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Abstract
Background A shear constraint was very recently proposed by Abedini et al. (Int. J. Solids and Structures 151: 118–
134 2018) to evaluate and calibrate advanced non-quadratic anisotropic yield criteria and to eliminate what they called
non-physical numerical artifacts in those criteria.

Objective This investigation points out that such a shear constraint is in fact unnecessary for plane-stress orthotropic
plasticity in general.

Methods Using the well-known Hill’s 1948 quadratic and Gotoh’s 1977 quartic yield functions for orthotropic sheet metals
in plane stress, it is shown analytically that pure shear stressing and pure shear straining loading conditions are not equivalent
except for very special cases. By conducting a series of shearing experiments on an aluminum sheet metal, the actual test
results are shown not to provide any unequivocal supporting evidence at all to the newly proposed shear constraint.

Results The so-called non-physical numerical artifacts of the non-equivalence in pure shear stressing and pure shear
straining of a sheet metal are in fact the intrinsic features of an anisotropic material in general.

Conclusions The newly proposed shear constraint should thus not be accepted to be universally applicable at all for
anisotropic plasticity modeling of sheet metals. Such a proposed constraint itself shall be regarded as a provisional
simplifying assumption of reduced anisotropy only for some particular sheet metals under consideration.

Keywords Anisotropic plasticity · Non-quadratic yield criterion · Orthotropic flow potential · Simple shear ·
Pure shear

Abbreviations
x,y,z The orthotropic material symmetry axes corres-

ponding to the rolling (RD), transverse (TD), and
normal (ND) directions of a thin sheet metal.

σx, σy, τxy Three in-plane Cartesian (two normal and one
shear) components of an applied Cauchy stress σσσ

in the orthotropic coordinate system of the sheet
metal.

�2y , Y1, Y2, Y3, Y4 Hill’s 1948 quadratic anisotropic
yield stress function in plane stress and its three
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on-axis (Y1, Y2, Y3) and one off-axis (Y4)
polynomial coefficients or material constants.

�2p, P1, P2, P3, P4 Hill’s 1948 quadratic anisotropic
plastic flow potential in plane stress and its three
on-axis (P1, P2, P3) and one off-axis (P4)
polynomial coefficients or material constants.

�4, A1, ..., A9 Gotoh’s 1977 fourth-order anisotropic
yield stress function in Cartesian stress
components (σx, σy, τxy) and its five on-axis
(A1, ..., A5) and four off-axis (A6, ..., A9)
polynomial coefficients or material constants.

σ1, σ2, θ The applied Cauchy stress σσσ represented in
terms of so-called intrinsic variables according to
R. Hill, namely, the in-plane principal stresses
and the stress loading orientation angle between
the major principal stress σ1 and the rolling
direction (RD) of the sheet metal.

ε̇1, ε̇2, θ
′ The in-plane principal plastic strain increments
and the straining loading orientation angle between
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the major principal plastic strain increment ε̇1
and the rolling direction (RD) of the sheet metal.

τ and γ̇ The yield stress in stress-controlled pure shear
loading and plastic strain increment in
strain/displacement-controlled pure or simple
shear loading.

Introduction

A macroscopic anisotropic plasticity model that can ade-
quately capture the directional and multi-axial dependence
of the yielding, plastic flow, and strain hardening behavior
of a sheet metal is often required in analyzing and simu-
lating an industrial forming operation of the sheet metal.
The phenomenological approach treats the sheet metal as
a continuum and often formulates a general mathematical
framework of macroscopic anisotropic plasticity in terms
of a stress-based yield function [15, 23, 24]. At present,
a yield function that is calibrated via experimental inputs
from mechanical tests is still most widely used in indus-
trial sheet metal applications as it is both more accurate and
computationally more efficient [5].

In principle, any scalar-valued function of the Cartesian
stress components of the plane stress tensor σσσ =
(σx, σy, τxy) can be used as the plane stress yield function
f (σx, σy, τxy) for a sheet metal as long as it is both
physically consistent and mathematically concise and well-
posed. In practice, three types of constraints are imposed on
a yield function of a sheet metal in terms of their degrees
of generality. The most fundamental and basic constraint
is to require a yield function to be positive and convex
[9, 16, 18, 23, 24, 34]. The second level of constraints
are often imposed in metal plasticity, including pressure-
insensitive yielding, plastic incompressibility [14, 15], and
an associated (or occasionally a non-associated) flow rule
[9, 18]. The third level of constraints may often be regarded
as simplifying constitutive assumptions of a reduced degree
of anisotropy about strain hardening and material symmetry
of a particular metal under consideration due to lack of
relevant experimental inputs. Depending on the need to
balance the model complexity and capabilities, various
strain hardening features (isotropic, kinematic, differential,
and anisotropic) and various degrees of material anisotropy
(isotropic, planarly isotropic, orthotropic, and monoclinic)
have been considered for sheet metal modeling in the past. A
constitutive assumption about the so-called central asymme-
try (that is, tension-compression asymmetry or strength
differential effect) also belongs to the third type of provi-
sional constitutive modeling constraints in metal plasticity.

Abedini et al. [2] recently proposed a new shear con-
straint in their evaluation and calibration of the non-
quadratic anisotropic yield stress function YLD2000-
2D for two aluminum sheet metals AA2090-T3 and

AA7075-T6 in plane stress. Specifically, they insist in
Section Mechanics of Shear Deformation of their paper
that the principal stress ratio σ2/σ1 and the princi-
pal plastic strain increment ratio ε̇

p

2 /ε̇
p

1 should in gen-
eral be the same as -1 for any orthotropic sheet
metal under either pure shear stressing or pure shear
straining loading conditions regardless of the loading
orientation and the actual degree of plastic anisotropy in the
sheet metal. In this study, we clarified first in Section Two
Types of Pure Shear Loading Conditions on a Sheet Metal
the difference between these two types of pure shear load-
ing conditions often used in shear testing of a sheet metal
and then the difference between the on-axis/off-axis and
coaxial/non-coaxial loading conditions on an orthotropic
material. We next showed in Section Modeling Pure Shear
by Hill’s Quadratic and Gotoh’s Quartic Anisotropic Plastic
Models the general equivalency of these two types of 45o

off-axis pure shear loading conditions but the general non-
equivalence of these two types of on-axis pure shear loading
conditions as given by the well-established Hill’s 1948
quadratic and Gotoh’s 1977 quartic anisotropic yield func-
tions[11, 14]. In Section Shearing Experiments and Results
on an AA6111-T4 Sheet, we described the shearing exper-
iments on an AA6111-T4 sheet based on two shear test
coupon geometries commonly used for sheet metals. We
presented in Section Discussion and Conclusions some rel-
evant experimental results of these shearing tests which in
fact do not support the proposed shear constraint. We fur-
ther pointed out that the very approximate nature of any
shearing test of sheet metals in practice would not strictly
and unequivocally lend itself as the physical basis at all
for the universal shear constraint newly proposed by Abe-
dini et al.[2]. In other words, such a constraint is in fact
one of provisional third type constraints that overly restricts
the well-established Hill’s and Gotoh’s orthotropic yield
functions by reducing their total numbers of independent
material constants by at least 1 and 2 respectively.

Two Types of Pure Shear Loading Conditions
on a Sheet Metal

Shear testing and its three special cases

As the terms shear, pure shear, and simple shear are all
used in the literature to the so-called shear testing [21, 26,
42], a concise definition will be given at first for rolled
sheet metals. We adopt the principal stresses and the loading
orientation angle (σ1, σ2, θ) or the intrinsic variables as
called by Hill [19] to characterize the mechanical loading of
a flat sheet metal element in plane stress1.

1Per the 2D coordinate transformation of stress tensor, one has σx =
σ1cos2θ +σ2sin2θ , σy = σ1sin2θ +σ2cos2θ , τxy = (σ1−σ2)sinθcosθ .
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So σ1 > σ2 ≥ 0 defines biaxial tension (uniaxial tension
when σ2 = 0) while σ1 > 0 and σ2 < 0 is the stress
state of a material element in an in-plane shear test. If the
in-plane shear test is done under displacement boundary
conditions, then the principal plastic strain increments and
the straining orientation angle (ε̇

p

1 , ε̇
p

2 , θ ′) should be used
instead. As it is usually understood for an orthotropic sheet,
the mechanical loading is on-axis if θ = 0o or θ = 90o and
it is off-axis when otherwise. Furthermore, the mechanical
loading is coaxial in stress and strain if θ ′ = θ and it is non-
coaxial in stress and strain when θ ′ �= θ . For orthotropic
sheet metals, on-axis loading is always coaxial but off-axis
loading may or may not be coaxial. For finite deformation
including cases of only small strain but finite rotation, the
in-plane material spin ω̇ should also be specified as part of
either stress or strain controlled loading conditions on the
sheet metal test piece.

The following three cases are most relevant to our
discussion here: pure shear stressing, pure shear straining,
and simple shear (straining). Pure shear stressing refers to
pure shear in stress in most standard textbooks on mechanics
of materials (see, e.g., page 33 of [13]) and in the anisotropic
plasticity literature (see [6, 39]). As a plane-stress yield
function in anisotropic plasticity is most often formulated
using the applied Cauchy stress σσσ , the ideal shear test
condition would be under pure shear in stress, that is, σ1 =
−σ2 > 0, see Fig. 1(a). This may be accomplished in
principle using a biaxial test machine with no material spin
[6, 38]. A free-end torsion test of the thin-walled tube may
be approximated as a pure shear stress test with a finite
material rotation if the hoop stress is zero [40].

In classical studies of elasticity and fracture mechanics
of flat rubber samples, the pure shear strain test consisting
of a thin rectangular rubber strip held by rigid clamps
along its two long edges is often used [42]. Such a test
should be more precisely called as the out-of-plane pure
shear strain test or the in-plane plane strain stretching for

a flat test piece without material rotation. The equivalence
of pure shear straining and plane-strain stretching (on two
different planes of the same test piece) is due to the material
incompressibility in rubber elasticity. Similarly as shown
in Fig. 1(b), in-plane pure shear plastic straining ε̇

p

1 =
−ε̇

p

2 > 0 or ε̇
p

1 + ε̇
p

2 = −ε̇
p

3 = 0 would automatically
require no thickness change in a sheet metal due to plastic
incompressibility. It is thus equivalent to the out-of-plane
plane strain stretching (ε̇p

1 > 0, ε̇p

3 = 0).
In-plane shear tests reported in the literature for sheet

metals [4, 8, 10, 21, 25, 30] are however more commonly
referred to as simple shear (straining) in plane stress, see
Fig. 1(c). Unlike in a fixed end torsion test of thin-walled
tubes, those in-plane shear tests of a sheet metal in either
double-shear [25] or single-shear [30] configurations do not
fully and accurately prescribe the displacement boundary
conditions on all four sides of a narrow rectangular gauge
section as dictated by the simple shear deformation [3,
26, 27]. Instead, the narrow rectangular gauge section of a
sheet metal test piece is sheared along its two long edges
while its two short edges are actually stress free. Both the
free edge effect and short (narrow) gauge length make the
actual stress and strain states in the gauge section of such a
test piece rather non-uniform and complex [3, 8, 29]. Even
though the center gauge region of the sheet metal shear
test piece may undergo the plastic deformation very close
(but nevertheless not completely identical) to simple shear
at finite strain levels [29], the overall quality and fidelity
of the stress and strain measurement data in an in-plane
simple shear test is thus rather inferior to those obtained
from a standard uniaxial tensile test. Another significant
difference between the simple shear and uniaxial tension
tests is the large material rotation in finite simple shear. As
the initial yielding is the focus in our current investigation,
pure shear straining and simple shear straining may be
treated equivalently in this context (i.e., the material rotation
is small at the initial stage of plastic yielding in simple shear).

Fig. 1 a Pure shear stressing; b
pure shear straining; c simple
shear (straining) of a unit sheet
metal element with the fixed
laboratory coordinate axes ηζ .
Here the in-plane material
symmetry axes xy with the
horizontal rolling marks are
aligned with the loading axes
σ1σ2 and ε̇1ε̇2 as well as with the
laboratory coordinate axes ηζ .
They are in general at a certain
angle θ , θ ′ and ξ respectively
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Fig. 2 Pure shear stressing and
straining of a sheet metal at
45-degree diagonal direction to
its material coordinates xy: a the
DD material element edges
aligned with the laboratory
(shearing) coordinates ηζ ; b the
material element edges aligned
with principal stress axes σ1σ2

Selected on-axis and off-axis pure shear loading
conditions

It is very important to clearly distinguish three coordinate
systems commonly used in modeling and testing sheet
metals in plane stress, namely, 1) the sheet metal material
symmetry axes xy (corresponding to the rolling and
transverse directions of a sheet metal), 2) the principal
stress axes σ1σ2, and 3) the laboratory test coordinates
ηζ . We give first in this subsection a somewhat detailed
description of four coaxial pure shear loading cases applied
to a sheet metal in terms of these three coordinate systems,
see Figs. 2, 3, 4 and 5. The first three pure shear cases
considered here correspond to the stress state points 1©, 2©
and 3© depicted in Fig. 3 of [2]. For simplicity, we treat
the elastic deformation to be negligible in the following
analysis2 and exclude any rigid body motion. There are two
types of the shearing loading conditions commonly applied
to a unit square material element: pure shear stressing and
simple shear straining. The term “stressing” is used here
to emphasize the point that this particular pure shear is
a stress-controlled loading condition. Similarly, the term
“straining” is used along with simple shear to highlight that
such a loading condition is strain-increment (displacement)
controlled. To be specific, we define the laboratory test
coordinates ηζ to be along the directions of the shearing
stresses τ > 0 or plastic shear strain increments γ̇ /2 >

0. One peculiar feature of 45o off-axis pure shear loading
conditions is the coincidence of the principal stress axes
σ1σ2 in stress-controlled loading and principal plastic strain
increment axes ε̇1ε̇2 in strain-controlled loading (see Figs. 3

2So for simplicity, the superscript ‘p’ will be dropped in the rest of the
manuscript for components of plastic strain increments

and 5). Following the usual practice [2], the shear test
samples are also designated as RD, DD and TD in terms of
the shearing loading direction and the rolling direction of
a sheet metal. In an ideal pure shear stress test, the actual
loading angle in terms of θ or θ ′ differs however from the
RD, DD and TD uniaxial tensile test samples by 45o.

45-degree diagonal shearing ξ = 45o (on-axis loading
θ = θ ′ = 0o)

As shown in Fig. 2(a), either a pure shear stressing or
straining condition is applied to a square unit material
element aligned at a 45-degree angle from the rolling
direction (x-axis) of the sheet metal (the DD shear test
sample). The same stressing and straining conditions of 45-
degree diagonal shearing may be described in terms of the
unit material element aligned along the principal stress axes
(and the sheet metal material symmetry axes too in this case)
shown in Fig. 2(b). Using the Cartesian components in the
sheet metal material symmetry coordinate system, the pure
shear yield stress and plastic strain increment tensors shown
in Fig. 2(a) are given respectively as

(σx, σy, τxy)ps1 = (τ,−τ, 0), (ε̇x , ε̇y , ε̇xy)ss1 = (γ̇ /2,−γ̇ /2, 0). (1)

The same pure shear yield stress and plastic strain increment
tensors in terms of the principal stress axes shown in
Fig. 2(b) are given respectively as

(σ1, σ2, θ)ps1 = (τ, −τ, 0), (ε̇1, ε̇2, θ
′)ss1 = (γ̇ /2,−γ̇ /2, 0), (2)

where the stress loading orientation angle θ is defined as
the angle between σ1 and the rolling direction of the sheet
metal with σ1 ≥ σ2 [17, 19]. The plastic strain increment
loading orientation angle θ ′ is defined as the angle between
ε̇1 and the rolling direction of the sheet metal with ε̇1 ≥ ε̇2.
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Fig. 3 Pure shear stressing and
straining of a sheet metal with
0-degree parallel to its material
coordinates xy: a the RD
material element edges aligned
with the laboratory (shearing)
coordinates ηζ ; b the material
element edges aligned with
principal stress axes σ1σ2

In general θ ′ �= θ but here θ ′ = θ = 0 is always held for the
on-axis pure shear (but ξ = 45o!). The subscripts“ps1” and
“ss1” are used to designate the first case of the pure shear
stressing and straining conditions respectively.

0-degree parallel shearing ξ = 0o (special off-axis loading
θ = θ ′ = 45o)

As shown in Fig. 3(a), either pure shear stressing or
straining may be applied to a square unit material element
aligned with the rolling direction (x-axis) of the sheet metal
(the RD shear test sample). They shall be called 0-degree
parallel shearing loading conditions and may be described
in terms of the unit material element aligned with the

principal stress axes shown in Fig. 3(b) as well. Using the
Cartesian components in the sheet metal material symmetry
coordinate system (at a 45-degree angle clockwise from
the principal stress axes), the pure shear yield stress and
plastic strain increment tensors shown in Fig. 3(a) are given
respectively as

(σx, σy, τxy)ps2 = (0, 0, τ ), (ε̇x , ε̇y , ε̇xy)ss2 = (0, 0, γ̇ /2). (3)

The corresponding representation of the same pure shear
stressing and straining conditions in terms of the principal
stresses and plastic strain increments shown in Fig. 3(b) are
given respectively as

(σ1, σ2, θ)ps2 = (τ, −τ, 45o), (ε̇1, ε̇2, θ
′)ss2 = (γ̇ /2, −γ̇ /2, 45o). (4)

Fig. 4 Pure shear stressing and
straining of a sheet metal at
135-degree diagonal to its
material coordinates xy: a the
DD material element edges
aligned with the laboratory
(shearing) coordinates ηζ ; b the
material element edges aligned
with principal stress axes σ1σ2
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Fig. 5 Pure shear stressing and
straining of a sheet metal with
90-deg or perpendicular to its
material coordinates xy: a the
TD material element edges
aligned with the laboratory
(shearing) coordinates ηζ ; b the
material element edges aligned
with principal stress axes σ1σ2.

135-degree diagonal shearing ξ = 135o (on-axis loading
θ = θ ′ = 90o)

When the shear stress or plastic shear strain increments
are applied in the opposite directions to a square unit
material element shown in Fig. 2(a), the pure shear loading
condition will be called 135-degree diagonal shearing,
see Fig. 4(a). The corresponding stressing and straining
conditions in terms of the unit material element aligned
along the principal stress axes are shown in Fig. 4(b) which
are the ones shown in Fig. 2(b) rotated counterclockwise
by 90-degree. The pure shear stress and strain increment
tensors shown in Fig. 4(a) are given respectively in terms
of the Cartesian components in the sheet metal material
symmetry coordinate system as

(σx, σy, τxy)ps3 = (−τ, τ, 0), (ε̇x , ε̇y , ε̇xy)ss3 = (−γ̇ /2, γ̇ /2, 0). (5)

The same pure shear stress and plastic strain increment
tensors in terms of the principal stresses and strain
increments shown in Fig. 4(b) are given respectively as

(σ1, σ2, θ)ps3 = (τ, −τ, 90o), (ε̇1, ε̇2, θ
′)ss3 = (γ̇ /2, −γ̇ /2, 90o). (6)

90-degree perpendicular shearing ξ = 90o (special off-axis
loading θ = θ ′ = −45o)

For the completeness, we also consider the case of 90-
degree parallel shearing shown in Fig. 5(a), that is, the
square unit material element under shearing is aligned with
the transverse direction (y-axis) of the sheet metal (the TD
shear test sample). The pure shear stress and plastic strain
increment tensors shown in Fig. 5(a) are given respectively

in terms of the Cartesian components in the sheet metal
material symmetry coordinate system (at a 45-degree angle
clockwise from the principal stress axes) as

(σx, σy, τxy)ps4 = (0, 0,−τ), (ε̇x , ε̇y , ε̇xy)ss4 = (0, 0, −γ̇ /2). (7)

The corresponding representation of the same pure shear
loading conditions in terms of the principal stresses and
plastic strain increments shown in Fig. 5(b) are given
respectively as

(σ1, σ2, θ)ps4 = (τ, −τ, −45o), (ε̇1, ε̇2, θ
′)ss4 = (γ̇ /2, −γ̇ /2, −45o). (8)

Modeling Pure Shear by Hill’s Quadratic
and Gotoh’s Quartic Anisotropic Plastic
Models

We are now ready to compute the plastic strain increments
from an applied pure shear yield stress and to evaluate the
yield stress components from an applied simple shear plastic
strain increment for four shearing loading cases detailed in
the previous section. More specifically, we seek after the
ratio of principal strain increments ε̇2/ε̇1 per pure shear in
stress and the ratio of principal stresses σ2/σ1 per simple
shear or pure shear in strain as predicted by Hill’s quadratic
yield/flow functions and Gotoh’s quartic yield function
given in Appendix.

Principal Plastic Strain Increment Ratio in Pure
Shear Stressing

Per the yield functions and flow rule ε̇εεp=λ∂g/∂σσσ given
in Appendix, the plastic strain increments are readily
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computed in terms of the three stress components in the
sheet metal material symmetry coordinate system as

ε̇x = λ∂g/∂σx, ε̇y = λ∂g/∂σy, γ̇xy = 2ε̇xy = λ∂g/∂τxy . (9)

For an associated Hill’s quadratic model (g2 = �2y),
the plastic strain increments for the four pure shear plane-
stress states given by Eqs. (1)1, (3)1, (5)1 and (7)1 are (the
common factor λτ/(2g) is dropped for simplicity)

(ε̇x, ε̇y, ε̇xy)
h
ps1 ∝ (2Y1 − Y2, Y2 − 2Y3, 0),

(ε̇x, ε̇y, ε̇xy)
h
ps2 ∝ (0, 0, Y4),

(ε̇x, ε̇y, ε̇xy)
h
ps3 ∝ (−2Y1 + Y2, −Y2 + 2Y3, 0),

(ε̇x, ε̇y, ε̇xy)
h
ps4 ∝ (0, 0, −Y4),

(10)

The corresponding principal plastic strain increments and
straining orientation angle are

(ε̇1, ε̇2, θ
′)hps1 ∝ (2Y1 − Y2, Y2 − 2Y3, 0),

(ε̇1, ε̇2, θ
′)hps2 ∝ (Y4, −Y4, 45

o),

(ε̇1, ε̇2, θ
′)hps3 ∝ (−Y2 + 2Y3, −2Y1 + Y2, 90

o),

(ε̇1, ε̇2, θ
′)hps4 ∝ (Y4, −Y4, −45o),

(11)

In the case of using a non-associated Hill’s model (g2 =
�2p), the above results are still applied with material con-
stants (Y1, Y2, Y3, Y4) being replaced by material constants
(P1, P2, P3, P4).

For an associated Gotoh’s quartic model (g4 = �4),
the plastic strain increments for the same four pure shear
loading cases are computed straightforward as (the common
factor λτ 3/(4g3) is dropped for simplicity)

(ε̇x, ε̇y, ε̇xy)
g

ps1 ∝ (4A1 − 3A2 + 2A3 − A4, A2 − 2A3 + 3A4 − 4A5, 0),

(ε̇x, ε̇y, ε̇xy)
g

ps2 ∝ (0, 0, 2A9),

(ε̇x, ε̇y, ε̇xy)
g

ps3 ∝ (−4A1 + 3A2 − 2A3 + A4, −A2 + 2A3 − 3A4 + 4A5, 0),

(ε̇x, ε̇y, ε̇xy)
g

ps4 ∝ (0, 0, −2A9),

(12)

The corresponding principal plastic strain increments and
straining orientation angle are

(ε̇1, ε̇2, θ
′)gps1 ∝ (4A1 − 3A2 + 2A3 − A4, A2 − 2A3 + 3A4 − 4A5, 0),

(ε̇1, ε̇2, θ
′)gps2 ∝ (2A9,−2A9, 45

o),

(ε̇1, ε̇2, θ
′)gps3 ∝ (−A2 + 2A3 − 3A4 + 4A5,−4A1 + 3A2 − 2A3 + A4, 90

o),

(ε̇1, ε̇2, θ
′)gps4 ∝ (2A9,−2A9,−45o).

(13)

Principal stress ratio in pure shear straining

When the plastic loading condition is imposed by prescrib-
ing all plastic strain increment components (consistent with
the plastic incompressibility), the corresponding yield stress
components may be computed from both the flow rule and
yield condition. As we are mostly interested in the principal
stress ratio in simple shear straining, only the relative values
among the stress components (σx , σy, τxy) are first sought
from the given plastic strain increments (ε̇x, ε̇y, ε̇xy).

One can show that the associated Hill’s quadratic
model gives the following Cartesian components of strain
increments in terms of stresses for the four simple shear
straining conditions defined by Eqs. (1)2, (3)2,(5)2 and (7)2
(again any common factor is dropped for simplicity)
(2Y1σx + Y2σy, Y2σx + 2Y3σy, Y4τxy)hss1 ∝ (γ̇ /2,−γ̇ /2, 0),

(2Y1σx + Y2σy, Y2σx + 2Y3σy, Y4τxy)hss2 ∝ (0, 0, γ̇ ),

(2Y1σx + Y2σy, Y2σx + 2Y3σy, Y4τxy)hss3 ∝ (−γ̇ /2, γ̇ /2, 0),

(2Y1σx + Y2σy, Y2σx + 2Y3σy, Y4τxy)hss4 ∝ (0, 0,−γ̇ ).

(14)

One can thus obtain the corresponding principal stress
ratio for each case as

(σ1, σ2, θ)hss1 = (σx, σy, 0) : (
σ2

σ1
)hss1 = −2Y1 + Y2

Y2 + 2Y3
;

(σ1, σ2, θ)hss2 = (τxy,−τxy, 45o) : (
σ2

σ1
)hss2 = −1;

(σ1, σ2, θ)hss3 = (σy, σx, 90o) : (
σ2

σ1
)hss3 = −Y2 + 2Y3

2Y1 + Y2
;

(σ1, σ2, θ)hss4 = (τxy,−τxy,−45o) : (
σ2

σ1
)hss4 = −1.

(15)

Again, the above results are applied to a non-associated
Hill’s model too with material constants (Y1, Y2, Y3, Y4)
being replaced by (P1, P2, P3, P4).

Recall from the associated flow rule, the Gotoh’s quartic
model gives the plastic strain increments in plane-stress as
(without any common factor for simplicity)
ε̇x ∝ 4A1σ

3
x + 3A2σ

2
x σy + 2A3σxσ 2

y + A4σ
3
y + 2A6σxτ 2xy + A7σyτ 2xy ,

ε̇y ∝ A2σ
3
x + 2A3σ

2
x σy + 3A4σxσ 2

y + 4A5σ
3
y + A7σxτ 2xy + 2A8σyτ 2xy ,

2ε̇xy = γ̇xy ∝ A6σ
2
x τxy + A7σxσyτxy + A8σ

2
y τxy + 2A9τ

3
xy .

(16)

For the same four simple shear straining conditions defined
by Eqs. (1)2, (3)2, (5)2 and (7)2, one has the following
plane-stress results
(σ1, σ2, θ)

g

ss1 = (σx, σy, 0) :
4A1+(3κ1+1)A2 + 2(κ2

1 + κ1)A3+(κ3
1 +3κ2

1 )A4+4κ3
1A5=0;

(σ1, σ2, θ)
g

ss2 = (τxy , −τxy , 45o) : (
σ2

σ1
)
g

ss2= −1;
(σ1, σ2, θ)

g

ss3 = (σy, σx, 0) :
4κ3

2A1 + (3κ2
2 + κ3

2 )A2+2(κ2 + κ2
2 )A3 + (1+3κ2)A4 + 4A5 = 0;

(σ1, σ2, θ)
g

ss4 = (τxy , −τxy , −45o) : (
σ2

σ1
)
g

ss4 = −1;
(17)
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Fig. 6 Dimensions of Type A shearing test coupon and a close-up view image of an as-machined AA6111-T4 sheet sample with a thickness of
1.2mm

where κ1 = ( σ2
σ1

)
g

ss1 and κ2 = ( σ2
σ1

)
g

ss3 are principal stress
ratios given by Gotoh’s yield function in simple shear
loading cases #1 and #3 and they may be solved per a
cubic algebraic equation for the known material constants
(A1, A2, A3, A4, A5) of a given sheet metal.

Shearing Experiments and Results
on an AA6111-T4 Sheet

It is important to note that the origin of the newly
proposed shear constraint by Abedini et al. [2] was
motivated in part in their effort to incorporate shearing
test results into the calibration of an anisotropic yield
function. Here we present some shearing experiments of
our own on an AA6111-T4 sheet with two different test
coupon designs. Shearing test results from our experiments
were shown to highlight the difference between the

idealized pure shear loading conditions and deformation
states described in Section Modeling Pure Shear by Hill’s
Quadratic and Gotoh’s Quartic Anisotropic Plastic Models
and the actual loading conditions and deformation states
obtained in practice in a shearing test used for sheet metals.

Two sheet metal shearing tests using a universal
materials testingmachine

Due to their comparative simplicity, shearing tests of a
sheet metal are most commonly carried out using specially
designed test coupons loaded in tension on a universal
materials test machine [8, 12, 22, 25, 29, 30]. Two of the
shear test coupon designs without the need of removing
any surface layer of the sheet metal were considered
in this study: Type A as shown in Fig. 6 per [2, 29]
and Type B as shown in Fig. 7 per [1, 10]. The actual
dimensions of each test coupon geometry used in this study

Fig. 7 Dimensions of Type B
shearing test coupon and a
close-up view image of an
as-machined AA6111-T4 sheet
sample with a thickness of
1.2mm
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are given in mm in each figure. Each shear test coupon
was cut from an aluminum alloy sheet metal AA6111-
T4 of 1.2mm in thickness on a CNC machine using an
end mill of 0.062 inch in diameter. A digital image of a
close-up view of the shearing zone of each as-machined
AA6111-T4 sheet test coupon is shown as an insert in
each figure. The representative tensile properties of the
aluminum sheet metal have been reported elsewhere [41].
The yield stresses and plastic strain ratios from three
standard uniaxial tension tests on AA6111-T4 sheet used in
this study are (σ0, σ45, σ90) = (174.1, 173.4, 166.7) MPa
and (R0, R45, R90)=(0.93,0.41,0.66).

The shearing experiments using Type A and Type B test
coupons were carried out in the displacement control mode
on an Instron 5967 universal materials test machine with a
30 kN static load cell. A constant cross-head speed of 1.8
mm/min was used in all experiments. A pair of RD and DD
samples of Type A and Type B coupons were tested. They

consist of samples subjected to the tensile loading along the
RD and along the DD or 45-degree from the RD of the sheet
metal respectively. Each test coupon was held at both ends
by a pair of wedge grips with flat but serrated faces and
was tension loaded to final fracture while the upper cross-
head displacement and load cell readings were recorded
continuously at 100 Hz data acquisition rate. During each
shearing test, a monochrome digital CCD camera from
Point Grey Research Inc. (www.ptgrey.com) with a zoom
lens was used to image one surface of the shearing zone of
the test sample at 1 frame per second. A total of about 100
images were acquired for each test. Each image has a size of
3376-by-2704 pixels with a typical pixel resolution around
2.7 microns/pixel. Whole-field strain maps of the sheared
samples at various deformation stages up to the maximum
load level were obtained by digital image correlation (DIC)
of in-situ acquired sample images based on the Lucas-
Kanade inverse compositional algorithm [7, 28, 31]. At

Fig. 8 The load versus
displacement data from four
shearing tests on AA6111-T4
sheet: a two Type A samples
RD2A and DD2A; b two Type
B samples RD1B and DD1B.
Frame numbers of three
representative images recorded
for DD2A and DD1B samples
are also marked at their
corresponding load and
displacement levels. Images of
shear test samples DD2A and
DD1B after fracture are also
inserted here
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this particular magnification of the experiments, the natural
contrast pattern on the surface of as-received aluminum
sheet metals was used for the image-based deformation
analysis (i.e., no sprayed paint droplets or ink marks were
ever applied to the sample surfaces). A typical local DIC
analysis used a subset of 61-by-61 pixels over 5-by-5 pixel
grid spacing. The average displacement gradients were
computed over each subset to obtain its local logarithmic
strains commonly used in metal plasticity. For a few images
at the very initial stage of each test, a large subset up to twice
as big was used to reduce the noise levels in the local strain
mapping data.

Experimental Results

The measured tensile load versus the cross-head displace-
ment data for shearing tests of the two Type A samples
(RD2A and DD2A) are shown in Fig. 8(a). There is a sig-
nificant difference between the RD2A and DD2A samples,
reflecting the plastic anisotropy of the material. As shown
in Fig. 8(b), a similar difference between the RD1B and
DD1B samples of Type B was also observed in the mea-
sured tensile load versus the cross-head displacement data.
That is, the load levels of the DD samples of both Type A
and Type B at a given displacement were found to be lower
than those of the RD samples. Also shown in Fig. 8(a) and
(b) are the images of the fractured shear test samples DD2A
and DD1B. Unlike the Type A samples that failed in shear
right at the gauge zone, all Type B samples failed due to
the tensile fracture at the location far away from the initial
shearing zone (noting the applied loading direction for both
samples in Fig. 8(a) and (b) is horizontal).

Following the usual practice [2, 10, 29], one may obtain
the nominal shear stress-strain curves (τηζ vs γηζ ) for these
four shear tests. The initial portion of their shear stress-
strain curves up to shear strain γηζ = 0.24 is shown in
Fig. 9. Here the shear stress is the average shear stress
over the cross-section across the narrowest width (along the
horizontal tensile direction or η-axis) of the shearing zone
in each sample. That is, τηζ = Fη/A0 = Fη/(w0t0), where
Fη is the applied tensile force at the two ends of each shear
sample and w0 and t0 are the initial width and thickness of
the out-of-plane shearing zone cross-section. In our study
here, w0=3.568mm and 3.425mm respectively for Type A
and Type B samples and t0 = 1.2mm (so the aspect ratio
of the shearing zone cross-section is about 3). The shear
strain γηζ is the average of the local (logarithmic) shear
strains obtained by the digital image correlation over the
in-plane narrow rectangular region of the shearing zone in
each sample. The region for computing the average shear
strain is shown as a white horizontal rectangle on the image
inserts of Fig. 9 for a Type A sample DD2A and a Type
B sample DD1B. The vertical height of the region h0 is
chosen to be about 0.350-0.375 mm (so the aspect ratio of
the in-plane local rectangular gauge section is about 10).
If one assumes that the shearing zone of each sample is
under predominantly pure shear stressing loading initially
(i.e., neglecting any in-plane normal stresses ση and σζ ),
then the loading angle θ is thus approximately to be 45o

for RD samples and 0o for DD samples (see Section Two
Types of Pure Shear Loading Conditions on a Sheet Metal
for details). The initial yield stresses were obtained by a
large offset method as σs45 = 116.8 MPa and 113.1 MPa
for the two RD samples (RD2A and RD1B) and as σs0 =

Fig. 9 The nominal shear stress
τηζ versus shear strain γηζ

curves from the four shearing
tests on AA6111-T4 sheet. The
laboratory loading and
measurement coordinates ηζ are
shown in the image inserts of
two selected samples DD2A and
DD1B. A 3D schematic of the
nominal shearing gauge zone
with its width w0, height h0 and
thickness t0 is also given
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Fig. 10 The total shear strain γηζ maps obtained from a digital image correlation analysis of image frame numbers 18, 22 and 27 for the shearing
test sample DD2A. The corresponding incremental shear strain �γηζ maps obtained from a digital image correlation analysis of image pairs
18-19, 22-23 and 27-28 are also shown in the lower half of the figure

Fig. 11 The total shear strain γηζ maps obtained from a digital image correlation analysis of image frame numbers 18, 28 and 46 for the shearing
test sample DD1B. The corresponding incremental shear strain �γηζ maps obtained from a digital image correlation analysis of image pairs
18-19, 28-29 and 46-47 are also shown in the lower half of the figure
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104.8 MPa and 105.4 MPa for the two DD samples (DD2A
and DD1B).

The actual state of the in-plane surface deformation
inside the shearing gauge zone (w0-by-h0) and its surround-
ing regions of the two shearing test samples DD2A and
DD1B in terms of total and incremental shear strain maps
are shown in Figs. 10 and 11 respectively for three selective
load and deformation levels. Frame numbers of the images
at those load and displacement levels during the tests of
DD2A and DD1B samples are indicated in Fig. 8(a) and
(b). Those images approximately correspond to the aver-
age shear strains γηζ= 0.01, 0.05 and 0.1 of Fig. 9. Also
shown in both Figs. 10 and 11 are the incremental shear
strain maps for these two shearing test samples around those
three load levels. Because the images were recorded at a
frame rate of 1 frame per second in the tests, these incre-
mental shear strain maps may be regarded approximately
as the local shear strain rates of the test samples. Clearly, a
straight line cutting through the narrow shearing zone (i.e.,
the high shear strain strip) in each test sample is not parallel
to the horizontal tensile loading direction at all. The angles
between the active shearing zone in terms of the incremen-
tal shear strain maps in Figs. 10 and 11 and the horizontal

direction is about 6 − 8o for DD2A sample and 5 − 7o for
DD1B sample.

The nature of the in-plane deformation of the shearing
zone and its surrounding regions can be further illustrated
by additional maps for DD2A and DD1B samples. Maps
of the sum of the two principal strains ε1 + ε2, the angle
of the current principal shearing plane φs , and the angle of
in-plane rigid-body rotation ω due to shearing are shown
in Fig. 12 for DD2A sample at load steps corresponding to
image frames No.22 and No.27. Even at the interior center
region of the shearing zone excluding the two regions near
free edges, the average local ε1 + ε2 is found to be as high
as -0.009 and -0.014 (noting ε1 − ε2 is about 0.05 and 0.1).
The angle of the current principal shearing plane and the
horizontal direction is about 4.5o and 7o at these two load
steps. On the other hand, the rigid-body rotation due to
shearing is only about 2.1o and 4.5o (counterclockwise).

Similarly, maps of the sum of the two principal strains
ε1 + ε2, the angle of the current principal shearing plane
φs , and the angle of in-plane rigid-body rotation ω due to
shearing are shown in Fig. 13 for DD1B sample at load steps
corresponding to image frames No.28 and No.46. At the
interior center region of the shearing zone, the average local

Fig. 12 Three additional maps from the whole-field strain measurements for DD2A sample from image frame No.22 and No.27: a the sum of two
in-plane principal strains (left); b the angle in degree of the principal shearing plane deviating from the horizontal direction (middle); c the angle
in degree of the in-plane rigid-body rotation due to shearing (right)
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ε1 + ε2 is found to be smaller values of -0.005 and -0.003
(noting ε1−ε2 is again about 0.05 and 0.1). The angle of the
current principal shearing plane and the horizontal direction
is 4o and 1o at these two load steps. On the other hand, the
rigid-body rotation due to shearing is only about 3.5o and 8o

(counterclockwise).

Discussion and Conclusions

Calibrated Hill’s and Gotoh’s yield functions
for AA6111-T4 sheet

When a total of seven experimental inputs (σ0, σ45, σ90,
σb, R0, R45, R90) are provided, the material constants in
Hill’s quadratic yield function/flow potential �2Y , �2P

and Gotoh’s quartic yield function �4 with reduced aniso-
tropy are readily computed from simple algebraic rela-
tions [37]. For parameter identification on AA6111-T4
sheet in this study, the yield stress under equal biax-
ial tension σb will be replaced by the shear yield stress
under pure shear σs0 = 105.1 MPa estimated approxi-
mately from simple shear experiments using DD2A and
DD1B samples. As the uniaxial tensile yield stresses and
plastic strain ratios of AA6111-T4 sheet used in this
study are (σ0, σ45, σ90) = (174.1, 173.4, 166.7) MPa and
(R0, R45, R90)=(0.93,0.41,0.66), the material constants for
Hill’s yield function/flow potential and Gotoh’s yield func-
tion from these seven experimental inputs are subsequently
obtained as

Y1 = 1, Y2 = −1.0513, Y3 = 1.0908, Y4 = 2.9929,

P1 = 1, P2 = −0.9637, P3 = 1.2120, P4 = 2.2718,
(18)

Fig. 13 Three additional maps from the whole-field strain measurements for DD2A sample from image frame No.28 and No.46: a the sum of two
in-plane principal strains (left); b the angle in degree of the principal shearing plane deviating from the horizontal direction (middle); c the angle
in degree of the in-plane rigid-body rotation due to shearing (right)

A1 = 1, A2 = −1.9275, A3 = 2.7102, A4 = −1.8921, A5 = 1.1897,

A6 = 5.8027, A7 = −2.5785, A8 = 6.1468, A9 = 5.8085.
(19)

The positivity and convexity of these calibrated yield
functions are readily established (see [34, 36, 37]). If the
AA6111-T4 sheet material is subjected to an on-axis pure
shear in stress (σ1 = −σ2, θ = 0o), then the ratio of
corresponding principal plastic strains ε̇2/ε̇1 via Eqs. (11)1

and (13)1 in Section Principal Plastic Strain Increment Ratio
in Pure Shear Stressing would be -1.059, -1.143 and -1.040
as predicted by the calibrated Hill’s yield function �2Y ,
Hill’s flow potential�2P and Gotoh’s yield function�4. On
the other hand, if the AA6111-T4 sheet material is subjected
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to an on-axis pure shear straining (ε̇1 = −ε̇2, θ ′ = 0o), then
the ratio of corresponding principal Cauchy stresses σ2/σ1
via Eq. (15)1 and Eq. (17)1 in Section Principal Stress Ratio
in Pure Shear Straining would be -0.84, -0.71 and -0.914 as
predicted by the calibrated Hill’s yield function �2Y , Hill’s
flow potential �2P and Gotoh’s yield function �4. The
shearing test experiments described in the previous section
were carried out under a fixed tensile loading direction and
would be more closely approximated as a pure shear in
stress especially at the initial stage of the shearing tests.
The full-field strain mapping measurements of two shear
samples DD2A and DD1B as presented in the previous
section show that the resulting deformation in their shearing
zones are close to but nevertheless clearly different from
ε̇2/ε̇1 = −1 or ε̇1 + ε̇2 = 0, more consistent with the model
predictions here assuming approximately on-axis pure shear
in stress (neglecting the elastic strains as usual).

Implications of the newly proposed shear constraint

As shown by the results of both Hill’s quadratic and Gotoh’s
quartic models in Section Modeling Pure Shear by Hill’s
Quadratic and Gotoh’s Quartic Anisotropic Plastic Models,
pure shear stressing and straining are found to be indeed
identical when the shearing direction is parallel either to the
rolling or to the transverse direction of a sheet metal (i.e.,
the loading angle θ = ±45o). This is in fact true for any ortho-
tropic plasticity model when the applied Cauchy stress σσσ =
(σx, σy, τxy) = (0, 0, ±τ) or the applied plastic strain incre-
ments ε̇εε = (ε̇x, ε̇y, ε̇xy) = (0, 0, ±γ̇ /2). However, a gene-
ral pure shear stressing condition in terms of the intrinsic
variables (σ1, σ2) = (τ, −τ) and θ �= ±45o does not lead to
a pure shear straining state, see Eqs. (11)1, (11)3, (13)1 and
(13)3. Similarly, a general pure shear straining condition in
terms of the intrinsic variables (ε̇1, ε̇2) = (γ̇ /2, −γ̇ /2) and
θ ′ �= ±45o does not always generate a pure shear stressing
state, see Eqs. (15)1, (15)3, (17)1 and (17)3.

For the 45-degree and 135-degree pure shear stressing
conditions considered in Sections Two Types of Pure Shear
Loading Conditions on a Sheet Metal and Modeling Pure
Shear by Hill’s Quadratic and Gotoh’s Quartic Anisotropic

plastic models (θ =θ ′ = 0o or 90o), one has to set following
conditions on material constants (Y1, Y3) for the associated
Hill’s model, (P1, P3) for the non-associated Hill’s model,
and (A1, A2, A4, A5) for the associated Gotoh’s model
respectively to generate a pure shear straining state (ε̇ps

1 +
ε̇
ps

2 = 0) per Eqs (11)1, (11)3, (13)1 and (13)3

Y1 = Y3, P1 = P3, 2A1 − A2 = 2A5 − A4. (20)

Similarly, for the 45-degree and 135-degree pure shear
straining conditions considered in Sections Two Types
of Pure Shear Loading Conditions on a Sheet Metal and
Modeling Pure Shear by Hill’s Quadratic and Gotoh’s
Quartic Anisotropic Plastic Models, one has to set the
same conditions above on material constants for Hill’s and
Gotoh’s models to generate a pure shear stressing state
(σ ss

1 + σ ss
2 = 0) per Eqs. (15)1, (15)3, (17)1 and (17)3.

This effectively reduces the total number of independent
on-axis polynomial coefficients in Hill’s 1948 quadratic
and Gotoh’s 1977 stress functions from 3 to 2 and from 5
to 4 respectively. When the proposed shear constraint was
applied to the non-quadratic yield function YLD2000-2D
under the pure shear loading cases #1 and #3 by Abedini
et al. [2], it also reduced its total number of independent
material constants from 8 to 7.

Recall that the plastic strain ratioRb = ε̇2/ε̇1 under equal
biaxial tension σ2 = σ1 is given by these two yield functions
as [32, 33]

Rb = P2 + 2P3

2P1 + P2
, Rb = A2 + 2A3 + 3A4 + 4A5

4A1 + 3A2 + 2A3 + A4
, (21)

the imposed condition of Eq.(20)2 by the new shear
constraint would imply Rb = 1 for Hill’s quadratic yield
function as well. In fact, Abedini et al. [2] suggested that
under pure shear stressing σ1 = −σ2, a sheet metal should
undergo only pure shear straining ε̇1 = −ε̇2 as well and
vice versa for all loading angles (i.e., not limited only to 0o,
45o and 90o as considered above so far). By transforming
Hill’s quadratic flow potential function into a form in terms
of intrinsic variables, one can show that the ratio of axial
plastic strain increments ε̇2/ε̇1 is given as (under the off-
axis pure shear stressing condition of σ1 = −σ2 and 0o <

θ < 45o or 45o < θ < 90o)

ε̇2

ε̇1
= −P1 − P2 + P3 + P4 − 2(P1 − P3) cos 2θ + (P1 − P2 + P3 − P4) cos 4θ

P1 − P2 + P3 + P4 + 2(P1 − P3) cos 2θ + (P1 − P2 + P3 − P4) cos 4θ
. (22)

That is, either 2θ = 90o or the shear constraint condition
of Eq.(20)2 will be sufficient to make it to be -1 (pure
shear straining). Here the shearing strain ε̇12 due to the
off-axis loading is assumed to be negligible for simplicity.
Similarly, one obtains the following condition for Gotoh’s
yield function if ε̇1 + ε̇2 = 0 when σ1 = −σ2

cos 2θ = 0, or 2A1 −A2 +A4 − 2A5 = 0, A6 −A8 = 0. (23)

So one additional condition on the two off-axis polynomial
coefficients A6 and A8 is needed to meet the shear
constraint ε̇2/ε̇1 = −1 for the loading angles other
than 0o, 45o and 90o. It is interesting to note that such
a condition had indeed previously been assumed for a
version of Gotoh’s yield function with reduced anisotropy
[20, 35].
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A non-zero hydrostatic stress σ1 + σ2 �= 0 due to
in-plane pure shear straining and a non-zero thickness
strain increment ε̇

p

1 + ε̇
p

2 �= 0 due to in-plane pure shear
stressing can exist in plane stress (with σ3 = 0) for
an orthotropic sheet metal per both Hill’s quadratic and
Gotoh’s quartic models. That is, even when the principal
stress axes σ1σ2 and principal plastic strain increment axes
ε̇1ε̇2 in on-axis pure shear are coincided with each other
(if the shearing directions are the same in both loading
conditions), the induced principal plastic strain increment
ratio (ε̇2/ε̇1)ps and the induced principal stress ratio in
pure shear (σ2/σ1)ss are in general not equal to -1. They
are not some non-physical artifacts as claimed by Abedini
et al.[2] but are instead some unique and intrinsic features
due to the anisotropic nature of a sheet metal. Per simple
logic, the equivalence of pure shear stressing and straining
claimed by Abedini et al.[2] for a non-quadratic isotropic
plasticity model such as Hosford’s model cannot be used
to justify its validity for either quadratic or non-quadratic
anisotropic plasticity models at all. As isotropic plasticity
models are only a subset of anisotropic plasticity models,
their insistence on the equivalence of pure shear stressing
and straining conditions is not warranted for anisotropic
sheet metals in general. In other words, the proposed
shear constraint is neither a first level constraint (positivity
and convexity) nor a second level constraint (pressure-
independent plastic incompressibility, an associated or a
non-associated plastic flow) as discussed in Introduction
that one shall commonly impose on anisotropic plasticity
modeling of sheet metals. It is instead a third-level
provisional constraint of reduced anisotropy between no
anisotropy (isotropy) and full anisotropy for a given
orthotropic yield function.

Concluding remarks

When a typical set of seven experimental inputs
(σ0, σ45, σ90, σb, R0, R45, R90) are made available, the
polynomial coefficients for both Hill’s 1948 quadratic and
Gotoh’s 1977 quartic yield functions are readily deter-
mined directly from a set of algebraic equations without the
unnecessary shear constraint imposed [37]. In this study,
it is shown that the shear yield stress under on-axis pure
shear σs0 estimated approximately from a shearing experi-
ment using either Type A or Type B sample geometry may
substitute the yield stress under equal biaxial tension σb in
parameter identification of both yield functions. The shear-
ing experiments on AA6111-T4 sheet presented in this
study show that the actual loading conditions and defor-
mation states of the shearing zone in sheet metal samples
are rather complex. They may be approximated to a certain
degree as pure shear in stress (σ2/σ1 ≈ −1) but clearly
deviate from pure shear in straining (i.e., ε2/ε1 �= −1). That

is, limited by the experimental uncertainties of full-field
strain measurements, one cannot unequivocally confirm
that the ideal pure shear condition of ε2/ε1 = −1 has been
uniformly and strictly achieved inside the gauge section of
those two types of simple shear test coupons at low and
moderate shear strain levels.

In conclusion, while the so-called shear constraint
proposed by Abedini et al.[2] or some other similar
third level constraints may be imposed for a subset of
orthotropic materials or for some heuristic reasons such
as when there are insufficient experimental inputs for
fully calibrating an anisotropic yield function [37], such
a constraint is definitely not physically necessary due to
lack of supporting experimental evidence in general and is
overly restrictive in the context of modeling sheet metals
with seven experimental inputs using either Hill’s quadratic
or Gotoh’s yield quartic functions.
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Appendix

The yield functions and/or flow potentials of both associated
and non-associated Hill’s 1948 quadratic plasticity models
and the associated Gotoh’s quartic plasticity model are
briefly summarized here (for details with related formulas
for their parameter identification, see [32, 35, 37]).

Hill’s 1948 quadratic yield stress function in plane stress
is given in a compact form as

�2y(σx, σy, τxy) = Y1σ
2
x + Y2σxσy + Y3σ

2
y + Y4τ

2
xy, (24)

where Y1, Y2, Y3 and Y4 are its four material constants,
f (σσσ) (where �2y(σσσ) =f 2(σσσ)) is the equivalent yield stress
appeared in the rate-independent yield condition f (σσσ) −
σf = 0, and σf is called the yield strength of the sheet
metal.

A quadratic flow potential �2p(σσσ) is of the same
polynomial form and it is given as

�2p(σx, σy, τxy)=P1σ
2
x +P2σxσy +P3σ

2
y +P4τ

2
xy,

(25)

where P1, P2, P3 and P4 are its four material constants.
When the yield condition is met, plastic strain increments
can then be computed via the flow rule ε̇εεp=λ∂g/∂σσσ with
λ ≥ 0 as the plastic loading variable and �2p(σσσ) =g2(σσσ).
For the classical associated Hill’s quadratic model, �2p =
�2y . Otherwise, different �2y and �2p constitute the non-
associated quadratic model with a total of seven independent
material constants.
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Gotoh’s quartic yield stress function has the following
form

�4(σx, σy, τxy) = A1σ
4
x + A2σ

3
x σy + A3σ

2
x σ 2

y + A4σxσ 3
y

+ A5σ
4
y + A6σ

2
x τ 2xy + A7σxσyτ 2xy + A8σ

2
y τ 2xy + A9τ

4
xy,

(26)

where A1, A2,... and A9 are its nine material constants.
In an associated quartic model, the above yield stress
function are used to define the equivalent yield stress and
flow potential of homogeneous degree one in stress that
are used in the yield condition and flow rule respectively,
namely, �4(σσσ) = f 4(σσσ) = g4(σσσ). A simpler version of
Gotoh’s yield function with reduced anisotropy can be fully
calibrated using only a total of seven independent material
constants as well [35, 37].
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