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Abstract
Background Experimental, fully three-dimensional mechanical characterization of opaque materials with arbitrary
geometries undergoing finite deformations is generally challenging.

Objective We present a promising experimental method and processing pipeline for acquiring and processing full-field
displacements and using them toward inverse characterization using the Virtual Fields Method (VFM), a combination we
term MR-u.

Methods Silicone of varying crosslinker concentrations and geometries is used as the sample platform. Samples are
stretched cyclically to finite deformations inside a 7T MRI machine. Synchronously, a custom MRI pulse sequence encodes
the local displacement in the phase of the MR image. Numerical differentiation of phase maps yields strains.

Results We present a custom image processing scheme for this numerical differentiation of MRI phase-fields akin to
convolution kernels, as well as considerations for gradient set calibration for data fidelity.

Conclusions The VFM is used to successfully determine hyperelastic material properties, and we establish best practice
regarding virtual field selection via equalization.

Keywords Magnetic resonance · Virtual fields method · Full field · Material characterization · Elastomer

Introduction

Material characterization leveraging full-field information
is presently gaining in popularity, and pioneering work
has been done since 1989 by Grédiac, Pierron, Avril, and
Hild, among others, on the Virtual Fields Method (VFM).
The VFM is based on the principle of virtual work and
is used to characterize an object’s material properties. By
minimizing the difference between the internal and external
virtual work, the boundary value problem that combines
(1) measured loads and full-field displacements in real
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experiments and the (2) specified admissible virtual fields
is used to solve for unknown material properties [1]. To
date, there have been a wide variety of applications of the
VFM (discussed in detail in [1]). A sizeable portion of
VFM applications has been in characterization of metals
and composites in both the linear (including anisotropic
and orthotropic samples) [2–6] and non-linear (e.g. elasto-
plastic [7]) [8, 9] regimes, while some others have aimed
to characterize hyperelastic [10] and bio-materials [11–
14] undergoing finite deformations. In the vast majority
of these studies, the tests have used single-plane surface
measurements, with displacements determined using e.g.
digital image correlation [12, 15] or the grid method [16–
18]. When images are acquired in 2D, assumptions of plane
stress are typically made to approximate the additional
components of stress and strain along the third dimension,
and characterization then proceeds with the VFM.

However, there is a range of samples or materials in
which boundary conditions or geometries or both cannot
be straightforwardly designed or chosen to be 2D; the
most apparent possibly being bio- and natural materials.
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Mechanical characterization of bio-structural materials, e.g.
ligaments and tendons, is particularly difficult. Samples can
either be cut and clamped, which results in uncontrollable
strain inhomogeneity out of the plane, or left attached to
curved bones, which results in non-uniaxial deformation
during uniaxial loading [19, 20]. If in vivo applications
are the end goal, boundary conditions and load direction
have practical limitations. As such, without (1) validity
of through-thickness deformation assumptions and (2) the
ability to control the boundary conditions on our samples,
we are left with an unavoidable discrepancy between
uniaxial loading and actual deformations in the materials.
Thus, we need to acquire fully volumetric deformation
fields, moving forward from 2D plus assumptions or 3D-
DIC. Fully 3D displacements are more challenging to
acquire, usually requiring either some embedded fiducial
markers (e.g. fluorescent particles [21] or contrast agents
[22]) or enough inherent, roughly isotropic, natural contrast
[23] to perform digital volume correlation (DVC) [24] of the
material during the deformation process.

For anisotropic, structural tissues, using natural con-
trast is challenging due to small optical penetration depths
with respect to the scales of native tissues, while large,
anisotropic repeat-unit structures frustrate the applicability
of volume correlation.While some studies have successfully
leveraged local contrast for volumetric deformation [25], the
translation of optical images of natural, anisotropic materi-
als to mechanical deformation is not always straightforward.

Due to the stated variety of challenges, we turn
our attention to an alternate, non-optical method of
determining deformation fields in materials: displacement-
encoded magnetic resonance imaging (MRI). Displacement
encoding MRI experiments yield complex valued 2-D or
3-D maps of an object, in which a voxel’s phase (modulo
2π ) is proportional to the displacement experienced by
protons in that voxel, along a given direction. The measured
displacement will have occurred during an interval between
an encoding and a decoding segment of a pulsed field
gradient (PFG) displacement encodingMRI pulse sequence,
in which the interval’s duration is typically on the order
a second or less. The original displacement encoding
sequence is the double-PFG spin echo sequence [26],
which was used for the measurement of fluid diffusion
coefficients.

Over time a variety of other displacement encoding MRI
techniques have come into use toward the shared goal of
determining deformations in materials. These largely fall
into two classes, the encoding of displacements into the
phase of nuclear spins contained within a voxel, or by
using MRI sequences to tag an object with a regular pattern
then measuring the pattern’s deformation as the tagged
sample is deformed. As some examples of the former,
displacement encoding with spin echoes (DENSE) has been

used for the measurement of flow and for the measurement
of (cardiac) displacements [27]. Further refinements of
DENSE using fast spin echoes (FSE) or balanced gradient
sequences (also known as fast imaging with steady state
free precession, or FISP) for imaging have been employed
by Neu et al. for determining strain in biological materials
such as articular cartilage [28] and coupled with finite
element analysis [29] and other discrete methods [30]
for material property estimation. In the latter category,
harmonic phase (HARP) magnetic resonance imaging using
tagged sinusoidal gradients have been used to spatially
tag material and estimate strain fields, for example as
developed for cardiac tissue in 2D [31] and extended to
3D [32], and in other applications such as deformations in
the brain undergoing rotational acceleration [33] (reviewed
more broadly in [34]).

In this particular study, we utilize a recently developed
custom pulse sequence – conceptually related to DENSE
– employing a combination of stimulated echoes and spin
echoes to encode and read out displacement fields; the
sequence was optimized for robustness and efficiency [35].
We present here the image processing pipeline from com-
plex MR data, through finite strain, and finally culminating
in characterization of isotropic elastomeric samples using
the VFM in full 3D, which we define herein as MR-u,
in a nod to small-strain magnetic resonance elastogra-
phy (MRE) [36]. We show the pipeline as a flowchart in
Fig. 1. Additionally, a kernel-like differentiation filter is
derived and presented for complex-valued MR data, anal-
ogous to DIC differentiation filters, that divides neighbor
pairs of voxels to acquire the local phase gradient with-
out need of implementing unwrapping algorithms. Finally,
error analysis relating the technique to the resulting output
material properties is pursued and discussed, with rec-
ommendations on pulse sequence modifications and data
filtration for reducing MR-specific errors and optimizing
resulting parameter estimates from the VFM.

MR-u Theory

ContinuumMechanics

In this technique, we start by considering an arbitrary solid
with volume �0 in its undeformed configuration, as in
Fig. 2. The volume �0 has some specified traction and
displacement boundary conditions which act on the object’s
surface ∂�0. The volume �0 is assumed to undergo finite
deformation to an experimentally observed state �i , in
which an internal point X in the reference state �0 is
mapped to a new point x in�i via the displacement gradient
tensor on the reference configuration, F(X),

F(X) = ∇Xx = ∇Xu(X) + I, (1)
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Fig. 1 Flowchart for magnetic resonance characterization. First, a
sample is stretched and imaged using nuclear magnetic resonance
with the goal of acquiring 3D strain fields mapped to the reference
configuration. Then, selection of a suitable material model and virtual
fields allows for construction of a cost function φ based on the
principle of virtual work. This function is minimized in order to find
the best estimate for material properties assuming the chosen material
model

where the displacement vector, u, of a point is given by the
difference in its current and reference positions, u = x −X.
The object is acted upon in general by tractions p(X ∈
∂�0), but in practice, we measure the total load P acting on
a subsurface S ∈ ∂�0 of the object with a load cell,

P =
∫

S

p(X)dS. (2)

The deformations in the object are treated as finite and are
assumed to be fully elastic, and as such we can use the
Lagrangian strain tensor E(X) to describe the deformation,

E(X) = 1

2

(
F(X)ᵀF(X) − I

)
. (3)

Fig. 2 Continuum mechanics primer. An object with material
properties ξ , initially with volume �0, is subject to applied tractions
p and displacement (Dirichlet) boundary conditions at its surface
∂�0, which cause a displacement u of arbitrary point X to x. This
deformation is described by the deformation gradient tensor F(X)

In the experimental method presented in this paper, we
acquire a phase quantity proportional to the displacement
fields u(X), modulo 2π , using nuclear magnetic resonance
(NMR), and apply a custom numerical image processing
technique to differentiate and determine the entire deforma-
tion gradient tensor F(X) in 3D samples. Furthermore, we
measure the force P acting on the stretched sample with a
load cell. In general, our goal is to determine the material
properties.

DeterminingMaterial Parameters via the Virtual
Fields Method

Our experimental apparatus measures both the spatially
varying deformation fields inside of – and the loads applied
to – our 3D material samples. The materials used in
this study are silicone rubbers and as such are assumed
to be homogeneous, isotropic, and hyperelastic, though
the method can be extended to anisotropic hyperelastic
materials. The goal is to inversely determine a vector of a
priori unknown material properties defined within a chosen
constitutive model relating the test sample’s kinematics to
its kinetics. In general, we can write these mechanical
properties as a vector, ξ . The strain energy functions and
material parameter vectors used in this study are presented
in Table 1; in this study we considered functions of the
volume-corrected first and second invariants Ī1 and Ī2 of the
left Cauchy-Green tensor, B = FFᵀ and the Jacobian of the
deformation gradient tensor, J = det(F).

Then to solve for the set of material properties ξ , given
our choice of constitutive model, we can harness the VFM,
derived from the principle of virtual work. The principle of
virtual work is essentially the weak form of the equilibrium
equation, and thus, it should hold for any kinematically
admissible test function, or “virtual field” u∗(X), that
satisfies the experimental boundary conditions. If we have
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Table 1 Examples of
hyperelastic models using a
linear bulk term, with their
associated material parameters
and strain energy density
functions

Model Material parameter vector, ξ Strain energy density function, U

Neo-Hookean [μ, K] μ
2

(
Ī1 − 3

) + K(J − 1)

Eight-chain [37] [μ, λm, K] μ
5∑

i=1

ai

λi−1
m

(Ī i
1 − 3i ) + K(J − 1)

Mooney-Rivlin [C10, C01, K] C10
(
Ī1 − 3

) + C01
(
Ī2 − 3

) + K(J − 1)

Generalized polynomial [Cij , K] ∑
i

∑
j

Cij

(
Ī1 − 3

)i (
Ī2 − 3

)j + K(J − 1)

properly measured our deformation fields and loads, the
equation will be balanced for the correct values for material
properties we seek to find.

For both experimental convenience and validation of
elastic deformation, our full-field displacement field mea-
surements (and virtual field constructions) are performed
as the sample is in its reference configuration, �0. We
thus choose to cast the principle of virtual work (assum-
ing a hyperelastic material in finite deformations and static
equilibrium) in the following form:

−
∫

�0

� : (∇Xu∗)dV +
∫

∂�0

(� · n) · u∗dS = 0, (4)

where n is the surface normal to ∂�0. The first Piola-
Kirchoff stress is defined as the tensor derivative of
the strain energy density function with respect to the
deformation gradient tensor, i.e.

�(ξ ,F) = ∂U(ξ ,F)

∂F
(5)

In general, it may be easier to perform measurements in
either the reference or deformed configuration, which would
determine the choice of stress quantity and its virtual strain-
like work conjugate that should be used; this is a user
preference and need only be consistent [1].

In practice, equation (4) is constructed as a cost function
φ which is minimized with respect to ξ to determine the best
estimate of the material properties, ξ∗,

ξ∗ = argmin
ξ

⎧⎨
⎩φ ≡

N∑
i=1

nV F∑
j=1

(
−

∫
�0

�(i) : (∇Xu∗(j))dV

+
∫

∂�0

(�(i) · n) · u∗(j)dS

)2
}

(6)

where the cost function φ is a summation of the square of
the internal and external virtual energy mismatch over all
virtual fields nV F and all experimental steps N . The min-
imum value of φ that best satisfies the principle of virtual
work is henceforth denoted as φ∗. Similarly to classical
mechanics problems based on the principle of minimum
potential energy which aim to choose the correct analytical
form for the deformation field before solving for the energy-
minimizing field amplitudes, the virtual fields method
assumes an analytical form for the constitutive law and

solves for the energy-minimizing material constants. How-
ever, the virtual fields in these two cases serve distinctly
different purposes; in the former, the virtual deformation
field is chosen to be a best guess for the true displacement
field, while for the VFM, the virtual fields must adhere
to boundary conditions but may be considerably differ-
ent from the true deformation field. These virtual fields
are, importantly, test functions which can either be user-
defined [10] or constructed in a procedural or optimized
way [38, 39] to best identify material properties. In gen-
eral, a variety of virtual fields is beneficial for parameter
confidence [1], though some considerations of normalizing
both (a) the virtual fields nV F with respect to each other
and (b) the energy mismatch magnitude to equally weight
each deformed configuration N should be taken; both are
addressed in the discussion.

Experimental Procedure

Loading Chamber

Briefly, the loading chamber consists of a captive linear
actuator (L5918S2008-T10X2-A50; Nanotec Electronic
GmbH & Co. KG, Germany) with displacement encoder in
series with a load cell (LCM300; Futek Advanced Sensor
Technology Inc., Irvine, CA, USA), polyetherimide pull-
rod (Ultem, 0.5” OD; McMaster-Carr), and custom sample
chamber. During data acquisition the sample chamber is
positioned at the center of the 7T MRI apparatus and
imaging gradient set (Agilent Technologies, Santa Clara,
CA, USA), as shown schematically in Fig. 3. MR signals
are excited and acquired with a 300MHz Millipede RF-coil
surrounding the sample chamber (not shown). The stepped
linear actuator can provide forces of up to 800 N at speeds
up to 25 mm/s, with a minimum resolution of 50 μm/step.
For the set of experiments reported here, due to low load
magnitudes compared to the load cell precision in our setup,
the loads at equivalent global deformation states were also
measured externally and quasistatically, using an ADMET
materials testing system platform (ADMET, Inc., Norwood,
MA, USA) equipped with a 25 N load cell. Displacement-
controlled input profiles were programmed in Matlab (The
Mathworks, Natick, MA, USA) and communicated via
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Fig. 3 Experimental setup schematic. A captive linear actuator prescribes a periodic, constant-amplitude, encoder-verified displacement of one
edge of a sample, synchronous with a customNMR pulse sequence which acquires slices of the entire full-field 3D displacement between reference
states. Generally, a load cell measures the applied force on the sample, which is balanced by a force-return G-10 tube and custom polyetherimide
sample chamber

DAQ to the linear actuator with a motor controller (C5-
E-1-09; Nanotec). The custom sample chamber consists of
a polyetherimide (Ultem, 1.5” OD; McMaster-Carr) outer
housing that mounts directly to a glass-fiber-reinforced
epoxy tube (G-10 grade, 1-1/8” OD; McMaster-Carr). The
opposite end of the G-10 tube is rigidly clamped to the
aluminum T-slotted 80-20 structural frame, such that force
return for the induced load during displacement is carried
through the G-10 tube and symmetrically balanced by the
frame. During testing, one side of the sample is rigidly
gripped at the far chamber edge, while the other side is
gripped on the side controlled by the actuator. Axial force
is carried via the rigid polyetherimide pull-rod, which is
ensured to be torsion-free by addition in series of a custom
frame-mounted linear slide with thrust bearings. The pull-
rod is kept aligned during motion by custom uniaxial poly-
tetrafluoroethylene (PTFE, 1” OD; McMaster) bearings in
the G-10 tube. During testing, stretching of the sample and
the MR pulse sequence are synchronized using TTL pulses.

Sample Fabrication

Silicone samples (Dragon Skin; Smooth-On Inc., Macungie,
PA, USA) were created by manually stirring two liquid
precursors, slowly degassing the mixture in a vacuum
chamber, carefully pouring it into custom laser-cut Delrin
molds, and curing it at room temperature. The silicone
samples were affixed to laser-cut Delrin platens via quick-
drying adhesive (Loctite Plastics Bonder; Henkel, Milano,
Italy) which were in turn glued to 1/4-20 nylon socket head

cap screws (McMaster-Carr, Atlanta, GA, USA), and placed
in the loading chamber. Standard 3D gradient echo images
of the sample were acquired at high resolution (0.2 mm), to
verify sample positioning in the MRI apparatus and to aid
in masking during image processing.

Magnetic Resonance

Traditional digital image or volume correlation yields dis-
placement fields by a posteriori correlation of image con-
trast patterns, via computerized image processing: one
extracts displacement fields relating the contrast pattern of a
stretched state to that of a reference state, essentially compa-
ring a stretched map of features with the un-stretched refe-
rence map (Fig. 4a). By contrast, with displacement enco-
ding MRI, which like all MRI imaging yields complex
valued image data, one produces one 3D-MRI image of
a sample’s reference state in which the difference of dis-
placements associated with the two sample conformations,
stretched and reference, is encoded directly into the phase
of the complex reference image (Fig. 4b). We employ the
APGSTEi [35] imaging sequence to accomplish this. The
sequence is an imaging variant of the non-imaging APG-
STE sequence described in [40], assembling a full 3D
image from a stack of contiguously acquired 2D slices.
The sought-after information is found in the phase of each
voxel which, modulo 2π , is proportional to the distance that
protons in a voxel have moved as the sample was taken
from the stretched configuration, where position is encoded,
to the reference configuration where position is decoded.
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Fig. 4 Comparison of digital correlation and APGSTEi. (a) In
digital image/volume correlation, two deformation states are imaged
and compared to get local displacement, commonly by maximizing
a cross-correlation function of subsets in Fourier space. (b)
APGSTEi produces one complex-valued (3D) image of the reference
configuration in which the displacements connecting the sample’s
deformed configuration to the reference configuration are directly
encoded in the phase of the image; each displacement component
corresponds to one applied gradient direction and acquisition.
Displacement encoding is performed using encoding and decoding
pulsed field gradients shown in yellow

This phase encode of displacements – the difference of
proton positions in the stretched and reference states – is
accomplished with equal amplitude opposite polarity pairs
of position encoding and decoding of gradient pulses, shown
in yellow on the gradient (G-)line of Fig. 4.

The phase difference between reference and deformed
configurations is locally proportional to our displacement
field u modulo 2π ,

θ(X) = γH teGu(X) = u(X)

�
, (7)

where the vector field θ is the angle of the complex vector
field output from the MR, Z, given by

θ(X) = angle(Z(X)) = arctan

[
Im(Z(X))

Re(Z(X))

]
, (8)

and γH is the gyromagnetic ratio, te is the effective encoding
duration of the pairs of encoding and decoding gradient
pulses, G is the respective magnetic field gradient, and the
product � combines these parameters together in terms of
a user-adjustable phase-encoding wavelength in the three
orthogonal Cartesian directions. Procedurally, displacement
encoding pulsed field gradients are applied in separate
experiments for each corresponding phase field component.
Thus, each full data set is comprised of three acquisitions,
one for each Cartesian direction.

Loading and Imaging Procedure

Samples were stretched, encoded with pulsed field gradi-
ents in the deformed configuration, and unencoded after
unloading to the reference configuration following the pulse
sequence (described in greater detail in [35]) and calibration
procedure described in the appendix. The resulting phase
information stored in the complex MR reconstruction rep-
resents the wrapped vector components of the change in
position, or displacement. As the range of the arctan func-
tion, and thus our phase angles, is restricted, the displace-
ment field if not unwrapped contains sharp, discontinuous
boundaries which produce significant spurious strain peaks.
The user may ameliorate these false peaks via two meth-
ods: adjusting �k and choosing an numerical differentiation
scheme.

First, while the encoding length �k can be chosen by
the user, an overly short �k , given thermal and systematic
error effects, can introduce or accentuate these phase
unwrapping artifacts. Some consideration of choice of �k

should therefore be taken for minimizing phase unwrapping
artifacts; a good rule of thumb is to set the encoding length
to approximately twice the voxel size, and increase it if
the phase wraps appear unclear during larger prescribed
displacements. In this study, the encoding length �k in
each direction was chosen to be 1 mm, sufficiently long
to minimize phase gradient error for all load steps. Voxel
sizes were chosen to be 0.43×0.5×0.5mm, corresponding
to 128×32×32 voxel images.

Second, treatment of phase wrapping artifacts is an
active research area, with recent 3D unwrapping algorithms
employing different methods for determining phase reli-
ability [41], treatment of noise [42], and other potential
continuity pitfalls. While advances in three-dimensional
phase unwrapping continue to be made, in this study we
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instead employ a useful numerical phase gradient oper-
ation using complex division described in the following
section, inspired by convolution-based image differentia-
tion techniques to directly determine phase (and therefore
displacement) gradients.

Numerical differentiation for strain calculation

Numerical differentiation for strain calculation in full-field
and/or image-based techniques typically uses one of two
methods – an analytical fit to or mesh construction for the
displacement field and subsequent direct differentiation of
displacement to get strain, or a numerical approach in which
a differentiation operator filter is passed over (convolved
with) the displacement field [43]. We choose to follow
the convolution-like numerical approach, but in a neces-
sarily modified way for our complex magnetic resonance
output (Fig. 5).

Rather than unwrap and subsequently differentiate the
phase field θ , a combined complex division operation on the
complex MR output Z was utilized to the same effect, as
shown in Fig. 5(d). This complex division + differentiation
operation is somewhat akin to convolution; from here on we
refer to it as divolution, and we describe it in more detail in
Appendix A.

Rigid motion calibration of the MR

MRI imaging and displacement-encoding are accomplished
via pulsed field gradients produced by the imaging gradient
set of the MRI apparatus. The set is comprised of three
gradient coils – one for each Cartesian direction – which
are designed by the manufacturer to produce approximately
uniform pulsed field gradients when energized with a
current pulse. Deviations form uniformity in the gradient
field lead to spatial distortions of the reconstructed image,
and to systematic errors in the phase maps produced by
displacements. Similar distortions and errors have been
identified and corrected in earlier, related work on phase
contrast MRI employed for velocity imaging [44].

We need to correct for systematic errors in measurements
of geometry and displacements for fidelity of F(X), and in
turn, our material properties ξ∗. Material volumes undergoing
large displacements acquire both the desired phase shifts that
are due to encoding and unencoding at different positions, as
well as an additional small error phase shift due to the very
slight non-uniformity of the gradient strength within the
MRI-active region of the MR imaging machine. The error
phase associated with non-uniform gradients translates into
false displacement and strain signatures, which are functions
of displacement amplitude and the position of the sample

Fig. 5 Processing pipeline from complex MR output to 3D strain tensor field. (a) The complex MR vector field output, Z, is acquired for each
Cartesian direction. Scale bar 5 mm. (b) The magnitude and phase of Z represent magnetic signal and, from our pulse sequence, displacement,
respectively. (c) A mask is created from the magnitude of Z while (d) the phase image is numerically differentiated in complex space by a
convolution-like operation. (e) Lagrangian strains are composed from the displacement gradients
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within the MRI apparatus. Both of these quantities are known,
and the systematic error phase can be calibrated out as des-
cribed below, using the known position of the sample and data
acquired in separate calibration data. As a first-order appro-
ximation, we can divide the spatial systematic error contribu-
tions into (1) a real-space dilation, essentially due to a scalar
calibration factor relating the nominal gradient strength to a
‘true mean gradient’ strength, and (2) a phase accumulation
due to gradient non-uniformity. To correct for these two
specific error sources, two calibration samples were tested.

The effect of spatial dilation was characterized as a function
of sample position in the magnet using an additively manu-
factured, vertically stacked set of four polymer trays (resem-
bling miniature ice-trays) and containing 32 cubic wells
each, in a regular 4×8 array. Each individual well was
sized 3×3×3 mm, with 2 mm spacing between adjacent
wells. Silicone was cast into these wells and subsequently
degassed, and trays were stacked vertically on top of each
other to form a 3D MR calibration grid sample comprised
of equal sized and equidistant silicone cubes on a Cartesian
grid. The regular geometry permitted the quantification of
local warping effects in our spatial reconstruction.

A second calibration experiment allowed us to quantify
the spatial variation of applied pulsed field gradients. To
probe this we first manufactured a rectangular prism sample
by pouring silicone into an additively manufactured rect-
angular box with inner well dimensions 38 mm×18 mm×
17.5 mm. The silicone-filled box was placed into the sam-
ple chamber shown in Fig. 3 but attached only to the moving
sled for rigid translation experiments. For calibration the
sample was translated by controlled amounts. Full phase
fields θ(X, w) were acquired for two different rigid trans-
lation amplitudes w inside the large silicone sample, and
processed via the procedure defined in Fig. 5. We found that
the measured displacement gradient fields, owing purely
to slight gradient coil non-linearity, were both increasingly
non-zero toward the periphery of the coil and directly pro-
portional to the displacement amplitude (discussed in more
detail in Appendix B). Higher-order corrections were then
determined functionally via polynomial surface fits, taking
into account winding symmetry of the coil for inclusion of
odd or even terms, and applied directly as a correction to all
measured deformation gradient fields.

Results and Discussion

Deformation Fields

Four samples were tested; the details of each sample
are listed in Table 2. Three stiffness grades of silicone
were used, with company-specified nominal durometer
ratings of 2A, 10A, and 20A. Samples were prepared
according to manufacturer recommendations at the standard
1:1 two-component mixture ratio in all cases prior to
degassing and casting. Two distinct geometries were used:
a rectangular prism of approximately 40×8×7.5 mm3

(henceforth called “I-block”), and a slightly S-shaped
geometry of constant cross-section (“S-block see”; [35])
of similar dimensions. Each of these samples was glued
with cyanoacrylate to platens and stretched longitudinally,
as schematically depicted in Fig. 6. Deformation fields
are acquired with the procedure described in Fig. 5, at a
resolution of χ res = [0.4375, 0.5, 0.5] mm. Thus, with a
sample of approximate dimensions 40×8×7.5 mm, there
are approximately 22,000 volumetric data points per load
level, each containing the full deformation gradient tensor
F(X). This resolution has an associated temporal cost of
approximately 12 minutes per displacement component (as
the material is cycled once every 3 s), for a total of
approximately 45 minutes per load level. The normal and
shear components of the full strain tensor for sample ‘10A
I-block 1’ stretched to 4.5 mm are shown in Fig. 6(b)
and (c), respectively. As expected, the majority of the
I-block exhibits a uniaxial deformation state, while in-
plane shear dominates near the glued edges of the sample.
Furthermore, the E23 component corresponding to twist in
the sample is low, suggesting good sample alignment during
loading.

Virtual Fields

Selection of virtual fields

As discussed in Section “Determining Material Parameters
via the Virtual Fields Method”, the VFM harnesses the
principle of virtual work, or the weak form of the balance
of linear momentum, to inversely determine material

Table 2 Experimental sample details for silicone experiments

Sample # Material Approximate dimensions (l × w × h), [mm] Name # Load levels

1 2A-grade silicone rectangular prism (39×8×7.5) 2A I-block N = 5

2 10A-grade silicone rectangular prism (41.5×8×7.5) 10A I-block 1 N = 9

3 10A-grade silicone rectangular prism (39×8×7.5) 10A I-block 2 N = 3

4 20A-grade silicone ‘S’-shaped prism (39.5×8×6.5) 20A S-block N = 6
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Fig. 6 Representative 3D
deformation field for a stretched
I-block. (a) Silicone I-blocks
(straight, rectangular prisms) are
glued to platens, stretched via an
applied load P , and imaged,
resulting in 3D strain fields. (b)
Normal strains exhibit expected
uniaxial-type behavior of
longitudinal extension and equal
transverse contraction, while (c)
shear strains concentrate at
edges in the case of E12 and E13
and are small for the twist E23
component. (d) Admissible user-
defined virtual fields can then be
chosen in accordance with the
strain boundary conditions

properties via minimization of a virtual-energy-mismatch-
based cost function, φ, where

φ ≡
N∑

i=1

nV F∑
j=1

(∫
�0

�(i) : (∇Xu∗(j))dV

−P · u
∗(j)

1 (X1 = L)
)2

. (9)

In the internal virtual work (first) term, the first Piola-
Kirchoff stress �(X) = f (F(X), ξ) is a function of
the MR-derived deformation gradient tensor and material
properties for a chosen material model, u∗(j)(X) is the
j -th selected virtual field. The external virtual work (second)
term is defined by the product of the actual load applied to
the sample, P , and the virtual displacement at the moving
end of the sample. Thus, the experimentally measured full-
field data plus guesses for constitutive parameters replace
the stress term of the cost function, while the quantities
with which they are contracted are the test functions, or

virtual fields, that must only obey the boundary conditions
of the problem. While any non-trivial admissible field
satisfies minimization of the cost function for the true
material parameters, virtual fields that probe the material’s
response to various kinds of deformation, such as those seen
in Fig. 6(d), provide best parameter confidence. Another
option, provided the data are sufficiently trustworthy, is
to use the measured deformation field directly as the,
or a, virtual field. Both cases – using (a) the three
simple analytical fields and (b) the experimentally measured
deformation field – were considered in this study as
potential options and compared.

Equalizing virtual fields and weighting cost function

The cost function φ is a double summation, ranging on
(a) the total number of virtual fields included in analysis,
nV F , and (b) the number of included global load levels
N . A potential side effect of summing over N and nV F is
that individual noisy terms, or terms scaled poorly to one

915Exp Mech (2020) 60:907–924



another, may dominate the cost function landscape. As such,
we correct for the relative energy scaling disparity for these
two summations by the following method. First, we correct,
or equalize, the approximate magnitudes of the l2-norms of
the virtual field gradients,

∇û
∗(j) = ∇u∗(j)

mean
(‖∇u∗(j)(X)‖) ,

where mean
(
‖∇u∗(j)(X)‖

)

= 1

V�0

∑
dV�0

‖∇u∗(j)(X)‖. (10)

The effect of virtual field equalization can be pronounced on
cost function space, as described in detail in the following
section with a simulation of a rectangular prism “I-block”,
as shown in Fig. 7(a) and (b). In this figure, Fig. 7(a) shows
the cost function space for the set of user-defined fields
∇u∗ from Fig. 6(d)s constructed with a 10% maximum
displacement gradient in the volume�0. In the cost function
contours of Fig. 7(b), the virtual fields ∇û

∗ have been
equalized. While the VFM-determined material properties
converge in both cases to the input simulation values of
[μ, K] = [130 kPa, 10 MPa], the cost function space
changes drastically, with the global minimum definition
improving markedly.

Furthermore, some parameters may be active in different
regimes of stretch, for example a small-strain response ver-
sus large-strain locking stretch-type behavior. To ameliorate
this effect, we can correct the cost function by an energy
quantity that we can choose to either equally weight all data
points or scale with increasing energy values. In practice,
a useful quantity is the actual external work applied to the
sample, which can be found as the dot product of the applied
load and edge displacement (assuming one side fixed as in
our experiments). We then choose either to normalize our
cost function by (a) the external work done at the sample’s
respective step or (b) the maximum external work done on

the sample during an entire experiment. The normalized cost
function can be written as

φ̂ =
N∑

i=1

nV F∑
j=1

⎛
⎝
∫
�0

	(i) : (∇Xû
∗(j)

)dV − P · û
∗(j)

1 (X1 = L)

EW

⎞
⎠

2

,

(11)

where the external work EW can be defined as
either max(EW) = max [Pu1(X1 = L)] or EWi =
[Pu1(X1 = L)]i . Figure 7(c) highlights the improvement
on convergence to the minimum value for the second order
term due to a higher relative weight on larger strain data.
While both data normalization cases converged to global
minima at the prescribed ξ , the relative energy mismatch is
much higher for the dominating large values of stretch.

The choice of equalization and normalization is best
left to the user, but all cases were considered in
general and are discussed further in Section “Effects of
near-incompressibility of experimental samples”.

Material Property Identification and Challenges

To identify the best estimate of material properties, we must
minimize the (if desired, normalized) cost function, φ̂∗ =
min

(
φ̂
)

of equation (11). The minimization procedure

was performed with a reflective-boundary modification of
the simplex, or Nelder-Mead algorithm [45], which was
found to converge well for these cost function spaces, but
in general, the minimization algorithm may be chosen by
the user. As a baseline metric, we compare least-squares
error values within a certain threshold from the minimum
to estimate the deleterious effect of noise and subsequent
potential benefit of data filtering. Other error quantification
methods exist for VFM with DIC (e.g. the coefficients of
variation approach in [1]), but we choose to look directly
at the cost function space, in a manner similar to the
sensitivity study performed by Pierron et al. [5], as this
method illustrates the information of interest.

Fig. 7 Comparison of φ-space for virtual fields with and without equalization. (a) Least-squares error (φ-)space can be dominated by choices of
individual virtual fields without a suitable normalization scheme, which can manifest in complex topology. (b) By equalizing chosen virtual fields
procedurally, φ-space definition improves. (c) Higher order term confidence is additionally affected by the data normalization procedure, in which
the cost function can be corrected either proportionally to the global energy state per step, or the maximum global energy state
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Noise and filtering effects

In Section “Rigid motion calibration of the MR” we
corrected for residual non-uniformity of the gradient fields
produced by the MRI equipment, a systematic correction for
distortions and errors attributable to the non-ideal nature of
the MRI apparatus; it is the same for all our experiments.
We next turn our attention to two other sources of error
which may be different from one experiment to the next,
thermal noise and small amplitude and phase oscillations
in the complex MRI image; the latter are essentially due to
noise spikes occurring during the MRI data acquisitions. To
investigate the expected effects of untreated noise, as well as
the effect of data filtering on both clean and noisy datasets,
we constructed two simulation cases using approximately
the same mesh resolution as our raw data volumes from the
MRI. Two distinct cases were considered – the “I-block”
geometry (Fig. 8, right column), consisting of a rectangular
prism of dimensions 40 × 7 × 3 mm and a “Z-block”
geometry (Fig. 8, left column), with length 40 mm and edge
cross-section 8 × 6 mm, and a 12 mm central segment of
cross-section 12 × 6 mm (see insets, Fig. 8(a)). Both cases
were taken as Neo-Hookean with shear modulus μ = 130
kPa and bulk modulusK = 10MPa (shown as a green circle
on the cost-function space), and meshed at 0.5 mm isotropic
voxel size. Only the small X2 − X3 faces were fixed in
all displacement components, and the face corresponding to
the experimental moving sled was displaced to five different
distances, w = 0.5, 1, 2, 3, 4.5 mm. For cases without
filtering or noise (Fig. 8(a)), the deformation gradient tensor
F(X), the load P , and the displacement step were then put
through the post-processing virtual fields method pipeline
for material characterization.

Addition of synthetic Gaussian and sinusoidal noise (Fig.
8(b)), respectively, was achieved by direct addition to the
components of the deformation gradient tensor,

F̃
gauss
ij (X) = Fij (X) + 0.02N(X),

F̃ sine
ij (X) = Fij (X) + 0.02 sin

(
2πX1

χ res
1

+ π

4

)
, (12)

where N(X) is a random, spatially varying normal distri-
bution and χ res

1 is the pixel resolution in the longitudinal
direction. Pristine and noisy simulation cases were then
treated with a k-space Gaussian filter, corresponding to an
isotropic real-space kernel size of 0, 1, 2, 4, or 8 voxels.
As a metric to compare the relative confidence in the min-
imum least-squares estimate for material parameters, ξ =
[μ, K], based on the applied load and deformation gradi-
ent tensor put through the VFM with the three analytical
user-defined fields, we plot contours of a 0.5 dB threshold
from the minimum value of φ̂ (contours, Fig. 8 all panels).
In the case of pristine data (Fig. 8(a)), adding a blurring

Fig. 8 Modulus estimates as a function of filter size and noise type. (a)
In the case of two finite element simulation end-to-end stretch cases
without noise (longitudinal normal strain field inset, scale 5mm), shear
and bulk modulus estimates are increased by applying Gaussian filters
of increasing size. The prescribed Neo-Hookean parameters of [μ, K]
= [130 kPa, 10 MPa] are denoted by the green circles. Contours are
constant ratios of log(φ̂/φ̂∗) = 0.5 and their sizes signify relative
flatness of the space. (b) In the case of spatially sinusoidal fluctuations
and randomly-distributed Gaussian error on the components of the
deformation gradient tensor, modest filtering has a benefit on both
φ̂-space and best fits

filter generally increases the apparent stiffness of the mate-
rial, which is attributable to reduction of high-frequency,
large strain values near boundaries. Loads are unaffected by
filters on the deformation gradient, so the internal virtual
work term in turn converges to stiffer mechanical properties
to balance the blurring-agnostic external virtual work term.
Similarly, the confidence in material parameters, roughly
inversely proportional to the size of the contour, correspond-
ingly decreases as we increase our filter size. Upon adding
untreated sinusoidal noise to the two simulation data cases
(Fig. 8b, top row), the material property estimates become
considerably less precise and less accurate, particularly in
the estimate of the bulk modulus. As we increase the fil-
ter size to above the frequency of the sinusoid (specifically,
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twice the pixel size, or 2χ res
1 ), the systematic error is treated

and material property estimates converge to the no error
case. In contrast, Gaussian noise impacts precision more
variably, due largely to the range of possible energy con-
tribution from the noise itself. Twenty distinct Gaussian
noise distributions were tested. Notably, the accuracy in the
shear modulus without filtering and apparent stiffening with
smoothing filter size generally follows the same trend as
the sinusoidal and no-noise cases. However, the bulk mod-
ulus estimate, just as in the sinusoidal error case, became
both considerably less precise and less accurate than the
shear estimate upon Gaussian noise addition. This can be
attributed to (1) noise scaling with the cubic product of
stretches for J (and hence K) vs. the quadratic scaling of
Ī1 (relevant to finding μ) and (2) the larger relative noise
contribution to the magnitudes of J (X) compared to Ī1(X),
as shear strains in the prescribed deformation states far
exceeded volumetric strains. In general, we conclude that
light filtering is acceptable for perhaps very noise-sensitive
parameters, but not necessary or even beneficial in all cases.

Effects of near-incompressibility of experimental samples

While silicone is a suitable material for characterization
using MRI due to its intrinsic T1 signal, it is also known
to be near-incompressible; methods for characterization of
rubber frequently use the assumption of incompressibility
and assume a large bulk modulus, e.g. 105 MPa [46].
To verify that this is a suitable assumption, we can
manipulate the deformation gradient tensor F(X) to get the
principal stretches and the volumetric expansion. We start
by decomposing the gradient set- and baseline-corrected
F(X) uniquely into rotation and stretch operations via
the right polar decomposition, and proceed to get the
eigenvalues of the stretch portion of F, which are three
principal stretches λi(X). While the sample is not exactly
in uniaxial tension, particularly near the grips, the middle,
unbounded portion can be approximated as uniaxial tension
to serve as a useful analytical comparison.

Figure 9 shows a composite of full-field data, specifi-
cally, violin plots of stretch values at >13,000 non-edge
points in the middle 50% of an I-block sample, Ā0, in
the more conventional stress-stretch form. In Fig. 9(a), the
average nominal stress, determined from the applied load
divided by the average MRI-determined cross-section over
the sample mid-section, is plotted against the longitudinal
stretch. Each longitudinal stretch group represents the his-
togram distribution of the longitudinal stretch over all points
in the included mid-section. Figure 9(b) similarly shows the
average nominal stress plotted against the distributions of
transverse stretches λ2(X) (red) and λ3(X) (blue). Finally,
Fig. 9(c) depicts the hydrostatic pressure vs. volumetric
strain; the hydrostatic component of the average Cauchy

stress, 1
3 tr(σ ), is plotted against the distributions of the vol-

ume change, defined as the determinant of the deformation
gradient tensor, J (X) = det(F(X)) = λ1(X)λ2(X)λ3(X),
minus unity.

As expected for silicone, the values for (J − 1) center
nearly exactly around zero, with a mean value of included
points in the final stretch state of 4.03 × 10−5. However,
while the distributions of (J − 1) are centered closely
around zero, the slight asymmetry in the tails leads to
noisy, non-zero energetic contributions via the bulk modulus
term in the cost function. The result, in practice, is an
inability of the solver to converge meaningfully to an
estimated value for the bulk modulus, commonly by simply
reducing the bulk modulus estimate to nonphysically low
values or zero. Given the noise floor of approximately
0.5% on J from Fig. 9(c), it’s practical to instead assume
incompressibility and that deviation of J (X) from unity
is due to measurement noise rather than actual bulk
deformation.

The experimentally-measured stress-stretch curves are
overlaid with the predicted uniaxial response with the
virtual fields method best-fit shear modulus of μ =
27.8 kPa from the one-parameter Neo-Hookean material
description in Fig. 9(a–c). Notably, there is excellent
agreement of the uniaxial tension prediction and the
stress-stretch plots for both longitudinal and transverse
stretch values, suggesting validity of the incompressible
assumption. The slight difference between the transverse
stretches λ2 and λ3 (the mean difference of transverse
stretches for all points and load steps is 4.77×10−3),
which are expected to be equal in uniaxial tension, can be
attributed to a combination of (a) slight shear during loading
of the sample, potentially due to slight sample misalignment
during loading and (b) noise arising from numerical gradient
operations, which may be different in the 2D acquisition
plane compared to in the slice-wise acquisition direction.

Silicone Property Estimates

Table 3 highlights the best material property estimates, ξ∗,
for incompressible first- and second-order first invariant-
based models using the VFM on four sets of deformation
fields acquired with APGSTEi and separately measured
loads. A pair of aforementioned data processing options
are compared, specifically the choice of virtual fields
(a selection of three user-defined fields versus using the
measured deformation field as the virtual field) and choice
of data equalization scheme (normalizing the cost function
by each individual energy state or a maximal energy
state). Strain energy potentials were assumed to behave
incompressibly by removing the bulk-dependent term;
essentially we assume that since the loads on the material
are relatively small and the expected bulk modulus is very
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Fig. 9 Comparison of ‘10A
I-block 1’ midsection
experimental data to uniaxial
tension predictions. Violin plots
of nominal stress values (applied
load versus mean cross-sectional
area from MRI) versus (a)
distributions of longitudinal
stretch and (b) transverse
stretches. Dashed line represents
incompressible uniaxial solution
using VFM result (μ = 27.8
kPa) assuming the deformation
field as the virtual field and
equal data weighting. (c)
Hydrostatic Cauchy stress
versus volume expansion
(J − 1) highlights the apparent
incompressibility of the sample
and challenge in bulk modulus
estimation. In all cases inner
boxplots are interquartile and
the mean is shown in orange

919Exp Mech (2020) 60:907–924



Table 3 Experimental material parameter best estimates ξ∗ for first and second order Ī1 material models using MR-u

Virtual field choice User-defined virtual fields Using u(X) as u∗(X) Uniaxial curve-fit

Data equalization EW(i) max(EW) EW(i) max(EW)

Neo-Hookean C10 [kPa] 2A I-block (N = 5) 19.7 17.9 19.2 18.1 19.5±0.6

10A I-block 1 (N = 9) 28.3 24.6 27.8 26.0 27.7±0.4

10A I-block 2 (N = 3) 32.5 30.5 31.4 29.8 30.6±5.6

20A S-block (N = 6) 133.4 116.9 133.3 121.5

Second order polynomial 2A I-block 19.7 17.9 19.2 18.1

C20 [Pa] C10 [kPa] 10A I-block 1 28.3 24.6 27.8 26.0

10A I-block 2 32.5 30.5 31.4 29.8

20A S-block 133.4 116.9 133.3 121.5

2A I-block 1.1×10−10 0 0 0

10A I-block 1 2.2×10−10 0 0 0

10A I-block 2 1.4×10−9 8.3×10−10 0 0

20A S-block 0 1.1×10−10 0 5.5×10−11

For all cases, data are presented without any additional Gaussian blurring. Two choices of virtual field (three simple analytical fields or the full
experimentally-measured deformation) and two types of data equalization (dividing the cost function φ by the external work at either each global
strain, respectively, or the maximum strain) are considered for the Neo-Hookean and second order case. A best fit solution assuming uniaxial
tension, using the applied load, MR-derived cross-sectional area over the middle 50%, and the median longitudinal stretch λ1 per stretch step, is
shown (with 95% confidence interval) for comparison of the rectangular I-block samples in the last column

high, any measured volumetric deformation we find is in the
noise floor and not actually produced experimentally. There
are some interesting trends and comparisons in Table 3.
First, the shear moduli found by assuming simple analytical
virtual fields and using the measured deformation field
are very similar for the same respective data equalization
cases, which suggests that the simple test functions are
adequate to extract the necessary information from the
measured deformation fields to produce precise estimates
of ξ∗. Secondly, weighting the data by the respective
global external work at the sampled step was shown
to increase shear modulus estimates, generally creating
better agreement with the uniaxial solution. Additionally,
the coefficient on the quadratic term C20 drops to zero

or nearly zero in all cases, suggesting good agreement
with a Neo-Hookean description and processing robustness.
Similarly, VFM analysis assuming the eight-chain model
[37] produced rubbery moduli Cr identical to the values of
C10 found in Table 3, while all locking stretches converged
either exactly to or within a small distance of the very
large upper bound (λm ≤ 1000), suggesting a lack of
identifiability of λm given only the relatively small stretch
states tested.

However, upon introduction of a linear term in the
second invariant, i.e. the Mooney-Rivlin material model,
the φ̂-space profile changes considerably. Specifically, the
well-defined least-squares minimum of Fig. 7(b) disappears,
replaced by a band of near-minimum in C10 − C01 space,

Fig. 10 Cost function space for two forms of the Mooney-Rivlin model. (a) Contour plot of the cost function φ̂, normalized by the best fit value
φ̂∗ for the first 10A I-block data set. Note that the nearly-uniaxial test is unable to differentiate between the biaxial and uniaxial terms, which
results in a minimum band of φ̂, rather than a distinct value. (b) A transform of variables into a shear modulus μ and a mixture parameter η clearly
highlights the confidence disparity, with the value of μ well defined as a valley but η without obvious minima
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as shown in Fig. 10(a). Typically, C10 is assumed to be
much greater than C01 for the Mooney-Rivlin model [46],
but in this case the nearly pure uniaxial geometry creates
difficulties for differentiation between the two constants.
However, a change of variables for the incompressible
Mooney-Rivlin strain energy function from U = C10(Ī1 −
3) + C01(Ī2 − 3) to U = μ(1 − η)(Ī1 − 3) + μη(Ī2 − 3)
highlights the relative identifiability of the shear modulus
μ and the mixture parameter η more clearly in Fig. 10(b).
Following the method of [10] and extending the complex
loading state into 3D may be the path forward, as well as a
useful direction for optimization of 3D test geometries for
specific constitutive models.

Conclusions

We have incorporated full-field material characterization
into a recently published method of magnetic resonance-
based method [35] for determining full 3D deformation
fields inside compliant materials at native resolutions of
approximately 0.5 mm, producing full field volumes of
approximately 22,000 points of usable tensor data in
approximately 45 minutes. The technique does not rely
on native or introduced contrast as in digital correlation
or speckle interferometry techniques, as magnetic phase
accumulation in a material volume moving between the
reference and a deformed configuration is the experimen-
tally measured quantity. The material platform considered
herein includes multiple grades of nearly-incompressible
silicone rubber, but this method is generally extendable to
any material class that has sufficient T1 signal (including
water-containing hydrogels, biological tissues such as lig-
aments ex or in vivo, other anhydrous rubbery materials,
etc.). Deformation fields acquired were then used for the
characterization of materials (MR-u) via the VFM, which
leverages the principal of virtual work given 3D deforma-
tion and global load to inversely solve for material prop-
erties. The virtual fields themselves are test functions and
should be chosen in such a way that they all contribute to the
cost function to extract the various energetic contributions
of the spatial deformation field. Material property estimates
of rectangular prism “I-block” samples were in good agree-
ment with a uniaxial approximation of the midsection, with
the choice of the virtual field as the actual displacement
field and equally weighting the effect of each data point pro-
viding the closest agreement with the analytical model in
general.

With the substantially growing presence of novel
uncertainty quantification and machine learning techniques,
we believe there are numerous potential improvements
and directions forward, particularly in two general areas:
(a) improving and robustly quantifying confidence in

material parameters from a range of material models
and (b) optimizing the experimental platform (e.g. in the
MR calibration procedure, or choosing sample geometries
where applicable). Options such as variational system
identification [47] and the use of Bayesian inference to
incorporate previous experimental results toward assessing
new data [48] are attractive future frameworks and
directions.
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Appendix A: Divolution

We illustrate our complex division-based numerical gradient
approximation technique by the following example. Sup-
pose first that we have an unwrapped scalar phase field
θ = angle(Z) which is proportional to a single component
of our induced displacement field uk . We can smooth or
numerically differentiate θ by convolution, or passing filter
kernels w and d , respectively, over it as illustrated in Fig. 5.
The phase function θ is defined at every pixel index i and j

for the 2D example, which is henceforth denoted as θ(i,j).
By passing a symmetric smoothing filterw in the j direction
over θ(i,j), we produce a smoothed function

θ
(i,j) =

H∑
n=−H

wnθ
(i,j+n), (13)

while by passing an antisymmetric edge filter d (with a
middle component of zero) in the j direction, we determine
the average central phase difference

jθ
(i,j) =

H∑
n=1

dn

(
θ(i,j+n) − θ(i,j−n)

)
, (14)

where 2H + 1 is the length of the respective filter, and w

and d follow normalizations of
H∑

n=−H

wn = 1 and
H∑

n=1

dn = 1 (15)

If instead, the phases are wrapped on (−π/2, π/2),
simple convolution operators will produce unwanted phase
gradients or smoothing operations at the ±π/2 jumps. We
can avoid smoothing wrap jumps by using the complex
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data Z directly. Notably, the values of Z are independent
of the wrapping of θ , making Z itself a usable quantity to
minimize unwrapping artifacts. Distinguishing the wrapped
phase field θ̃ = wrap(θ) from its unwrapped counterpart θ ,
the complex magnetic resonance output field Z at a pixel
(i, j) is represented in polar form as

Z(i,j) = r(i,j) exp(iθ(i,j)) = r(i,j) exp(iθ̃ (i,j)), (16)

where r(i,j) represents the magnitude of the image signal.
With equation (16), complex division can be used to
produce the result of equation (14) in a similar way to a
convolution filter - pixels on either side of the filter can be
divided by one another, or divolved, to subtract phases. The
divolution process is illustrated in Fig. 5(d), and the phase
gradient can be expressed as

jθ
(i,j) = angle

⎡
⎣ H∏

n=1

(
Z(i,j+n)

Z(i,j−n)

)dn
⎤
⎦

= angle

[
H∏

n=1

r(i,j+n) exp
(
idnθ

(i,j+n)
)

r(i,j−n) exp
(
idnθ(i,j−n)

)
]
. (17)

Appendix B: Gradient Coil Calibration

Correcting for the non-linearity in the imaging gradient set
requires a set of two experiments: (a) a rigid translation
of a large block of material to determine the higher order
deviations from a linear gradient and (b) a spatial grid
of material to determine both local and global dilation
along the longitudinal direction, essentially the integration
constant from the former. In general, we can describe the
unwrapped phase field θ(X) for a sample in an ideal
gradient coil, as in equation (7), as

θ(X) = u(X)

�
, (18)

where X is a position in our sample’s reference configura-
tion, u(X) is the displacement in the sample, and � is the
encoding length chosen by the user corresponding to how
many phase wraps occur per 2π in the respective direc-
tion. However, as real gradient coils are designed to be very
close to linear in the central region, the non-linearity at
the periphery must be considered for calculating displace-
ments and strains to a high degree of accuracy. We can
describe the non-ideal gradient G′ with higher-order terms
as G(1 + α(X)). Given the relation between our encoding
length � and the applied magnetic field gradient,

� = 1

γH teG
, (19)

we can write the phase in a non-ideal gradient coil as

θ(X) = u(X)

�
(1 + α(X)) , (20)

where α is the higher order gradient coil correction function
which is purely a vector function of the MR coordinate
system χ (with all χi parallel to Xi). For cases of rigid
translation of amplitude w, we can then rearrange for α(X),

α(X) = �

w
(θ(X) − θ0) + C, (21)

where θ0 is the value at the gradient coil center θ(χ = 0),
and C is a constant taking into account the possibility of an
offset error at the center.

For calibration of our setup, we ran two rigid translation
experiments of 5mm and 7.5mm, respectively. As described
in Section “Loading and Imaging Procedure”, phase maps
were put through the processing procedure shown in Fig. 5.
Importantly, phase maps were first unwrapped using the
procedure described in [41], which prioritizes unwrapping
of pixels based on the flatness of the second central
difference. Surface fits for the components αi(χ) (i.e.
using θi(χ)) were then performed to values on symmetric
planes in the gradient coil (χ1-χ2, χ1-χ3). Furthermore,
due to symmetry in gradient set design and winding, α1 is
comprised of even terms, while α2 and α3 are comprised
of odd terms in χ . The expressions αi were found to be
well-described by the analytical forms:

α1 = (n2χ
2
2 + C2)(n3χ

2
3 + C3)

×
[
a1(χ1 − e1)

4 + b1(χ1 − e1)
2 + d1

]
+ c1 (22)

α2 = χ2

[
a2(χ1 − e2)

3 + b2(χ1 − e2) + d2

]
+ c2 (23)

α3 = χ3

[
a3(χ1 − e3)

3 + b3(χ1 − e3) + d3

]
+ c3, (24)

where ni , Ci , ai , bi , ci , di , and ei are all fitting constants.
To correct displacement gradient tensor data in practice,

we can take analytical derivatives of the gradient coil
correction function α and apply them to components,

F ′
ij (X) = Fij (X) − ∂αi

∂χj

(X) · u1(X), (25)

where F ′
ij is the correction of the deformation gradient

tensor with components Fij , and
∂αi

∂χj
(X) ≡ αi,j (X), for

completeness, are,

α1,1 = (n2χ
2
2 + C2)(n3χ

2
3 + C3)

×
[
4a1(χ1 − e1)

3 + 2b1(χ1 − e1)
]

(26)

α1,2 = 2n2χ2(n3χ
2
3 + C3)

×
[
a1(χ1 − e1)

4 + b1(χ1 − e1)
2 + d1

]
(27)
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α1,3 = 2n3χ3(n2χ
2
2 + C2)

×
[
a1(χ1 − e1)

4 + b1(χ1 − e1)
2 + d1

]
(28)

α2,1 = χ2

[
3a2(χ1 − e2)

2 + b2

]
(29)

α2,2 = a2(χ1 − e2)
3 + b2(χ1 − e2) + d2 (30)

α2,3 = 0 (31)

α3,1 = χ3

[
3a2(χ1 − e2)

2 + b2

]
(32)

α3,2 = 0 (33)

α3,3 = a3(χ1 − e3)
3 + b3(χ1 − e3) + d3. (34)
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