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Abstract
Acoustic emission (AE) source localization is a powerful detection method. Time Difference Mapping (TDM) method is an effective
method for detecting defects in complex structures. The core of this method is to search for a point with the minimum distance away
from the verification point in the time difference database. In Traditional Time Difference Mapping (T-TDM) method and Improved
Time Difference Mapping (I-TDM) method, the larger database and denser grids allow the higher localization accuracy. If the location
points are not included in the database, the localization accuracy of the T-TDMand I-TDMmethodswill be greatly affected. To solve the
above problems, a new AE source localization method, Generalized Regression Neural Network Based on Time Difference Mapping
(GRNN-TDM), is proposed to improve the localization accuracy in the study. In the proposed method, the time difference data of the
sensor path on all nodes in the time difference mapping are used as the training input data and the coordinates of grid nodes are used as
the training output data. After continuous learning and training, the neural network model predicts its possible source location with the
time difference data collected from the verification point. In this paper, the localization of AE sources with T-TDM, I-TDM andGRNN-
TDMmethodswas studied in four composite plates with different fiber layers and an aluminum plate with holes. The localization results
showed that the localization accuracy of the GRNN-TDM method was higher than that of T-TDM and I-TDM methods.

Keywords Time difference mapping method . Generalized regression neural network . Acoustic emission . Composite plate .

Structural healthmonitoring

Introduction

Structural health monitoring (SHM) refers to the process in-
volving structural assessment, performance monitoring, and
damage detection. The early detection of damage and proper
modifications can prevent structural failures, reduce mainte-
nance and replacement costs, and ensure the safe and effective
operation [1–4]. As one of SHM methods, Acoustic emission
(AE) technology can detect early cracks and monitor engi-
neering structures. AE is a nondestructive testing method
based on the passive dynamic measurement of a structure.

AE is sensitive to dynamic defects and has its unique charac-
teristics, such as real-time dynamic monitoring [5]. It has the
wide application potential in real-time monitoring of in-
service plate-like structures. TDMmethod is a new AE source
localization method proposed by Baxter et al. [6] and has the
good application potential because it does not need to consider
the propagation speed of waves or different modes and can
quickly and accurately localize the sound source in a structure.

The localization accuracy of AE source is an important
index of AE detection. It is necessary to improve the accuracy
of acoustic source localization and minimize the influences of
interference factors such as missing location and pseudo loca-
tion in AE detection [7, 8]. The traditional AE localization
method is a time-of-arrival (TOA) method. In complex struc-
tures, the propagation velocity of acoustic waves varies with
the propagation angle. The TOAmethod requires the structur-
al homogeneity and the consistent wave velocity in all the
directions. Therefore, the TOA method cannot accurately lo-
calize defects in complex structures. Many researchers
attempted to improve the accuracy and reliability of AE
source localization.
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Mhamdi et al. [9] proposed a phased array method for
predicting the location of AE sources in a steel plate and more
accurately determined the direction and spatial position of AE
sources than the traditional arrival time method. Kundu et al.
[10–12] localized acoustic source without any knowledge of
the plate material properties or the direction-dependent veloc-
ity distribution in the plate. A clustering algorithmwas used in
sensors to calculate the location of AE source and explore the
localization theory of AE sources in different materials, the
AE source localization algorithm and localization principle for
different materials, but there was a certain deviation between
experimental results and actual source locations. Park et al.
[13] introduced a technique to localize the acoustic source in
a highly anisotropic plate that generated rhombus and elliptic
wave fronts. Sen et al. [14, 15] extended this concept and
considered more non-circular wave fronts. The wave front
shape-based source localization techniques proposed by Park
et al. [13] and Sen et al. [14] avoided the assumption of the
straight-line wave propagation path from the acoustic source
to the sensor. Simone et al. [16] proposed a novel monitoring
system which allowed the linearization of well-known nonlin-
ear system of equations for the estimation of the impact loca-
tion with the aid of four receiving sensors. Ebrahimkhanlou
and Salamone [17] proposed a single-sensor approach based
on edge reflections in an isotropic plate and a deep learning
method of plate structures. Ebrahimkhanlou et al. [18] intro-
duced a deep learning-based framework to localize and char-
acterize AE sources in plate-like structures with complex geo-
metric features, such as doublers and rivet connections. Liu
et al. [19] calculated the delay of the multichannel AE signal
with the time reversal algorithm and A0 mode and realized the
localization of AE sources in a steel plate with the sensor
array.

James et al. [20] used feed-forward neural networks to
localize AE sources. Even in isotropic material structures,
there is an inconsistency in the speed of AE signals in different
propagation directions. Different AE source localization algo-
rithms and theories have different application conditions and
scopes and the accuracy and precision of AE source localiza-
tion should be improved.

However, the changes in the wave propagation path or
wave velocity caused by some factors such as a hole and
thickness change in a structure are not considered in these
methods.

Eaton et al. [21] used the TDM method to localize the AE
source in fiber-reinforced composite plates. They collected
AE signals from grids through pencil lead break (PLB), proc-
essed the data with the interpolation method, and obtained
accurate and stable source localization results.

In this study, based on T-TDM and I-TDM methods,
GRNN-TDM acoustic source localization method is pro-
posed. The rest of the paper is organized as follows.
Section 2 mainly introduces the technical principle and steps

of T-TDM and I-TDM methods. The steps and main features
of the GRNN-TDM method proposed in this paper are intro-
duced in Section 3. Section 4 introduces the experimental
arrangement. Section 5 gives the experimental results and
analysis results. In four kinds of composite plates with differ-
ent fiber layers and an aluminum plate with holes of different
diameters, the locations of AE sources were predicted by T-
TDM, I-TDM and GRNN-TDM methods in this study. The
conclusion is drawn in Section 6.

Technical Principles

Traditional Time Difference Mapping (T-TDM) Method

TDM method is a coverage mapping technique and mainly
localizes a defect through selecting the path in the time differ-
ence contour map. The time difference contour map of differ-
ent paths is firstly plotted with AE signals generated by a
defect and then the consistent time difference in the error
range is calculated to determine the actual AE event location.
The time difference training map database created by this
method is obtained from the entire detection area. Therefore,
it is not required to consider the influences of defects, thick-
ness variations, or complex geometries in the detection area.
In the TDM method, it is not necessary to consider the prop-
agation speed of the wave in materials, the dispersion infor-
mation or the mode of Lamb waves. The T-TDM method is
mainly based on the methods proposed by Baxter et al. [6] and
involves the following five steps:

Determination of the Area to Be Detected

The TDM method belongs to the regional detection technol-
ogy and can localize defects in the detection area. The sensi-
tivities of the stresses in different regions of plate structures to
the defects are different, so the detection area should be deter-
mined before the detection in order to ensure the consistency
of the experimental process.

Division of Time Difference Training Grids

Time difference training grids are divided in the detec-
tion area determined above. The size of the training grid
in the detection area directly determines the localization
accuracy of the source. The higher the resolution of the
training grid is, the higher the localization accuracy of
TDM source is. However, the minimum size resolution
of the training grid should be no less than one wave-
length. The location of the AE source is determined by
the time difference training grid divided in the specimen
structure and independent of the sensor arrangement.
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Acquisition of Arrival Time Data

Artificial PLB [22] is used to simulate the grid at each node
and obtain the time information of AE signals arriving at the
sensor. To ensure the accuracy of experimental data and re-
duce the errors in the training data source, each node needs
repeated PLB to provide an average result. For complex geo-
metric structures, it is not required to collect the data at every
node in the grid or increase the grid density. Missing data
points can be compensated by interpolation algorithms.

Calculation of Time Difference Maps

According to the arrival time data of each sensor on each node
acquired above, the arrival time difference of each sensor path
is calculated. For example, if four sensors are arranged in an
experiment, six pairs of sensor paths will be generated: 1–2,
1–3, 1–4, 2–3, 2–4 and 3–4 paths. The time difference data of
each pair of paths are averaged and then contour maps, also
called time difference mapping map, are generated with the
average of the time differences of all the paths.

Comparison with Actual AE Data

The differences between the time difference data of the six
pairs of sensor paths of the actual AE event and the data in
the training time difference mapping database are calculated.
Each time difference can be used to select the possible points
of the AE source from the time difference contour map drawn
above. The contour lines of each path are superimposed to
determine the convergence point. In theory, the intersection
point of the six paths cross the location of the AE source. In
fact, due to the discreteness of the data, all lines do not inter-
sect at the same point. Therefore, a weighted mathematical
algorithm [6] is used to determine its possible source location.

Improved Time Difference Mapping (I-TDM) Method

Although the T-TDM method can localize acoustic sources,
there are still many problems. In the above steps, it is neces-
sary to collect a lot of arrival time data of AE events on each
grid node. In the data acquisition process, operation errors
inevitably lead to abnormal data. In addition, it is necessary
to select an appropriate cluster diameter for validating the
location of actual AE events, but the optimal cluster diameter
varies with the position.

To reduce the errors of T-TDM method, I-TDM method is
proposed. The method involves two main parts. Firstly, an
unsupervised clustering method is used to select correct AE
events to eliminate the abnormal data caused by artificial or
environmental factors. Secondly, the minimum difference
method [23] is used to calculate the location of the AE source.

Selection of Correct AE Events

To select correct AE events for generating a time difference
training map, the system clustering analysis method is used to
select the AE events on each grid node in the map. System
clustering is a clusteringmethodwhichminimizes the distance
between all vectors and the center of data set. With the sum of
squared errors as the clustering criterion, the algorithm opti-
mizes the clustering results throughmultiple iterations in order
to minimize the square sum of the distance of all the samples
to the center of their own category. From All N AE events
collected on all grid nodes, correct AE events are obtained
with the above algorithm.

The complete link hierarchical clustering algorithm for N
AE events data is described in the following steps:

Step 1. The Euclidean distance between every two N events
is calculated.

Step 2. The calculated Euclidean distance is classified and
sorted step by step according to the size and the
events with Euclidean distance value greater than
the specified threshold are removed.

Step 3. The events obtained after removing the error is treat-
ed as a class to calculate its centroid, which is taken
as a correct AE event.

In this study, the correlation coefficient of 0.99 is
chosen as the screening threshold in data filtering and
all events in this group were used (correlation coeffi-
cient of 1 means total correlation). Each group at this
level or above is deemed to contain highly correlated
events and used for onward analysis. Conversely the
groups are deemed to be suitably less correlated at a
correlation level lower than the highest level. So, they
are ignored and not used for onwards analysis. The N
AE event data collected on each grid point are screened
according to the above algorithm to obtain correct AE
events, thus optimizing the experimental data in the
whole process. Pseudo AE events refer to the data
caused by factors such as human or environmental fac-
tors during the acquisition process, rather than the data
obtained by the PLB method. Correct AE events refers
to acoustic emission data caused by PLB method. To
more clearly display the data analysis process of the
collected data containing pseudo AE events and correct
AE events (the specific experimental setup and experi-
mental conditions are described in Section 3), Fig. 1
shows a dendrogram of cluster analysis. Figure 1a
shows a dendrogram of eight clustering data collected
from a grid node with pseudo AE events. It can be seen
that the eighth data collected in the eight AE events
have larger anomalies and can be automatically identi-
fied and deleted by the clustering algorithm. Figure 1b
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shows the data analysis of correct AE events, which can
be divided into three categories: verification points 2, 4
and 8, verification points 6 and 7, and verification
points 1, 5, and 3.

Figure 2 shows a screened and compensatory mapping
map of AE events. Clustering algorithm was used to remove
the abnormal data caused by artificial or environmental fac-
tors. Figure 2a shows a training database of all the screened
time differences of the sensor path of 1 to 2. To obtain a
complete time difference training database, the surface fitting
algorithm was used to compensate the missing data in the
graph. The compensated results are shown in Fig. 2b. The
compensated time difference database can better reflect the
propagation of AE source in the plate.

The data of other time difference paths were compensated
by the same algorithm. Finally, a complete time difference

training mapping database was obtained and then the corre-
sponding algorithm was used to verify the actual AE events
through AE source location.

AE Source Localization through the Minimum Difference
Method

Minimum difference method is a numerical method of
searching for the point where the difference between the actual
source data and the training map data is minimized. The min-
imum difference method is performed into the following
steps:

Step 1. To calculate the arrival time difference between each
AE event and each pair of sensors.
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Step 2. To obtain the distance between AE source and train-
ing mapping data by subtracting the arrival time dif-
ference of each sensor path in training mapping data
from that of each sensor path.

Step 3. To calculate the distance between sensor paths n of
all sources according to Eq. (1). The minimum dif-
ference method is used to search for the point where
the difference between the actual source data and the
training map data is minimized, and the obtained

point is the location of the AE source. The calcula-
tion formula is as follows:

S ¼ ∑
n

1
Tsource−Tmapping map
�� ��; ð1Þ

where S is the sum of the time differences between the six
sensor paths of the AE source verification point and the train-
ing data; Tsource is the time difference of the AE source;
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Tmapping map is the time difference of all AE events in training
mapping maps.

The minimum difference method is used to verify the lo-
cation of AE source at actual AE verification points. The
method can avoid the artificial interference in the calculation
process and the selection of cluster diameter for different
sources, reduce the source of errors, improve the reliability
of the results, shorten the running time of the whole process,
and improve the localization accuracy and precision.

AE Source Localization with Generalized Regression
Neural Network Based on Time Difference Mapping
(GRNN-TDM) Method

The main idea of the T-TDM and I-TDM methods is to find
the point with the smallest distance away from the verification
point in the time difference database. If the density of the
drawn grids is denser, the database is larger and the localiza-
tion accuracy is higher. The interpolation algorithm is re-
quired. If the location point is not included in the database,
the localization accuracy of the T-TDM and I-TDM methods
is greatly affected. To reduce the workload and improve the
localization accuracy of the source and the generalization of
the method, GRNN-TDM method is proposed. The compari-
son between T-TDM, I-TDM and GRNN-TDM methods is
illustrated in Fig. 3.

GRNN is a radial basis neural network and has the strong
nonlinear mapping capability, flexible network structure and
high fault tolerance and robustness. It is applicable to solve
nonlinear problems. The prediction accuracy is also relatively
high when the sample size is small. The GRNN network can
also process unstable data. The algorithm breaks through the
linear limitation of traditional parameter processing. With the
good learning ability and highly nonlinear mapping character-
istics, it can be used in the localization of AE sources in com-
plex materials and structures. The GRNN consists of four
layers: the input layer, the pattern layer, the summation layer,
and the output layer. Figure 4 shows the AE source localiza-
tion structure of the GRNN-TDM method.

The number of input layer neurons is equal to the dimen-
sion of the input vector in the learning sample, namely, the
time difference of the six pairs of paths. Each neuron is a
simple distribution unit which passes the input variables di-
rectly to the pattern layer. The number of pattern layer neurons
is equal to the number of learning samples, n. Each neuron
corresponds to a sample. The transfer function of the neurons
of the pattern layer is expressed as:

pi ¼ exp −
X−X ið ÞT X−X ið Þ

2σ2

" #
; i ¼ 1; 2; :::; n; ð2Þ

where pi is the exponential form of the square of the Euclidean
distance between the input variable and the corresponding
sample X; X is network input variable; Xi is the learning sam-
ple corresponding to the i-th neuron.

The summation layer uses two types to weight the summa-
tion of neurons in all pattern layers. The number of neurons in
the output layer is equal to the dimension of the output vector
in the learning sample. In each neuron, the weighted output of
the summation layer is divided by the arithmetic output of the
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experimental system
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summation layer and the output of the neuron is the predicted
position of the AE source in the detection structure. The the-
oretical basis of the GRNN network is nonlinear regression
analysis. The regression analysis of the dependent variable Y
with respect to the independent variable x is to calculate the y
which has the largest probability value. Let the joint probability
density function of the random variables x and y be f(x, y). It is
known that the observed value of x is X, then the regression of y
with respect to X, the conditional mean, is calculated as:

bY ¼ E y=X
� � ¼ ∫∞−∞yf X ; yð Þdy

∫∞−∞ f X ; yð Þdy ; ð3Þ

where bY is the predicted output of Y when the input is X.
The time difference data of sensor paths on all the nodes in

the time difference map are used as the training input data and

the coordinate of corresponding node is used as the training
output data. After continuous learning and training in the neu-
ral network model, the time difference data collected with the
verification point can be used to predict the possible location
of AE source.

Experimental Arrangement

AE source localization of the GRNN-TDM method was ex-
perimentally explored with four differently laminated com-
posite plates and an aluminum plate with holes. As shown in
Fig. 5, the experimental system is composed of the PCI-DSP
16-channel AE signal acquisition instrument (including the
monitor), four AE sensors with a resonant frequency of
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150 kHz, four preamplifiers, the plate, the 2H pencil and 4
preamplifiers. Without additional power supply, the gain pre-
amplification of 20 dB, 40 dB and 60 dB can be selected from
the preamplifier. In the experiment, the plate was placed hor-
izontally on the experimental table. High-vacuum grease was
added between the sensors and plate surface for a better cou-
pling environment. The signal excitation was performed with
a pencil (2H) to simulate the AE source [22]. The tip of the
pencil has a circular ring. Under the premise of ensuring the
enough length of the pencil core, the same angle between the
pencil surface and the plate was maintained to obtain a fixed
PLB angle of 30°. At least 8 artificial PLB excitations were
performed for each grid node to collect the experimental data.

The AE acquisition software AEwin was selected. Before
the experiment, the parameters of AEwin software were set.
The threshold value was 40 dB and the gain was 40 dB. The
sampling rate was 10 MHz and the pre-trigger was 25.6 μs.
The signal length was 2048. The time when the signal first

exceeded the threshold value was used to determine the time
when the wave arrived at the sensor. The sensor signals re-
ceived by the 4 channels were derived from the AEwin soft-
ware to obtain arrival time of the AE signals. Arrival time was
read from the acquired AE signal data file. The signal process-
ing algorithm was adopted to localize the AE source.

The localization of AE sources with T-TDM, I-TDM and
GRNN-TDM methods was studied in four composite plates
with different fiber layers and an aluminum plate with holes.
The four anisotropic composite plates with different layups
are [(0/90)2]S, [0]16, [(0/90)4]S, and [(0/45/90/−45)2]S. The
thickness of each layer of the four composite sheets is
0.14 mm. The total thickness of the 16 layers is 2.24 mm
and the thickness of the 8 layers is 1.12 mm. The size of the
aluminum plate with holes was 50 cm × 80 cm × 0.3 cm. Four
holes with the diameters of 2 cm, 3 cm, 5 cm and 10 cm were
machined at different positions on the aluminum plate by the
laser cutting technology.
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Results and Discussion

AE Source Localization in Composite Plates

The laminates of the selected composite plates were [0]16,
[(0/90)2]S, [(0/90)4]S and [(0/45/90/−45)2]S, respectively.
The area of 50 cm × 40 cm was chosen as the detection area
and a grid size was set as 5 cm × 5 cm. At least 8 PLB events
were conducted at each point.

AE Source Localization Based on T-TDM and I-TDM Methods

Figure 6 shows the average localization errors of the AE
source positions in four composite plates by T-TDM and I-
TDM methods. Localization errors at each verification point
were recorded. Error bands in Fig. 6 indicate a standard devi-
ation related to average localization errors.

The localization errors are shown in Fig. 6. In [(0/45/90/
−45)2]S fiber layer composite plate, the average localization
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errors obtained with the T-TDM method and I-TDM method
were respectively 2.797 cm and 0.871 cm. In [(0/90)4]S fiber
layer composite plate, the localization errors obtained with the
T-TDM method and I-TDM method were respectively
2.341 cm and 1.176 cm. In [0]16 fiber layer composite plate,
the localization errors obtained with the T-TDMmethod and I-
TDM method were respectively 2.18 cm and 1.07 cm. In
[(0/90)2]S fiber layer composite plate, the localization errors
obtained with the T-TDM method and I-TDM method were
respectively 2.322 cm and 1.899 cm.

AE Source Localization Based on GRNN-TDM Method

In this study, the time difference mapping training data of six
pairs of sensor paths collected on the composite plates of four
fiber layers were used as the training data. Six verification
points were selected to predict the location of AE source in
the model established with GRNN-TDM algorithm. The num-
ber of the selected sample data was 99. The only setting pa-
rameter of GRNN was the spread value (the expansion coef-
ficient of radial basis function). The spread value had a great
influence on the accuracy of the prediction model. The greater
the spread value was, the smoother the output results were.
However, the errors also increased accordingly with the in-
crease in the spread value. Due to the small amount of training

data, in order to get a stable and reliable model, in this paper,
with cross-validation and loop training methods, the neural
network was trained to obtain the best training input data,
output data and spread value. The cross-validation method
could obtain as much information as possible from the limited
training data, so the method was selected in this study.
Especially, when learning samples were from multiple
directions, the method could effectively avoid the local
minimum and overfitting to some extent. The collected
training data and verification data were put into the
whole data set to verify the localization results of AE
source obtained by GRNN-TDM method.

To further analyze the errors of the prediction location of
the verification points, the network was used to perform the
linear regression analysis with the output of the two parame-
ters of the horizontal and vertical coordinates (x and y) of six
verification points and corresponding target vectors. Figure 7,
Fig. 8, Fig. 9, and Fig. 10 show the linear regression results of
six verification points in four different fiber laminates ([0]16,
[(0/90)2]S, [(0/90)4]S and [(0/45/90/−45)2]S) as well as the
absolute errors of corresponding locations.

As shown in Fig. 7, Fig. 8, Fig. 9, and Fig. 10, the GRNN-
TDM method has the good prediction results of the x-coordi-
nate and y-coordinate of the six verification points in the four
composite plates. Prediction results are within the 95% confi-
dence interval and the absolute error of linear regression

Table 1 Source localization error
statistics based on GRNN-TDM
method (unit: cm)

Composite plates Verification points Average errors

1 2 3 4 5 6

[(0/45/90/−45)2]S 0.459 0.372 0.325 1.214 1.713 0.816 0.816

[(0/90)4]S 0.755 0.161 1.988 1.966 0.493 0.875 1.039

[0]16 0.322 1.2 1.122 1.331 1.531 0.762 1.044

[(0/90)2]S 2.334 1.951 1.125 2.113 1.113 0.592 1.538
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prediction is less than 2 cm. The prediction results are stable
and robust, indicating that the output value of the GRNN has a
high consistency with the target value. Therefore, the con-
structed GRNN model can achieve a good prediction result
of the defect position in the fiber laminate composite plate.
The actual locations of six verification points and the predic-
tion results obtained with the GRNN-TDMmethod were plot-
ted together. Figure 11 shows the source localization results of
the GRNN-TDMmethod in four composite plates. The local-
ization errors of three methods are shown in Fig. 12.

The predicted results of the verification points with the
GRNN-TDM method were obtained and then the Euclidean
distance between the predicted results and actual locations of
the verification points in four composite plates were calculat-
ed. The error analysis of the location at each verification point
was performed. Table 1 shows the source localization error
statistics of the GRNN-TDM method.

The maximum spacing in the two sensor arrangements on
four composite plates is 50 cm. The relative error analysis was
performed with the predicted position in Table 1. In [(0/45/90/
−45)2]S fiber layer composite plate, the average relative local-
ization errors of verification points obtained with T-TDM, I-
TDM, and GRNN-TDM methods were respectively 5.6%,
1.7%, and 1.6%. In [(0/90)4]S fiber layer composite plate,
the average relative localization errors of verification points

obtained with T-TDM, I-TDM, and GRNN-TDM methods
were respectively 4.7%, 2.4%, and 2.0%. In [0]16 fiber layer
composite plate, the average relative localization errors of
verification points obtained with T-TDM, I-TDM, and
GRNN-TDM methods were respectively 4.4%, 2.1%, and
2.0%. In [(0/90)2]S fiber layer composite plate, the average
relative localization errors of verification points obtained with
T-TDM, I-TDM, and GRNN-TDM methods were respective-
ly 4.6%, 3.8%, and 3.0%. The error-probability distribution
relationship of 24 verification points of four composite plates
is shown in Fig. 13.

The distribution of prediction errors of the 24 verification
points obtained with the GRNN-TDMmethod is described as
follows. The prediction errors of 5 verification points are in
the range of x ≤ 0.5 cm and the corresponding probability is
about 25% or less. The prediction errors of 3 verification
points are in the range of x ≥ 2 cm and the corresponding
probability is about 89% or more. The prediction errors of
16 verification points are in the range of 0.5 cm ≤ x ≤ 2 cm
and the corresponding probability is between 25% and 90%.
The prediction errors of the verification points obtained with
the GRNN-TDM method show a normal probability distribu-
tion. AE source localization has the small prediction error and
good robustness. The GRNN-TDM method can be used to
identify and localize the defects in orthotropic and quasi-
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Table 2 Coordinates of 10
verification points PLB location #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

x /cm 6.1 21.6 25.1 35.1 15.1 16.1 32.1 11.1 27.1 5.1

y /cm 6.1 6.6 25.1 16.1 40.1 30.1 35.1 21.1 20.1 35.1
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isotropic composite plates. Compared with other traditional
pattern recognition methods, the GRNN-TDM method
showed the higher prediction accuracy in defect localization.

AE Source Localization in an Aluminum Plate
with Holes

In plate-like structures, the varying propagation velocity may
lead to the inaccurate localization of AE source and defects
and holes also affect the propagation path of waves, thus af-
fecting the localization accuracy of AE source. The experi-
mental specimen was an aluminum plate with holes. The size
of the plate was 50 cm × 80 cm × 0.3 cm. Four holes with the
diameters of 2 cm, 3 cm, 5 cm and 10 cm were machined at
different positions on the aluminum plate by laser cutting
technology. Four sensors were arranged inside the four

corners of the plate. The positions of sensors, the processing
sizes and positions of holes are shown in Fig. 14.

The coordinates of the 10 verification points are shown in
Table 2. Among the selected 10 verification points, the prop-
agation paths of most points such as verification points 2, 3, 6
and 9 need to pass through the holes, but the propagation paths
of a small part of the verification points such as the verification
point 1 do not pass through the holes. Based on the above
analysis, it can be inferred that the experimental points whose
propagation paths are interrupted may have large localization
errors. The localization errors of the experimental points with
uninterrupted propagation paths may be small.

Influence of the Number of Sensors on Localization Results

According to the basic localization principle of the TDM
method, the localization of the AE source requires at least
three sensors. As the number of sensors increases, the time
difference mapping paths also increase largely. In theory, the
localization accuracy of AE source increases as the number of
sensors increases. Figure 14 shows the influence of the num-
ber of sensors on localization results. Localization results of
AE source respectively obtained with 4, 6 and 8 sensors are
provided.

As shown in Fig. 15, the number of sensors has the less
influence on the localization results of 10 verification points.
Localization results obtained with different numbers of sen-
sors are similar. Figure 16 shows the error of each verification
point obtained with different numbers of sensors. The error
bars represent the maximum and minimum errors of each
position. The localization errors of the positions 1, 3, 4, 6, 7
and 9 gradually decreased as the number of sensors increased.
When the numbers of sensors were respectively 4, 6 and 8, the
average localization errors of the 10 verification points were
respectively 1.02 cm, 0.87 cm, and 0.86 cm. When the num-
ber of sensors was increased to a certain extent, AE source
localization accuracy was not significantly improved.
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Therefore, 8 sensors were selected in the subsequent verifica-
tion experiments.

AE Source Localization of an Aluminum Plate with Holes
Based on the TDM Method

Firstly, the traditional TOA method was used to localize the
acoustic source of the aluminum plate with holes. Figure 17
shows the acoustic source localization results and error imag-
ing images of 10 verification points. The position of the dark
blue block in Fig. 16 indicates the actual location of the ver-
ification point and the locations of other blocks represent the

locations obtained in the 8 repeated experiments. The color
depth represents the size of the localization errors.

Figure 18 shows the propagation paths of waves and time
difference mapping of aluminum plate with holes. When there
are holes in the structure, the wave propagation path is
changed, thus affecting the time when the sensor receives
the signal. Therefore, the errors of the TOA method are large.

To evaluate the localization performances of different AE
source localization algorithms, the T-TDM, I-TDM and
GRNN-TDM methods were used to localize and analyze the
10 locations selected in the plate. Figure 19 shows the local-
ization results of AE source in the aluminum plate with holes.
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Figure 20 shows the average error statistics of AE source
localization. The error bars represent the maximum and min-
imum errors of corresponding positions. All localization tech-
niques based on TDM methods achieved AE source localiza-
tion at 10 locations, whereas the TOA method only achieved
AE source localization at 9 locations. The localization errors
of locations 7 and 10 exceeded 3 cm. For locations 3 and 9, the
localization errors obtained with the T-TDM method were
respectively 2.06 cm and 2.04 cm because they were close
to a hole with a diameter of 100 mm; the localization errors
obtained with the I-TDM method were respectively 2.27 cm

and 1.78 cm. However, for the entire aluminum plate, the
localization errors were only 5.6% and 4.4%, which were
much less than 10%. The minimum localization errors obtain-
ed with the GRNN method were respectively 0.55 cm and
0.38 cm, which were equivalent to only 1.3% and 0.9% of
the overall aluminum plate size.

Figure 21 and Table 3 show the comparison of the average
localization errors of different methods. For all verification
points, the average localization errors of the TOA, T-TDM,
I-TDM and GRNN-TDM methods were 2.01 cm, 1.23 cm,
1.02 cm and 0.82 cm, respectively. Compared with the
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Table 3 Average localization
errors of different methods Localization

methods
Location errors of verification points (cm) Average

errors (cm)
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

TOA 1.34 1.16 1.33 0.91 34.06 1.63 3.13 1.58 2.22 4.73 2.01

T-TDM 1 1.26 2.06 1.15 0.97 1.11 1.09 0.77 2.04 0.87 1.23

I-TDM 0.66 1.04 2.27 0.63 0.72 0.98 0.74 0.83 1.78 0.55 1.02

GRNN-TDM 0.38 0.99 1.69 0.92 0.47 0.61 0.39 0.59 1.63 0.49 0.82
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localization accuracy of the TOA method, the localization
accuracies of the T-TDM, I-TDM and GRNN-TDM methods
were increased by 38.8%, 49.3% and 59.2%, respectively. The
experimental results showed that the I-TDM and GRNN-
TDM methods had the largely improved localization perfor-
mance of all AE source verification points in the plate, indi-
cating the high localization accuracy and reliability.

Conclusions

The AE source localization accuracy is not high due to the dis-
persion and multi-mode characteristics of wave propagation of
the AE signals in plate-like structures, the anisotropy of compos-
ite plates, and the discontinuity of wave propagation on alumi-
numplates with complex geometry. In this paper, with composite
plates with different fiber layers and an aluminum plate with
holes as the research objects, based on T-TDM and I-TDM
methods, GRNN-TDM method was proposed to predict AE
source location.

The T-TDM and I-TDM methods could quickly and accu-
rately localize the AE source in the structure without consid-
ering the propagation speed of the wave and the mode.
Compared with the T-TDM method, the I-TDM method used
unsupervised clustering to select the correct AE events and
eliminate abnormal data caused by artificial or environmental
factors. Then the minimum difference method was used to
calculate the AE source location. The GRNN-TDM method
avoided the problem of optimal cluster diameter selection in
T-TDM method and improved the localization accuracy.

Compared with the T-TDM and I-TDM methods, the
GRNN-TDMmethod not only reduced the workload, but also
improved the localization accuracy of the AE source and the
generality of the algorithm. The GRNN-TDM method was
used to predict the locations of verification points in compos-
ite plates with different fiber layers. The errors were within the
95% confidence interval and the total recognition rate was
above 95%. The location prediction errors of 24 verification
points showed the normal probability distribution. The verifi-
cation results were obviously improved and the localization
accuracy obtained with the GRNN-TDM method was better
than that obtained with the T-TDM and I-TDM methods.

The AE source localization study on the aluminum plate
with holes was experimentally carried out with 4, 6 and 8
sensors, respectively. The number of sensors was positively
correlated with the localization accuracy of AE source. As the
number of sensors increased, the localization accuracy in-
creased. Compared with the localization accuracy of the
TOA method, the localization accuracies of the T-TDM, I-
TDM and GRNN methods were greatly improved by 38.8%,
49.3% and 59.2%, respectively. The GRNN-TDM method
had the higher localization accuracy on the aluminum plate
with holes than the other three methods.

In the study, AE source generated by PLB was explored,
but the actual AE source generated in the process of cyclic
fatigue and fiber breakage was not investigated. Different
types of real AE sources affected AE source localization.
Therefore, the AE source localization errors and its influenc-
ing factors in industrial applications will be further explored.
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