appendices A & B) or global methods (see Fig. 1(b), right
column; Appendix C). In the local method, the volume of
interest (VOI) is divided into subvolumes and discrete cal-
culation points (usually the center points of the local subvol-
umes) are first defined in the reference volume images and
then tracked in the deformed volume image. As the name
“local” indicates, we ignore any connectivity and kinematic
compatibility between neighboring subvolumes. Initially,
the subvolumes are assumed to have uniform deformation
and are tracked independently and in parallel, although
initial-guess propagation or a posteriori regularization is
possible (e.g. the parallelized 2D implementation of [28]).
This process is fast, but the solved deformation field can
be incompatible and noisy. In the global DVC method, all
the calculation points are solved at the same time and the
final deformation field is guaranteed to be kinematically
compatible, however, the global method is usually much

y
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Fig. 1 (a) Schematic showing a volumetric DVC reference image f (X), with a general speckle pattern, deforming into the deformed image
g(y(X)) under some mapping y and the change of variables involved within the IC-GN iteration in the local subvolume DVC method. X and y
coordinates are in the reference and deformed images, respectively. z coordinates are in current IC-GN iteration. (Details regarding the local IC-
GN method are summarized in Appendix B). (b) A schematic comparison between the local DVC method (left), where all the subvolumes are
analyzed independently, and the global DVC method (right), where a global basis set is used to represent the full-field deformation (similarly, see
the summary in Appendix C)
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more computationally expensive. To overcome the kine-
matic compatibility limitations of the local DVC approaches
and the high computational cost associated with the global
DVC methods, we introduce a new, hybrid formulation
that automatically satisfies the kinematic compatibility of
the computed displacement field at computational cost
closer to the local DVC methods. We term this the aug-
mented Lagrangian DVC (ALDVC) technique, which can
be viewed as the 3D extension of our recently demonstrated
2D-ALDIC method [21].

Augmented Lagrangian DVC (ALDVC)
Method

Motion Estimation Formulation via ALDVC

In the local DVC method (see Appendix B (17)) the
subset displacements ui and deformation gradients Fi are
generally solved for independently. However, from a global
perspective, the full-field displacements should satisfy a
kinematic compatibility constraint {F} = D{u}, where D is
an appropriate discrete gradient operator. To treat this global
constraint efficiently, we introduce an auxiliary compatible
global displacement field û that satisfies

Fi = ∇û(Xi0), ui = û(Xi0). (4)

where Xi0 is the center point of the local subset
�i . Specifically, we apply this global constraint in the
augmented Lagrangian form and consider the following
correlation functional form

L0 =
∑

i

∫
�i

(
|f (X) − g(X + ui + (Fi (X − Xi0)))|2

+β

2

∣∣(Dû)i − Fi

∣∣2 + νi : ((Dû)i − Fi )

+μ

2

∣∣ûi − ui

∣∣2 + λ · (ûi − ui )
)

dX, (5)

where we use the Frobenius norm for matrices |A|2 =∑
i

∑
j

∣∣aij

∣∣2, L2 norm for vectors |a|2 = ∑
i a2

i , and :
for the double dot product between two matrices A : B =∑

i

∑
j AijBij . Above, {νi}, {λi} are Lagrange multipliers

that enforce the constraint (4). Finally, β and μ are two
positive real scalars. It is convenient to set Wi := νi/β,
vi := λi/μ and simplify (5) as

L0 =
∑

i

∫
�i

(
|f (X) − g(X + ui + (Fi (X − Xi0)))|2

+β

2

∣∣(Dû)i − Fi + Wi

∣∣2 + μ

2

∣∣ûi − ui + vi

∣∣2
)

dX.

(6)

The Alternating DirectionMethod of Multipliers

We use the alternating direction method of multipliers
(ADMM) allowing us to split the global minimization
problem into independently solvable subdomain problems,
which can be solved quickly at each global iteration
step [26]. Given {Fk

i }, {uk
i }, {ûk

i }, {Wk
i }, {vk

i }, we find the
(k + 1) update using the following steps:

• Subproblem 1: local 1 update. While holding {ûk
i },{Wk

i }, {vk
i } fixed, minimize L over {Fi}, {ui}, to obtain

{Fk+1
i }, {uk+1

i }:
{Fk+1

i },{uk+1
i }= arg min

{Fi },{ui }
L

(
{Fi},{ui},{ûk

i },{Wk
i },{vk

i }
)

.

(7)

Since {ûk
i } and thus {(Dû)ki } are known, this problem is

broken down into a series of local problems that can be
solved independently for each i:

Fk+1
i ,uk+1

i = argmin
Fi ,ui

∫
�i

(
|f (X)

−g(X + ui + (Fi (X − Xi0)))|2

+β

2

∣∣∣(Dû)ki − Fi + Wk
i

∣∣∣2

+μ

2

∣∣∣ûk
i −ui + vk

i

∣∣∣2
)

dX. (8)

This is similar to computing the displacement field
in the local DVC methods, which can be solved
independently for each subset (see Appendix B).

• Subproblem 2: global update. While holding {Fk+1
i },

{uk+1
i }, {Wk

i }, {vk
i } fixed, we minimize L over {ûi} to

obtain {ûk+1
i }:

{ûk+1
i } = argmin

{ûi }
L

(
{Fk+1

i }, {uk+1
i }, {ûi}, {Wk

i }, {vk
i }

)

= argmin
{ûi }

∑
i

∫
�i

(
β

2

∣∣∣(Dû)i − Fk+1
i + Wk

i

∣∣∣2

+μ

2

∣∣∣ûi − uk+1
i + vk

i

∣∣∣2
)

dX. (9)

Note that this is a global problem, but it is independent
of the images f and g. Indeed, it leads to the linear
problem

ûk+1 =
(
βDT D + μI

)−1 (
βDT a + μb

)
. (10)

where a={Fk+1
i −Wk

i } and b={uk+1
i − vk

i }. Since

β and μ are fixed, the matrix
(
βDT D + μI

)−1
can

be precomputed and stored, and therefore this step
becomes a simple matrix-vector multiplication. Further,
the matrix D is relatively sparse with the diagonal
terms dominating the off-diagonal terms, allowing the
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matrix-vector multiplication to be computed quickly
and efficiently.

• Subproblem 3: Lagrange multiplier update. Finally, we
update {Wi}, {vi} as follows

Wk+1
i = Wk

i +
(
(Dû)k+1

i − Fk+1
i

)
, (11)

vk+1 = vk +
(
ûk+1 − uk+1

)
. (12)

• Stopping criterion: The calculations are said to have
converged when the L2 norm between the current
and previous displacement iteration, i.e., the norm∣∣(ûk+1 − ûk

)∣∣, is below a user set threshold tolerance
value.

Convergence

We briefly recall some results from Boyd et al. [26] that
apply to the ADMM algorithm proposed above. To begin
we assume that the following conditions are true:

• Assumption 1: The functional Ci describing the match
of intensities in the local subvolume (see Appendix B
(18)) or the first term of L can be approximated by a
closed, proper, and convex functional near the optimal
solution.

• Assumption 2: The Lagrangian L0 with β = μ = 0 has
a saddle point; i.e., there exist ({F∗

i }, {u∗
i }, {û∗

i }, {ν∗
i },{λ∗

i }) that for all ({Fi}, {ui}, {ûi}, {νi}, {λi}),

L0({F∗
i }, {u∗

i }, {û∗
i }, {νi}, {λi})

≤ L0({F∗
i }, {u∗

i }, {û∗
i }, {ν∗

i }, {λ∗
i })

≤ L0({Fi}, {ui}, {ûi}, {ν∗
i }, {λ∗

i })
Then, we have the following convergence

• Primal residual convergence:
(
Dûk − Fk

) → 0 and(
ûk − uk

) → 0 as k →∞, i.e., the constraints are
satisfied asymptotically;

• Dual residual convergence:
(
ûk+1 − ûk

) → 0 as k→ ∞,
i.e., the dual feasibility is satisfied asymptotically;

• Objective convergence: Lk→L∗ as k→∞, i.e., the
Lagrangian approaches its optimal value;

• Dual variable convergence: Wk→W∗, vk→v∗ as
k → ∞, where (W∗, v∗) is a dual optimal point.

Note that the local functional Ci can be highly oscillatory
and is thus not convex. However, if the initial guess for the
local variables (i.e., {Fi} and {ui}) is in the convergence
basin of the local subset displacement field, then the
first assumption is true. If this assumption is false, then
subproblem 1 (7) diverges; this provides a check whether
this assumption holds.

To speed up the calculations we simplify subproblem 1
of the ALDVC algorithm. The local problem (8) requires
us to minimize over both ui and Fi , which makes the
local problem large and the overall convergence slow.
Furthermore, the high dimensionality can lead to local
minima and thus poor accuracy. Therefore, we simplify
subproblem 1 as follows: in the (k + 1) iteration step, we
update Fk+1 to be exactly equal to Dûk and only solve for
uk+1. We still use the IC-GN iterations to minimize the
functional (see Appendix B). A summary of the complete
ALDVC technique is given in Algorithm 1.

voxel

zeros

Assessing the Accuracy and Precision
of the ALDVC Algorithm

In this section, we assess both the accuracy and precision
of our proposed ALDVC method via both synthetically
generated and experimentally applied deformation fields,
and compare it to baseline local and global DVC methods.
All algorithms are implemented in Matlab.

We use the following parameters unless specified other-
wise. We use tri-cubic interpolation for the grayscale values
at subvoxel positions.1 Within the local subset DVC com-
putations, we stop the IC-GN iterations when |di | ,

∣∣ejk

∣∣ <

10−4. Usually the IC-GN reaches convergence within sev-
eral iteration steps. In the global DVC computations, we use
HEX8 finite elements (linear, fully-integrated, eight-noded
bricks) with a trilinear form of the domain’s displacement
field approximating the exact displacement fields. We stop
the iterations when the mean magnitude of the nodal
displacement update is smaller than 10−4 voxels. For our
ALDVC method, we start W and v from zeros. We choose

1Both tri-cubic and tri-cubic spline interpolations are commonly used
and interpolation bias errors are O(10−3) voxels, cf. [27].
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μ to be O(10−3)∼ O(10−1) times the diagonal terms of
a′
ip. We take β =

[
O(10−2) ∼ O(101) · element size2 · μ

]
to balance the relevant terms. We use the same stopping
criteria in subproblem 1 as in the local subvolume DVC
(
∣∣d ′

i

∣∣ < 10−4), and we use the central difference opera-
tor D or HEX8 finite elements to solve subproblem 2. The
ADMM iteration in ALDVC stops when

∣∣ûk+1 − ûk
∣∣ <

10−4 voxels.2

We begin assessing the accuracy and precision of our
ALDVC algorithm by employing synthetically generated
images where the exact deformation is known. Furthermore,
we use the root-mean-square (RMS) error given by

RMS error :=

√√√√
∑

# of nodes
|Numerical result−Exact value|2

# of nodes
,

(13)

to assess the displacement and strain field reconstruction
accuracy of our ALDVC technique.

Method of Obtaining Strain Fields

The complete strain field is an intrinsic output of both
our ALDVC algorithm and the local IC-GN-based DVC
minimization method, whereas in the global DVC method
strains are calculated directly from the finite element mesh.
Besides directly solving for the strain fields, it is also
common to filter the solved displacement field with a spatial
differentiation and smoothing kernel to obtain strain fields
in the local DVC methods [8, 29, 30]. However, finding
the optimal filter type and size to recover the underlying
deformation displacement signal often requires care and
experience of the DVC operator. Discussion of strain filters
is outside the scope of this paper, but can be found elsewhere
[8, 29, 30]. All the computed strains in this paper are in
infinitesimal strains (exx = u,x, exy = 1/2(u,y +v,x), eyy =
v,y). However, other types of strains can also be easily
computed.

Performance Assessment via Homogeneous
Deformations

We begin the performance assessment of our new ALDVC
technique by benchmarking against synthetically generated
uniaxial translation, stretch, and rigid body rotation motion
fields. In all the synthetic cases, an 8-bit grayscale reference
volume image (image size: 512vx × 512vx × 192vx (vx:
voxel) was first generated using a Gaussian-type point
spread function (PSF) mimicking typically encountered
diffraction-limited volumetric images of spherical fiducial
markers acquired via optical 3D imaging (see Appendix D

2Practically, ALDVC ADMM can be stopped after 3 ∼ 5 iterations.

[8]). To generate deformed images accurately and according
to the analytically imposed displacement mappings we
follow the process of [21] extended to 3D using tri-cubic
interpolation (e.g., [27]) to warp the images.

In this section, we set the local subset window size and
window spacing to 30vx × 30vx × 30vx. All computations
were performed by analyzing the full-field deformation at
each increment with respect to the initial, undeformed refer-
ence configuration, i.e., cumulative mode. All the solved
regions of interest (ROIs) are summarized in the supplemen-
tary materials (see Section S1) where only a small portion
of the domain near the image borders is not solved due to
the loss of information. Specifically, the test cases include:

(i) Translation. We apply single axis translations in the
x-direction with amplitudes ranging from 0 to 1 voxel
in increments of 0.1 voxels.

(ii) Uniaxial Stretch. We apply uniaxial stretches in the
x-direction with stretch ratios from 1.0 to 1.3 in
increments of 0.05 with no stretch in the y- and
z-directions (i.e., zero Poisson’s ratio).

(iii) Rotation. We apply in-plane rotations about the z-
axis with rotation angles ranging from 0◦ to 25◦ in
increments of 5◦.

Figure 2 shows root-mean-squared (RMS) displacement
and strain errors compared between a local FFT-based
algorithm (a simplified3 method derived from [8]), a local
IC-GN algorithm, a global algorithm, and our new ALDVC
algorithm. These four methods were selected for the
homogeneous test case to showcase the differences between
the displacement measurement techniques underpinning our
algorithm. In the homogeneous deformation cases, the local
FFT DVC method has initially small errors that rapidly
grow much larger than the other techniques as relative
displacements increase – when deformations are small, the
local FFT DVC method has high accuracy, however for large
deformations the local FFT DVC has rapidly increasing
errors. Errors in the global DVC method are also large
because we do not use regularization – regularizers typically
enforce zero gradients, which artificially forces the desired
answer in the translation cases and biases the displacement
reconstruction in the uniaxial and planar rotation cases.
Our new ALDVC algorithm has the smallest errors in all
homogeneous cases, since it provides balance between these
error modes.

To close this section, we note that when using synthetic
images, a bias can be introduced because of the interpolation
used for grayscale values at subvoxels. The subvoxel

3To probe baseline local FFT performance, rather than that of a
specific algorithm, we reduce the algorithm of [8] to a relatively
generic “local FFT” method by removing the in-built IDM subset
refinement and filtering steps.
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Fig. 2 Displacement and strain RMS errors of the synthetically applied homogeneous deformations with different DVC algorithms with the
undeformed image held as the fixed reference image: local FFT cross-correlation DVC, local IC-GN-based subvolume DVC, finite element-based
global DVC, and our new ALDVC method. Evaluated homogeneous deformations are listed by row: (i) x-direction translation from 0 to 1 voxel
with 0.1 voxels increments; (ii) Uniaxial stretch with a cumulative stretch ratio varying from 1 to 1.3 in increments of 0.05; (iii) Planar rotations
about the z-axis with rotation angles varying from 0◦ to 25◦ in increments of 5◦. (Insets in (c & f) show replotted results of the local, global DVC
and ALDVC methods with adjusted vertical axes.) (e & h) Errors of solved uniaxial stretch ratios and rotation angles in the cases (ii-iii)

translation cases showing sinusoidal variation in Fig. 2(a)
are a reflection of this bias [27]. Finally, Fig. 3 shows the
convergence of both primal and dual residuals (a-b,d) and
dual variables (e-f) (without a stopping criterion) for the
rigid translation case for ALDVC. We see that, overall, the
ALDVC ADMM scheme converges within 3 ∼ 5 iterations
for this simple case. Primal residuals converge rapidly,
usually within the first two to three ADMM iterations, and
plateau with further iterations. Both dual residuals and dual
variables converge quickly, usually also within the first three
ADMM iterations.

Performance Assessment via Inhomogeneous
Deformation (SEM Challenge Sample 14)

Next, we assess the accuracy and precision of our ALDVC
algorithm using a 3D volumetric adaptation of the Society

for Experimental Mechanics (SEM) DIC Challenge Sam-
ple 14 displacement fields. These are characterized by
a sinusoidal displacement field of varying frequency in
the x-direction for three different frequency ranges (L1,
L3, L5; see supplementary material Fig. S1) at a fixed
amplitude [31]. The synthesized 3D volume images of
size 2048vx × 192vx × 192vx have the same x-direction
deformations as the 2D images of the original chal-
lenge and have zero displacements in both the y- and
z-directions. We set the local subvolume size (SS) to
be 10vx × 10vx × 10vx, and set both the window sub-
set spacing and global element size (ST) to be 5vx ×
5vx × 5vx. As before, the ALDVC method converges
in about three ADMM iterations. Figures 4 and 5 show
the horizontal displacement (ux) and the horizontal lon-
gitudinal infinitesimal strain (exx) for the three images
and the results of each of the four DVC methods (local
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(a) Primal residual of u (b) Primal residual of F

(d) Dual residual (e) Dual variable W (f ) Dual variable v

(c) Deformation details

x-disp y-disp z-disp
0.0 0.0 0.0
0.1 0.0 0.0
0.2 0.0 0.0
0.3 0.0 0.0
0.4 0.0 0.0
0.5 0.0 0.0
0.6 0.0 0.0
0.7 0.0 0.0
0.8 0.0 0.0
0.9 0.0 0.0
1.0 0.0 0.0

Fig. 3 Convergence of the ALDVC method residuals for uniaxial x-translation tests using synthetic volumetric images, see (c). Primal residuals
of u (a) and F (b) decrease (rapidly, for the case of the residual of F) in the first three ADMM iterations and plateau with further iterations. (Inset:
(a) the replotted results with adjusted vertical axes.) Both the dual residual (d) and dual variables of W (e) and v (f) converge quickly, usually
within three ADMM iterations

FFT+IDM-based4 DVC, local IC-GN DVC, FE-based
global DVC, and ALDVC), with red dashed lines displaying
the exact applied deformations and blue error bars showing
mean values and standard deviations of measured ux and
exx along the x-axis (i.e., mean ± standard deviation of all
y-, z-points as a function of x-location).

We comment that the local FFT with IDM (for a fixed
subset size) has the lowest accuracy of the techniques tested
with an RMS error on the displacement field of O(0.1)

voxels since IDM performs best for finite deformations with
a self-refining subset size. However, the results provided
by the local method using IC-GN are also noisy and the
associated RMS error of the displacement field is on the
order of 0.05 voxel. The global DVC and ALDVC have
lower noise signatures than the other methods at O(0.01)
voxels. Table 1 provides the computed RMS displacement
and strain errors for each DVC method where applicable.
Both Figs. 4–5 and Table 1 show that the ALDVC method
leads to generally smaller overall errors compared to the
three other DVC methods while reconstructing most of the
high spatial frequency amplitude data in Figs. 4–5.

4This includes the iterative deformation method (IDM), but at a strictly
enforced subset size, which will produce suboptimal results when
compared to the self-refining FIDVC algorithm

Regarding the global DVC method results in Figs. 4–5 we
have added a gradient regularization term “α|∇u(X)|2” onto
(30), where the constant coefficient α is optimized using
a line search method.5 As the deformation field becomes
heterogeneous, the added gradient regularization term helps
to decrease noise, but also constrains the magnitude of the
deformation gradients. In Fig. 5, for the L3 & L5 cases, the
amplitude of the oscillating strain fields is almost constant
where x > 1000 voxels; while in Fig. 4 for the L3 & L5
cases, the amplitude of the oscillating displacement fields
at the same region decreases approximately linearly with
spatial frequency due to the imposed penalty on steep
gradients.

Lastly, we examined the effect of changing the sub-
volume size (SS) on the ALDVC error using the L1 dis-
placement field from the SEM DVC Challenge Sample
14 (see supplementary material Figs. S2-3). The L1 dis-
placement profile is chosen as a typical balance between
homogeneity and spatial frequency where a user would be
required to carefully select a window size. Table 2 shows the

5Besides using a constant regularization coefficient, there are also
methods to optimize a spatially variable, dependent regularization
coefficient α, to achieve better performance [17]. However, these
methods usually are extremely expensive.
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Local FFT+IDM DVC Local subvolume DVC(a) (b)

(ii)

(iii)

L1

L3

L5

Global DVC(c)

(i)

ALDVC(d)

x-axis (voxel) x-axis (voxel) x-axis (voxel) x-axis (voxel)

Fig. 4 The horizontal displacement (ux ) obtained using four different DVC methods. (a) A local FFT-based implementation with fixed subset
size IDM, (b) local IC-GN DVC, (c) FE-based global DVC and (d) our ALDVC method. Images are synthetic volumes with displacement profiles
based on the SEM Challenge Sample 14 dataset. This includes three cases with increasing spatial frequency and fixed amplitude: (i) L1, (ii) L3,
and (iii) L5. Generally our ALDVC algorithm captures the displacement field accurately, whereas the local techniques produce slightly higher
noise and the global technique oversmooths the higher frequencies

Table 1 Comparison of the
RMS displacement and strain
errors from reconstructing the
SEM Challenge Sample 14
(L1, L3, L5) displacement
fields using four different DVC
methods (subvolume size
SS=103 voxels, neighboring
window distance ST=53 voxels)

Image No Local Local IC-GN Global DVC ALDVC

FFT+IDM DVC

DVC

x displacement L1 0.1590 0.0700 0.00584 0.0128

(voxels) L3 0.2004 0.0700 0.0159 0.0134

L5 0.2218 0.0701 0.0284 0.0141

Ifinitesimal L1 — 4.011 × 10−2 7.684 × 10−4 1.103 × 10−3

Strain exx L3 — 4.001 × 10−2 9.435 × 10−4 1.736 × 10−3

L5 — 4.014 × 10−2 1.626 × 10−3 2.496 × 10−3

Table 2 DVC displacement
and strain RMS errors of
Sample 14 L1 with different
subvolume sizes (SS) and
neighboring window distances
(ST)

SS ST Local Local IC-GN Global DVC ALDVC

FFT+IDM DVC

DVC

x displacement 303 303 0.0144 0.0127 0.00612 0.00335

(voxels) 203 203 0.0231 0.0231 0.00603 0.00486

103 103 0.0763 0.0662 0.00581 0.00670

Infinitesimal 303 303 — 2.493 × 10−3 1.234 × 10−4 4.869 × 10−4

Strain exx 203 203 — 6.604 × 10−3 1.410 × 10−4 4.966 × 10−4

103 103 — 4.016 × 10−2 1.913 × 10−4 5.469 × 10−4
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Local subvolume DVC(a)

L1

L3

L5

Global DVC(b)

(ii)

(i)

ALDVC(c)

(iii)

x-axis (voxel) x-axis (voxel) x-axis (voxel)

Fig. 5 The horizontal infinitesimal longitudinal strain (exx ) obtained using three different DVC methods. Specifically, (a) local IC-GN DVC, (b)
FE-based global DVC and (c) our ALDVC method, using synthetic images based on the three cases of the SEM Challenge Sample 14 dataset: (i)
L1, (ii) L3, and (iii) L5

RMS errors in displacement and strain using three different
window sizes.

The errors increase with decreasing window size,
due to the reduced amount of spatial filtering during
the reconstruction process, which is a well appreciated
phenomenon in DIC and DVC.

ALDVC Applied to Experimental Indentation Data

Finally, we apply our new ALDVC algorithm to measure
volumetric deformations of a soft polyacrylamide (PA) hydro-
gel under spherical indentation. Soft hyperelastic materials,
such as hydrogels, are often characterized using an atomic
force microscope with a calibrated stiffness cantilever and a
spherical tip of known diameter, where material properties
are extracted via the classical Hertzian [32] or JKR [33]
contact models. However, critical parameters such as the
contact area of indentation or the contact point of loading
are challenging to deduce without having access to full-
field data. To address these challenges, methods have been
developed using volumetric confocal microscopy to capture
3D images of a spherical indentor on a soft, transparent
substrate. These use the known indentation force, radius of
the indentor, thickness of the gel, and measured indentation
depth to calculate material properties [34, 35]. We employed
this type of indentation technique as an experimental test
case and compared against a finite element-based analysis
using pre-calibrated material properties.

PA hydrogels were formed in individual wells of a
glass-bottom 24-well plate. The particular composition of
our hydrogels determined by the relative volume fraction
of bis-acrylamide to acrylamide was shown to yield an
approximate elastic modulus of 480 Pa (see Appendix E).
Hydrogels were subsequently allowed to swell in water
for 24 hours before being imaged on a Nikon A1 inverted
multiphoton microscope. A 1 mm diameter magnetic stain-
less steel sphere with a density of 7.75 g/cm3 (McMaster
Carr, NJ) was placed onto the submerged PA hydrogel
surface using tweezers. A 3D volumetric image stack
containing fluorescent beads to provide contrast for DVC
was captured from near the hydrogel surface using mul-
tiphoton microscopy and a 25×/1.15NA water immersion
objective. The bead was then removed without touching
the gel surface using a neodymium magnet. A reference,
stress-free volumetric image was acquired using the same
imaging parameters as before, see Fig. 6. Both volumet-
ric reference and deformed images have the same dimen-
sions of 1024vx × 1024vx × 445vx, and are shown in
supplementary materials Section S6. For DVC computa-
tion, we set the local subset window sizes to be 32vx ×
32vx × 32vx, and set both the subset windows spac-
ing and global element size to be 8vx × 8vx × 8vx.
The resulting images (volume of interest: [320, 728]vx ×
[320, 728]vx × [20, 164]vx selected from within the larger
imaging volume) were analyzed. ALDVC iterations con-
verged after 6 ADMM iterations, and the convergence of
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Fig. 6 Schematic of the indentation experiment on soft polyacrylamide hydrogels imaged using multiphoton microscopy. Schematic of the
experimental conditions (a) before and (b) after the removal of the steel indentor bead with a magnet. (c-1&2), a depiction of x-z projections of
the 3D image stacks showing reference and deformed configurations of the gel (not to scale), with the imaging domain used for DVC outlined in
cyan. (d) The equivalent computational domain assuming radial symmetry about the central axis of the bead, the rigid shell outline of which is
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the ALDVC method is shown in supplementary materials
Fig. S4.

The displacement fields obtained using our ALDVC
method are shown in Fig. 7 and the accompanying strain
fields are shown in Fig. 8.

To match this problem computationally, a domain span-
ning the entire hydrogel volume was idealized to be axisym-
metric and constructed in Abaqus/Standard [36] analogous

to prior simulations of spherical indentation [11, 37] using
a convergent mesh of 20,000 Abaqus-CAX4RH elements
(four-noded, hybrid bilinear axisymmetric quadrilaterals
with constant-pressure, reduced integration, and hourglass
control). The indentor is modeled as a rigid, frictionless
(due to water-mediated contact with minimal adhesion (see
[35]), hard-contact acting on the hydrogel through a known
resultant force (computed from the known densities using
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indentor. Surface displacements are shown, (a) ux , (b) uy , and (c) uz components of the solved indentation field. (d) x-z midplane slice of the ux

displacement component at y = 211.7 μm. (e) y-z midplane slice of the uy displacement component at x = 228.5 μm. (f) y-z midplane slice
of the uz displacement component at x = 228.5 μm. (g) A x-z midplane slice of the computed ux displacement demonstrating good qualitative
comparison with the experimental displacements shown in (d). The full volume has been reconstructed using the symmetry assumptions, and
axes are shifted to correspond to the DVC subvolume in the experimental coordinates. (h) An equivalent y-z midplane slice of the computed uy

displacement compares well to the experimental field shown in (e). (i) A y-z midplane slice of the computed uz displacement, comparable to (f)
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Fig. 8 ALDVC solved strain fields for indentation of a soft polyacrylamide hydrogel, where strain fields are intrinsic outputs from ALDVC
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component at x = 228.5μm. (g-i) Abaqus computed strain fields at midplane slices comparable to (d-f)

gravitational and buoyant body forces on the steel sphere) exer-
ted perpendicularly to the hydrogel surface. The hydrogel is
modeled as a neo-Hookean hyperelastic solid with Young’s
modulus E = 480 Pa and Poisson’s ratio ν = 0.495. Boundary
conditions imposed were as follows: the bottom surface was
set to zero-displacement for each component to match the
well-adhered nature of the hydrogel to the glass substrate, the
left-hand side of the mesh is coincident with the axis of
symmetry and thus the horizontal displacement is fixed, the
right-hand boundary abuts the well-plate wall and thus is
also modeled with zero horizontal displacement. The axisym-
metry of the simulation is used to expand the computational
result to match the experimental data. Displacement contours

from matching regions of the computational and experimen-
tal domains were extracted, where the consistent coordinate
basis is that of the full experimental volume. These are plot-
ted in Fig. 7 showing good agreement in both magnitude and
spatial distribution between simulated and measured fields.

We also compare our ALDVC results with the other
DVC methods (see supplementary materials Section S7).
As expected, the ALDVC results are less noisy than the
local IC-GN DVC method, and the global DVC seems
to oversmooth the deformation field. These findings also
agree with the comparison of associated grayscale value
SSD errors (see supplementary materials Section S8), where
SSD errors in the local IC-GN DVC and ALDVC methods

Table 3 List of symbols used
in the analysis of the
computational cost estimates
for each DVC algorithm

N # of voxels in each local subvolume or each finite element (N(kn) for some algorithms)

m # of total local subvolumes or finite elements (m(kn) for some algorithms)

d The dimension of the images, e.g. d = 3 for 3D volumetric voxel images

nL Length of parameter vector of each local subvolume

nG Length of parameter vector in a finite element

k1 Computational cost to compute image grayscale derivatives at integer voxel positions

k2 Computational cost to interpolate grayscale values at sub-voxel positions

k3 # of iterations in local subvolume DIC algorithm

k4 # of iterations in global DVC algorithm IC-GN scheme

k5 # of iterations in ALDVC ADMM scheme

k6 # of inside iterations in ALDVC subproblem 1 IC-GN scheme

k7 # of iterations in the local FFT+IDM

C # of threads used in the local subvolume DVC and ALDVC subproblem 1

for parallel computation
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are very similar, but the apparent kinematic compatibility
is closer using the ALDVC technique. Furthermore, we
compare the SSD errors and gradient regularizers between
global DVC and ALDVC. Since gradient regularization
is applied to the global DVC, the solved deformation
gradients have smaller norms and are oversmoothed.
ALDVC does not apply these smoothness penalties and
thus has smaller SSD errors and better accuracy (see
supplementary materials Table S2).

Computational Cost

All computations are implemented in Matlab (version
2018b, 64-bit) and performed on the same workstation out-
fitted with an Intel i7-9800X with a base clock of 3.80 GHz
(8 threads), 64 GB memory, and run under Windows 10. In
both the local DVC and ALDVC the IC-GN iterations used
8 threads via the parallel processing toolbox in Matlab.

We compare the computational cost of the DVC
algorithms outlined in “Performance Assessment via
Homogeneous Deformations”. The symbols used are listed
in Table 3. Since all of our DVC algorithms account
for general affine deformations, we minimize for a 12
DoF deformation, i.e., nL = 12; we use first order, 8 node
hexahedron elements in our global DVC and ALDVC
methods, and each element has 24 DoFs, i.e., nG = 24. We
estimate the cost of each step in each algorithm [21], and
we then use the dominant terms (assuming that k1 � k2) to
estimate the total cost of computing a pair of volumetric
images, and these are listed in the Table 4 (“Theory”).

We observe that with the exception of the FFT-
based DVC method, the computational costs of the DVC
algorithms scale linearly with the size of the image mN .
Thus, the differences are in the pre-factors, and these can
be significant, as can be seen from the computation times
presented in Table 4. The local DVC method is the least
expensive, while the global DVC formulation is the most
expensive as expected, especially for large images. The
computational cost of our ALDVC method is 2 ∼ 5 times
that of the local IC-GN DVC method, which is much faster
than the global DVC method and could decrease the RMS
error of displacement field by up to a factor of 10 compared
with the local DVC method, see Tables 1–2.

Conclusions

In this paper, we have presented a new augmented
Lagrangian digital volume correlation (ALDVC) method
that takes advantage of the superior computational speed
of local DVC approaches yet produces globally kinemati-
cally compatible displacement and strain fields as generally
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provided by only global DVC methods. We assess the per-
formance of our new ALDVC algorithm by benchmarking it
against a series of synthetic and experimental homogeneous
and inhomogeneous deformation cases. In general, our
ALDVC algorithm provides superior accuracy and spatial
reconstruction ability compared with other baseline DVC
methods. The RMS error on displacement field reconstruc-
tion is up to one order of magnitude lower compared with
a general, local IC-GN DVC method. We also show that
the computational cost of our ALDVC is only a few times
(2 ∼ 5 times) that of typical local DVC methods and signif-
icantly lower than that typical cost of global DVC methods
(potentially up to one to two orders of magnitude in compu-
tational time faster, especially for large images, see Table 4).

Our ALDVC algorithm correlates subvolumes locally
to find the best matching displacement field as in the
local subvolume DVC method, but then ties them together
by introducing an auxiliary compatible displacement
field. The superior accuracy of the ALDVC compared
with many other local methods is due to the auxiliary
field, which leads to a globally compatible deformation
field with less noise than the typical displacement field
outputs from the local method alone. In the ALDVC
subproblem 1, each ADMM iteration is solved locally,
which produces some local points with poor convergence.
However, we also solve the global step afterwards and
find that a small percentage of poor convergence points
typically does not affect the final solution, and the
number of local points with poor convergence decreases
along with ADMM iterations, see supplementary material
Section S5 Fig. S5.

Both ALDVC and global DVC seek to enforce kinematic
compatibility of the reconstructed deformation field. Finite-
element based global DVC relies on the stiffness operator
M (see Appendix C (31)) and external force vector b

(see Appendix C (32)), which both depend on the image
grayscale values requiring increased computational cost,
since classic Gaussian quadrature cannot be used. Instead,
ALDVC remains computationally efficient since the global
optimization problem has been decomposed into two
subproblems. The first subproblem can be further divided
into independent local, small problems, which can be solved
rapidly and in parallel; while the second global subproblem
is also solved efficiently since it does not involve any
grayscale values directly. Moreover, the operator M in
the global DVC may be poorly conditioned depending on
the image and needs to be modified with regularization.
This requires sophistication in the implementation since
decreasing noise level may also over-smooth the actual
deformations, see Figs. 4-5. In contrast, ALDVC does not
require explicit smoothness regularization, and can decrease
the noise level while resolving the characteristics of the
unknown underlying deformation field.

We conclude this paper with a few thoughts on advancing
this work. First, in both the local subvolume DVC
and subproblem 1 of the ALDVC, the accuracy in the
displacements increases with subvolume size. However,
the fidelity decreases in regions of large strain or rapidly
changing strain (i.e. high spatial frequencies). The ideal
strategy is to use an adaptive multiscale approach: large
subvolumes in small strain and small strain-gradient areas,
and small subvolumes in large strain and large strain-
gradient areas and these subvolumes can also be located
mesh-adaptively [14, 20, 38, 39]. We shall describe this in
a forthcoming work where this new ALDVC technique can
be implemented with adaptive meshing capability, which
can both reduce computational times and improve overall
accuracy near strain localization regions.

Second, since our ALDVC method considers global
kinematic compatibility, it is also expected to be robust
to artifacts and noise, and the technique can readily be
combined with image compression techniques [22].

Third, we have only considered continuous deformations
in this paper; however, in principal ALDVC can be improved
further to deal with discontinuities. To achieve this, the
ADMM subproblem 1 could be solved using a subvolume
splitting technique, e.g., [40], and subproblem 2 could be
solved globally using, e.g., an extended FEM technique by
introducing Heaviside basis functions (X-DVC [41]).

Fourth, digital volume correlation can be viewed as a spe-
cial case of the Monge-Kantorovich optimal transport prob-
lem [42] where we are matching local continuous patches
(i.e., subvolumes) and considering global kinematic com-
patibility with an augmented Lagrangian. More generally,
digital volume correlation can also be solved in the discrete
formulation by defining and matching discrete features, e.g.
particle tracking algorithms [43]. In these cases, the global
kinematic compatibility can also be enforced in the form of
an augmented Lagrangian to improve the overall accuracy
of the reconstructed motion field.

As a final note, we maintain an open-source Matlab
implementation of the presented ALDVC6 that is freely
available for download. To ensure that the reader can fairly
compare ALDVC with our global DVC method, we also
uploaded the finite element based global DVC codes we
used in this paper to our Github page.
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Appendix A: Local FFT-based and Iterative
Image DeformationMethod

In the local FFT-based DVC method, the volume of interest
(VOI) is divided into local subvolumes (subsets) and the
degrees of freedom (DoFs) governing the local deformation
of each subvolume are assumed to be represented by a
piecewise constant translation

y(X) = X + u(X) = X +
∑

i

(ui ) χi(X), (14)

where ui is the translation vector of the center of each local
subset �i , and χi is the characteristic or index function

χi =
{

1, X ∈ �i,

0, X /∈ �i .
(15)

Using this piecewise translation formulation (14), the
optimization problem (2) decomposes into a number of
independent optimization problems over translation vector
variables, where the objective function can be computed
very efficiently using the fast Fourier transform (FFT)
method [4]

CCC(u) = F−1
[
F(f ) 
 F(g)

]
, (16)

where “ · ” denotes the complex conjugate, and “
” is
the Hadamard product where multiplication is conducted
element-wise. The displacement vector u can be calculated
with sub-voxel resolution by fitting the 33 voxel cross
correlation peak to a Gaussian polynomial or a quadratic
polynomial [4].

To account for large material deformations including
large stretches, rotations, and shear, Bar-Kochba et al. [8]
significantly improved on prior local FFT methods by iter-
atively warping the reference and deformed images using
a linearized local displacement field that is interpolated
from the current displacement field until the reference and
deformed images converge to the same final configura-
tion, while introducing several filtering steps to improve
accuracy and convergence. This can be further sped up by
using an initial guess transfer scheme [44] and improved by
the introduction of quality factors of the cross-correlation
space to detect and remove poor FFT results among
subvolumes [11].

Appendix B: Non-FFT-based Local IC-GN DVC
Method

Similarly to the FFT-based methods, for non-FFT-based
DVC methods each subvolume is assumed to be indepen-
dent (although initial guess propagation is often used, e.g,
[28]) with regard to its neighboring subvolumes and the

deformation field has the general piecewise affine deforma-
tion formulation

y(X) = X + u(X) = X +
∑

i

(ui + Fi (X − Xi0)) χi(X),

(17)

where Xi0 is the center point of local subvolume �i , ui is
the displacement of Xi0 and Fi is the affine deformation
gradient tensor of �i minus identity.

The optimization problem (3) decomposes into a number
of decoupled problems with, typically, twelve degrees of
freedom {ux, uy, uz, Fxx, Fxy, Fxz, Fyx, Fyy, Fyz, Fzx, Fzy,

Fzz} for the subvolume’s first order shape function and can be
solved in parallel. This optimization problem is as follows:

CSSDi =
∫

�i

|f (X) − g(X + ui + Fi (X − Xi0))|2 dX

→ minimize over {Fi ,ui} (18)

and can be solved efficiently using an inverse compositional
Gauss-Newton (IC-GN) scheme. Given the current iteration
of the deformation map yk , we seek the updated deformation
map yk+1. It is convenient to define the inverse map ϕk

such that ϕk(yk(X)) = X. We also define the increment
ψk through yk+1 = ψk ◦ yk as shown in Fig. 1(a).
At each IC-GN iteration, we make the approximation
ψk ≈ z + v + H(z − z0), and use a change of variables
to minimize the SSD correlation function in the current
iteration configuration

CSSDi =
∫

�k
i

∣∣∣f (ϕk(z)) − g(z) − ∇g(z)

·
(
v + H(z − z0)

)∣∣∣2
dz. (19)

Minimizing over {v,H}, we obtain(
alp blqr

bmnp cmnqr

)(
wp

Hqr

)
=

(
dl

emn

)
(20)

where

alp = 2
∫

�k
i

g,lg,pdz, (21)

blqr =
∫

�k
i

g,lg,q(zr − z0r )dz, (22)

cmnqr = 2
∫

�k
i

g,m(zn − z0n)g,q(zr − z0r )dz, (23)

dl =
∫

�k
i

(f − g)g,ldz, (24)

emn =
∫

�k
i

(f − g)g,m(zn − z0n)dz (25)

and g,l = ∂g/∂zl , etc. We solve (20) for {v,H} to obtain ψk .
We then obtain the new (inverse) deformation ϕk+1 = ϕk ◦
(ψk)−1. In practice, we compute the integrals (or voxel-wise
sums) over the final deformed configuration instead of
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the intermediate iterating configurations. This significantly
decreases computational cost because all the gradients ∇g

only need to be computed once and remain unchanged
during each IC-GN iteration as summarized in Algorithm 2.

Appendix C: Global DVCMethod

For the global DVC method, we represent the global
deformation using a global basis set, often based on a
finite element formulation, such that the compatibility
or continuity of the displacement field is automatically
guaranteed (see Fig. 1(b)), i.e.,

y(X) = X + u(X) = X +
∑
p

upψp(X) (26)

where ψp(X) are chosen global basis functions and up are
the unknown degrees of freedom. Thus, equation (3) becomes

Cg =
∫

�

∣∣∣∣∣f (X) − g(X +
∑
p

upψp(X))

∣∣∣∣∣
2

dX

→ minimize over {up}. (27)

We can solve this problem iteratively by setting uk+1 =
uk + δu and using the first order approximation

g(y(X)) = g(X+uk(X)+δu) ≈ g(X+uk(X))+∇g ·δu(X)

(28)

such that

Cg ≈
∫

�

∣∣∣∣∣f (X) − g(X + uk(X))

−
(∑

p

δupψp(X)

)
· ∇g(X)

∣∣∣∣∣
2

dX. (29)

This leads to a linear equation in δu

Mpqδuq = bp (30)

where

Mpq =
∫

�

ψT
p (X) (∇g) (∇g)T ψq(X)dX, (31)

bp =
∫

�

(f (X) − g(X + uk(X))) ψT
p (X)∇g(X)dX. (32)

In this paper, we use an 8-node hexahedron (HEX8)
finite element mesh in our global DVC method, and the
algorithm is summarized in Algorithm 3. Alternately, if
the displacements are small, we can treat (30) as a linear
problem with δu as the incremental displacement.

Global DVC is usually computationally expensive since
the size of the linear problem (30) is equal to the
number of basis functions or the size of the finite element
discretization. While parallel implementation strategies
exist, they can be cumbersome to utilize in practice. The
problem is exacerbated when analyzing volumetric time-
lapse data with multiple image pairs.

Appendix D: Synthetic 3D Volume Images

The synthetic digital volume images in “Assessing the
Accuracy and Precision of the ALDVC Algorithm” are gen-
erated to mimic actual volumetric experimental images. In
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Fig. 9 (a) Representative,
synthetically generated DVC
volume using a typical
Gaussian-like point spread
function (PSF) mimicking
typical diffraction-limited
optical systems. (b) Inset from
(a)

(a) (b)

each reference volume, isolated spherical beads are randomly
seeded using a 3D Gaussian intensity profile as an approxi-
mation of a random, isotropic image pattern (e.g., mimicking
the point spread function (PSF) of a laser scanning confocal
microscope [8, 43]). A typical Gaussian PSF with amplitude
A and spread (i.e., standard deviation) σ is expressed as

PSF(x) = A exp

(
−

3∑
i=1

x2
i

2σ 2

)
. (33)

A PSF with a spread σ = 1 approximates a spherical parti-
cle in the volume image with a diameter of approximately
5 voxels. All the beads are sampled randomly with seeding
density 0.006 beads per voxel. To avoid beads overlapping
in the synthetic images, a Poisson disc sampling algorithm
is used to seed center-point locations in the volume images
with a minimum separation distance between particles
equal to the particle diameter (see [43]), see Fig. 9. The
particle positions in the deformed image are calculated
via the imposed displacement field and all the deformed
volume images are warped from the reference to deformed
configuration using tri-cubic interpolation [27].

Appendix E: Indentation Experiment
Preparation

In our experiment, polyacrylamide (PA) hydrogels of
approximately 400 μm in thickness were polymerized

Table 5 Details of hydrogel indentation experiment parameters

Parameters Value

Bead size 1 μm

Bead volume density 10%

Gel thickness 0.40 mm

Indentor ball diameter 1 ± 0.0025 mm

Indentor ball density 7750 kg/m3

3D volumetric image size 1024vx × 1024vx × 445vx

x- & y-axis μm to voxel conversion 0.42

z-axis μm to voxel conversion 0.425

in the well of a glass-bottomed 24-well plate, pre-
treated with 0.5% 3-aminopropyl-trimethoxysilane (Sigma-
Aldrich, MO) and 0.5% glutaraldehyde (Polysciences,
Inc., PA) as described previously [45–47]. The hydro-
gels were fabricated using 3% acrylamide (Bio-Rad,
CA) and 0.06% bis-acrylamide (Bio-Rad, CA), follow-
ing a previously described protocol [45, 46, 48] with
an approximate final elastic modulus of 480 Pa. Cross-
linking of the PA hydrogels was achieved with the addi-
tion of ammonium persulfate (Sigma-Aldrich, MO) and
N,N,N,N-tetramethylethylenediamine (ThermoFisher Sci-
entific, MA). Hydrogels were doped with 10% (w/v) 1 μm
diameter carboxylate-modified fluorescent microspheres
(ThermoFisher Scientific, MA) as fiducial markers. Hydro-
gels were left to fully swell in deionized water overnight.
All the related parameters are summarized in Table 5.
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