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Abstract
In this work, the sensitivity-based virtual fields have been applied to identify two anisotropic plasticity models (Hill48,
Yld2000-2D) using a deep-notched tensile test performed on flat samples of cold-rolled sheet of DC04 steel. The material
was characterised using the standard protocol to obtain the reference sets of parameters. Deformation data was obtained
during deep-notched tests using stereo digital image correlation and the virtual fields method was employed to identify
material parameters. It was found that the sensitivity-based virtual fields outperform the standard user-defined virtual fields
in terms of accuracy.

Keywords The virtual fields method · Anisotropic plasticity · Sensitivity-based virtual fields · Digital image correlation ·
Inverse identification

Introduction

To describe material behaviour accurately, models have
become increasingly complex and involve more and more
material parameters that need to be identified from mechan-
ical tests. Typically, parameters are measured with a number
of simple homogeneous tests, where each test provides lim-
ited information about the inferred model. As a result, many
tests are generally needed to fully characterise such mate-
rial models. On the other hand, developments in full-field
measurements offer the ability to collect large amounts
of data with the potential to improve identification of
material properties. This can be used to design a new
class of tests, where deformation is heterogeneous, leading
to a range of multi-axial stress states within a single spec-
imen. Probing material behaviour under such loading pro-
vides an opportunity for a reduction of the number of tests
needed for characterisation, and the development of better
models.
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The problem of increasing amount of experimental effort
needed to characterise a material is an important one
for the sheet metal forming community, where accurate
characterisation of plastic anisotropy is essential. For
instance, the simplest anisotropic model, Hill48 [1], requires
three uniaxial tests performed at three distinct orientations
(0◦/45◦/90◦) to be fully characterised for plane stress
applications. The model however is well known to be
performing poorly, especially under biaxial loading where
it cannot accurately represent the behaviour of most
commonly used alloys. Many improvements have been
proposed, often involving biaxial data in the formulation,
significantly increasing the experimental effort involved in
identifying the models. Popular models that can accurately
capture the response of sheet metals, such as: Yld89 [2],
Stoughton’s model of 2002 [3], BBC2000 [4], BBC2005 [5]
and Yld2000-2D [6] require four tests in total: three uniaxial
and one equibiaxial tests. Furthermore, there are even more
complex material models such as CB2001 [7, 8] involving
five uniaxial and one biaxial tests and Stoughton’s model
of 2009 [9] or Yld2004-18p [10] that require seven uniaxial
(performed in increments of 15◦) and one biaxial tests.
Although these models improve the accuracy of numerical
simulations, they often involve an extensive experimental
effort to characterise the material.

A possible strategy to reduce the number of experiments
to identify a given model is to use full-field measurements
and design heterogeneous tests from which more data
could be collected, compared to homogeneous counterparts.
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Standard tests produce uniform/simple stress fields that
can be analytically linked to the applied load, these
are generally referred to as ‘statically determinate’. This
approach produces a single data point on the yield surface
per test. Heterogeneous, statically non-determinate tests on
the other hand produce a cloud of points in the stress space,
each exhibiting a unique combination of stress/strain states,
to which the model can be matched. In this approach, test
design and material parameters extraction from the collected
data represent specific challenges, as the stress field is
not known a priori. To identify material parameters from
full-field data, inverse techniques need to be employed.

Two of the most popular inverse techniques for extracting
constitutive parameters from full-field measurements are
finite element model updating (FEMU) and the virtual
fields method (VFM). In the former, a model of the
experiment is built up using finite element method (FEM)
and the experimental data are matched to their simulated
counterparts. The matching can be done based on the
loading force, displacements, strains, or even the identified
biaxial stress [11]. In the VFM, the stress equilibrium
is enforced over the entire region of interest (ROI). It
depends on the stress field reconstructed from the measured
deformation through the assumed constitutive law and the
material parameters are found such that they minimise the
gap in the stress equilibrium. The method has successfully
been applied to metal plasticity [12–15], composites [16],
concrete [17], elastomers [18–21] and biological tissues
[22, 23] to cite but a few. One of the advantages of the
VFM over FEMU is its computational efficiency; it was
reported that it the VFM is 125 times faster when applied
to anisotropic hyperelasticity [23] and approximately 300
times faster in the context of metal plasticity [24]. Recently
a new technique emerged, called integrated digital image
correlation (IDIC) which in essence combines the steps of
DIC and FEMU into a single procedure to improve their
metrological performance. It was applied to identification
of plastic parameters by Ruybalid et al. [25], Mathieu et al.
[26] and Bertin et al. [27, 28].

One of challenges in performing a successful statistically
indeterminate test is to ensure that it contains enough het-
erogeneity, i.e. a sufficiently large number of unique stress
states that describe the entire constitutive model. In prac-
tice, the test is usually performed on a standard test machine
and the heterogeneity is achieved by means of the geometry
of the specimen. Notched samples were proven to be partic-
ularly popular for testing ductile materials. With sufficiently
deep notches it is possible to activate all stress components,
which is important when dealing with anisotropic mate-
rials [11, 15, 29]. An alternative is to machine a special
specimen such as Σ-shaped sample in [14]. A methodi-
cal approach to design adequate heterogeneous tests is still
an open problem. Recently, there were a few attempts at

using optimisation techniques that iterate through a num-
ber of design variables to improve a measure for strain
heterogeneity [30, 31]. For other constitutive models, test
design optimization has been studied in more depth, ini-
tially using strain heterogeneity metrics as well [32], then
using balanced identification uncertainty over the whole
set of parameters [33, 34]. However, all failed to take into
account the systematic error arising from the finite spatial
resolution of the camera. The next generation of test opti-
mization procedures relies on synthetic image deformation
and minimizes the maximum identification error includ-
ing the systematic error [35, 36]. Extending this strategy to
elastoplasticity models is the next step.

In terms of anisotropic plasticity, a number of different
test configurations were used to identify popular models,
with most of the effort dedicated to Hill48, due to its
popularity and simplicity. The problem was tackled as early
as in 1998 by the pioneering work of Meuwissen et al. [37]
who used a specimen with asymmetrically placed notches.
They measured displacements using a discrete number of
trackers, and compared them with a numerical model to
fit the parameters. Since then, many approaches have been
adopted to characterise Hill48 [14, 15, 27–29, 38–43], the
Ferron model [44], Yld96 [38], Bron and Besson model [42,
43] and Yld2000-2D [11, 15]. They included a mixture of
tensile tests performed on specimens including geometric
features such as holes or notches and non-standard biaxial
tests leading to a heterogeneous state of stress. However,
Hill48 has proved inadequate to accurately describe the
behaviour of many anisotropic elastoplastic materials [9,
15, 42]. One of the challenges of fully characterising
more advanced constitutive models such as Yld2000-2D is
the activation and identification of all material parameters
involved (eight or more).

In the VFM the effectiveness of parameters extraction
relies on using robust virtual fields (VFs). These are spatial
weight functions allowing to probe parts of the specimens
for information. Traditionally, they are defined manually by
the investigator using analytical functions such as polyno-
mials, sinusoids, exponential functions etc. and are called
user-defined virtual fields (UDVFs). This approach was suc-
cessfully applied to the case of anisotropic plasticity by
[14, 15, 45]. However, it was noted that the choice of vir-
tual fields was essential for good accuracy. The choice
is dependent on the expertise of the user, and might be
time consuming as it involves a trial-and-error procedure.
Moreover, this intuition-led choice has no reason to be
optimal for the extraction of all parameters. This is par-
ticularly important for less influential parameters which
may only affect the deformation fields over certain time
steps and specific areas of the specimen. Recently, a new
type of virtual field has been proposed to address the
limitations described above, namely the sensitivity-based
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virtual fields (SBVFs) [46, 47]. These fields are automat-
ically generated for any constitutive model, and any test
geometry based on the sensitivity of the reconstructed stress
field to each material parameter. This framework provides
enhanced flexibility and allows to tackle complex constitu-
tive models more effectively [48].

In this work, we present an experimental validation of the
sensitivity-based virtual fields for anisotropic plasticity. We
have tested a cold-rolled sheet of DC04 steel and performed
standard characterisation to obtain material parameters for
Hill48 and Yld2000-2D models. Then, heterogeneous tests
(deep-notched specimens) were performed along different
orientations and the VFM with the SBVFs were used to
characterise the models.

Theory

Brief Recall of the Finite Deformation Framework

Let us consider a body B, where the position of particles
in the reference configuration is given by X and in the
deformed one by x. The displacement field is defined as the
difference between the current and the reference positions:

u(X, t) = x − X (1)

The deformation gradient is defined as:

F = ∂x
∂X

= ∂u
∂X

+ I, (2)

where I is the second order identity tensor. Using polar
decomposition, the deformation gradient can be written as
the product of two second order tensors:

F = VR (3)

where V is the left stretch tensor and R is the rotation tensor.
The left stretch tensor can be conveniently calculated as:

V =
√
FFT (4)

where the root operator refers to the root of a matrix.
A consequence of such mathematical description is that
for every point, a local coordinate system rotates during
deformation, as outlined in Fig. 1. This is an important
feature to consider when the body includes a texture, as its
orientation will follow any local rotations.

A convenient measure of strain, called Hencky strain, can
be constructed from the left stretch tensor:

εL = lnV (5)

This strain measure can be used to formulate constitutive
laws within the finite deformation framework. For further
details on continuum mechanics the reader is referred
to [49].

Fig. 1 Definition of coordinate systems, X is the initial position of a
material point and x, its current position, (i, j) is the initial orienta-
tion of the local coordinate system, (1, 2) is the corotational system,
(Ξ, H) is the material coordinate system in the reference config-
uration and (ξ, η) is the material coordinate system in the current
configuration

Constitutive Models

In this study we considered two different yield models
suitable for cold-rolled sheets: Hill48 and Yld2000-2D [1,
6]. The former is relatively simple extension of the von
Mises criterion to account for anisotropy and the equivalent
stress can be expressed as:

σHill
eq =

√
Gσ 2

11 + Fσ 2
22 + H(σ11 − σ22)2 + 2Nσ 2

12 . (6)

The coefficients in this criterion can be defined in multiple
different ways. Here, we follow the convention used in finite
element package Abaqus. For alternative ways of defining
the coefficients the reader can refer to the appendix. The
plastic potentials (Rij ) are generally used to obtain the
governing parameters from an experiment [50]:

⎧
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(7)

where Rij = σ
y
ij

σ0
, with σ

y

11 and σ
y

22 the yield stresses
identified in planar uniaxial tests conducted at 0◦ and
90◦ respectively and σ

y

33 the through-thickness yield stress.
Finally, σ

y

12 is the yield stress identified under pure
shear. Although the model is defined for plane stress and
σ33 = 0, the information about σ

y

33 can be obtained
from the combination of associated flow rule assumption
and Lankford coefficients. The reference yield stress was
assumed to coincide with σ

y

11, i.e. σ0 = σ
y

11, as this reduces
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the number of variables to be identified by one, and does
not affect the formulation of the model. Additionally, plane
stress was assumed, as the tested samples were thin relative
to their in-plane dimensions, and associated flow rule was
used.

Yld2000-2D was developed strictly for plane stress
condition for which the equivalent stress can be calculated
as:

σYld
eq =

[
1

2

(|X′
1 − X′

2|a+ |2X′′
2 + X′′

1 |a+|2X′′
1 + X′′

2 |a)
]1/a

(8)

where a is an exponent based on the metal micro-structure
(a = 8 for FCC and a = 6 for BCC) and X′

1, X′
2 and X′′

1 , X′′
2

are the principal values of two stress tensors X′, X′′ which
are defined as linear combinations of the Cauchy stress:
{

X′ = L′σ
X′′ = L′′σ (9)

Matrices L′ and L′′ are given by:

L′ =
⎡

⎣
2α1

3 − 2α1
3 0

− 2α2
3

2α2
3 0

0 0 α7

⎤

⎦ (10)

L′′ =
⎡

⎣
8α5−2α3−2α6+2α4

9 − 4α6−4α4−4α5+α3
9 0

− 4α3−4α5−4α4+α6
9

8α4−2α6−2α3+2α5
9 0

0 0 α8

⎤

⎦ (11)

The model involves 8 independent parameters, α1–α8,
which are generally obtained using 3 tensile tests performed
at 0◦, 45◦, 90◦, a biaxial test (bulge test), as well as a test
for measuring rb = ε̇yy

ε̇xx
at balanced equibiaxial loading.

In total, eight parameters have to be measured to calibrate
α parameters; four yield stresses: σ0, σ45, σ90, σb, and
four Lankford coefficients (r) characterising anisotropy in
plastic deformation: r0, r45, r90, rb. Finally, the associated
flow rule was assumed here as well.

A non-linear isotropic hardening power law (Ludwik)
was chosen with the following form:

σ̄ = σ0 + K(ε̄p)n (12)

where σ0, K, n are material parameters and ε̄p is the
equivalent plastic strain integrated throughout the history of
deformation.

Reconstruction of the stress tensor from experimentally
measured strain data is performed using a numerical
implementation of the constitutive laws. These were based
on the radial-return algorithms developed by Koh et al.
for plane stress Hoffman model (generalisation of Hill48)
and Yoon et al. for Yld2000-2D [51, 52]. Note that
the Hoffman model simplifies to Hill48 when tension-
compression symmetry is assumed.

The constitutive computations are performed in a
material coordinate system (ξ, η) which is initially aligned
with manufacturing rolling (RD) and transverse (TD)
directions. Since the kinematic fields are computed in the
global frame (i, j), for each data point strain and stress
tensors need to be rotated to the material frame:

ΔεL
(ξ,η) = RT RT

matΔε
(i,j)
L RmatR. (13)

where Rmat is a rotation tensor projecting the global frame
onto the material frame in the unloaded configuration
(Fig. 1). Once the stress tensor is reconstructed it is rotated
back to the global frame in which the VFM equations are
formulated.

Virtual Fields Method

The Virtual Fields Method is an inverse technique to
identify material parameters from full-field measurements.
It relies on the force equilibrium through the principle of
virtual work (PVW). In the case of static loading and in
absence of body forces, it can be expressed in the reference
body configuration as [53]:

−
∫

B0

P : ∂U∗

∂X
dB0 +

∫

∂B0

(PN) · U∗d∂B0 = 0 (14)

where B0 is the considered body in the reference
configuration, ∂B0 its boundary, N is the outward vector
of ∂B0, P is the 1st Piola-Kirchhoff stress tensor and U∗ is
a vectorial test function called virtual displacement. Virtual
displacement fields need to be continuous and piecewise
differentiable.

The stress tensor (P) is directly reconstructed from
measured kinematic fields by means of the assumed
constitutive law and a guessed set of material parameters
(χ). The validity of the guess is assessed by the residual
value evaluated with equation (14).

As the full-field measurements provide spatially rich
data, the first integral in equation (14) can be replaced by
a discrete sum of all points in the region of interest (ROI).
By selecting virtual displacements as constant across ∂B0,
the second integral in equation (14) can be replaced by the
product U∗ · Fload , where Fload is the total load measured
with the test machine load cell. This procedure filters out
generally unknown distribution of tractions over the loading
edges with a quantity easy to measure.

Since the PVW has to be evaluated over the entire
volume, but the measurements are taken only at the surface
of the specimen, it is necessary to make some assumption
regarding the variation of kinematic fields through the
thickness. If the specimen is thin, plane stress assumption is
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reasonable and the PVW can be expressed in terms of a cost
function as:

Φ(χ) =
Yld∑

i=1

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩
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(t)
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Sjh
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⎦
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. (15)

where αi is a scaling parameter to normalise the contribu-
tion of each virtual field and their respective units, Sj is the
surface area of each measurement point and h is the thick-
ness of specimen. This cost function can include a number
of independent virtual fields and load levels (time steps).
The identification is carried out by minimising (equa-
tion (15)) with respect to the sought material parameters.

It is worth noting that equation (14) is formulated in
terms of the 1st Piola-Kirchhoff stress tensor, while most
constitutive laws relate kinematic fields to the Cauchy stress
tensor. The former can be obtained from the latter with:

P = det(F)σF−T (16)

where F is the deformation gradient tensor. Since in reality
the deformation is fully 3D, so is the deformation gradient
and this has to be reflected in the computation of its
determinant. By assuming negligible out-of-plane shearing,
the determinant can be computed as:

det(F) = F33(F11F22 − F12F21). (17)

Since the in-plane values are directly measured the only
unknown is the out-of-plane component. It can be estimated
from the constitutive law (e.g. assuming plane stress
elasticity and isochoric plastic flow) [47], or can be directly
measured by means of back-to-back camera systems as
shown in [54].

The virtual displacements (and their spatial derivatives,
later simply referred to as virtual fields) spatially probe
the reconstructed stress field for information. As a result,
the choice of VFs is crucial and has strong influence
on identification quality. Ideally, VFs should be focused
on areas rich in information and minimize the influence
of the measurement noise. In the case of non-linear
material models, selecting VFs usually relies on a manual
definition by means of simple mathematical functions, such
as polynomials or sinusoids [14, 15]. The effectiveness
of these VFs called user-defined VFs (UDVFs) heavily
depends on the expertise of the investigator. It is worth
noting that usually UDVFs are kept constant across the

history of deformation, whereas the information evolves
as the loading changes. As a result, a VF that is relevant
e.g. for identification of yield-related parameters might
not be as effective for identification of the hardening law.
Recently, a new automated method for generating high-
quality virtual fields has been proposed [46, 47]. These
fields called sensitivity-based virtual fields (SBVFs), are
designed to highlight areas rich in information for each
parameter separately and for each time step, resulting in
better identification, without significant input from the
investigator.

Sensitivity-Based Virtual Fields

The sensitivity-based virtual fields [46, 47] are automati-
cally generated for every material parameter. These fields
are good at finding information about each parameter sep-
arately and coupling them together in one cost function to
identify all material parameters. Each virtual field is con-
structed based on the sensitivity of the reconstructed stress
field to a given material parameter. The procedure for gen-
erating virtual fields is discussed in details in [46] with the
extension to large deformation framework in [47]. Here, we
shortly summarize the necessary steps to generate SBVFs.

For each material parameter a map of stress sensitivity is
calculated through:

δP(i)(χ , t) = P(χ + δχi, t) − P(χ , t) (18)

where δχi is a small variation of parameter χi , typically δχi

is between -20% and -10% of χi . The fields are calculated
at all considered load levels, generating temporal maps of
stress sensitivities.

In plasticity, the response is history dependent with yield-
related parameters being active from the onset of plasticity
throughout the whole history, while hardening parameters
are active only during accumulation of plastic deformation.
In order to decouple the influence of yield stress from that
of hardening, an alternative stress sensitivity field is derived,
called the incremental stress sensitivity field:

δP̃(i)(χ , t) = δP(i)(χ , t) − δP(i)(χ , t − 1)

Δt
. (19)

These fields highlight the information about a given
parameter in the test and are excellent candidates for virtual
fields. In order to apply them in the VFM, virtual fields
are generated such that the spatial derivatives of virtual
displacement fields match the incremental stress sensitivity
fields in a least-square sense. Additionally, the VFs need
to be constructed in a way that the corresponding virtual
displacement field is known. To achieve that, a virtual
mesh is employed to express virtual fields using piecewise
linear functions. It consists of linear quadrilateral elements
enclosing the ROI, which are used to express both virtual
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displacement and virtual strains fields based on the nodal
values through interpolation functions.

To construct SBVFs, a virtual global strain-displacement
map is constructed: for each data point, the spatial
derivatives of the virtual displacement at that point are
written as functions of the nodal virtual displacements
through the element shape functions. All such equations
are concatenated in one matrix (Bglob). The matrix is
then modified to account for the wanted virtual boundary
conditions (e.g. U∗ = const over ∂B0), yielding the
modified virtual strain-displacement matrix: B̄glob. Then,
the incremental stress sensitivity map is projected in a least-
square sense onto the virtual mesh, using a pseudo-inverse
of B̄glob:

U∗(i)
node(t) = pinv(B̄glob)δP̃(i)(χ , t). (20)

Finally, the identified virtual displacements are used to
calculate virtual fields at all data points:

∂U∗(i)

∂X
= BglobU

∗(i)
node. (21)

The procedure yields a separate virtual field for every
material parameter, at every data point and every time step
which is then used to evaluate (equation (15)).

Equation (20) leads to virtual displacements that have a
unit of stress sensitivities multiplied by length. However, it
needs to be reminded that the virtual displacements have

no physical significance and the unit is unimportant. For
a better illustration, one can imagine a separate field is
constructed, which is identical to the stress sensitivity field
in terms of numerical values but unit-less. This field is then
projected onto the virtual mesh leading to virtual strains
with the unit of 1/length, which is consistent with the
principle of virtual work. When multiple virtual fields are
combined in one cost function, virtual displacements need
to be normalised so that they have comparable weights. This
can be done by tuning the αi parameter in equation (15) in
a way to normalise the magnitude of e.g. the internal virtual
work. This was done previously based on the mean value of
x% mostly contributing time steps as described in [46, 47].

Experimental Procedure

Specimen Preparation

Specimens were water-jet cut out of a cold-rolled sheet
of DC04 low-carbon steel alloy with a nominal thickness
of 1.5 mm. Three geometries were tested: a standard
dogbone (DB) specimen, a rectangular specimen for bulge
test and a deep-notched (DN) specimen for heterogeneous
test (Fig. 2). The specimens surfaces were first cleaned with
sandpaper to remove oxides and then coated with a rubber-
based white paint (Rust-oleum Peel coat, white matt finish)

Fig. 2 Geometry of the
specimens used in the tests.
Dimensions in mm

(a) Dogbone (DB) specimen (b) Deep-notched (DN) speci-
men

(c) Bulge specimen (not to scale
with (a) and (b))
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to provide good contrast for black speckles. An optimised
speckle pattern [55] was printed on the specimen using
a flat-bed printer (Canon Océ Arizona 1260 XT) which
provided good consistency and reproducibility. An average
speckle size of approximately 65 μm was achieved (Fig. 3).

Experimental Set-up

Tensile testing

Both DB and DN samples were tested using a servo-
hydraulic test machine with a 100 kN load cell and hydraulic
grips. Deformation was measured using a stereo- digital
image correlation (DIC) set-up, with two digital Manta
G-504b cameras (5 Mpx), equipped with 105 mm Sigma
DG Macro lenses and polarisers (Edmund optics). A LED
light panel (Zaila, Nila) equipped with a polariser was
used to illuminate the samples. By setting cross-polarization
specular reflection was minimised which resulted in a grey-
level histogram spread across most of the dynamic range of
the cameras [56]. The stereo-DIC setup was used following
the recommendation of the DIC Good Practices Guide,
to account for test piece thinning, rotation or translations
induced by misaligned grips and other effects that may
produce errors in 2D-DIC [57]. The reference images
for correlation were taken while maintaining zero load;
the specimen was loaded in displacement control divided
into three phases: slow rate (elastic range), medium rate
(transition to high rate) and high rate where most of the
plastic deformation took place, as indicated in Fig. 4. The
length and rate of displacement of each phase was tuned
in the preliminary phase of the testing campaign and were
proven to give a good compromise between the extent of
collected data and the duration of the test. The images were
taken every 1 s and synchronised with the force measured

Fig. 3 Quality of the printed speckle pattern. Speckles are approxi-
mately 65 μm across

Fig. 4 Experimental set-up

from the load cell. The set-up is illustrated in Fig. 5. The
summary of tested samples is presented in Table 1.

Bulge tests

Since the yield stress and r-value information in balanced
biaxial state is required for determination of the anisotropic
constitutive parameters, a hydraulic bulge test was carried
out using an Erichsen bulge/FLC tester model 161.

A steel sheet specimen was mounted on the bulge test
apparatus as in Fig. 6. Then the specimen was clamped
between the lower blank holder and the upper die. To
prevent slipping of the specimen during the test, plastic
flow was restricted with a drawbead and high blank holding
force. The diameter of the area of interest in the test device
was 200 mm. The hydraulic pressure was applied on the
bottom side of the specimen to produce bulging and plastic
deformation.

A stereo digital image correlation technique was used
for measurement of curvature and strain fields as shown
in Fig. 7. Two 2448 × 2048 pixels 14 bit CCD cameras
were used for the measurement. The important correlation
variables chosen in the DIC analysis were: subset: 41, step:
7, object pixel size: 0.117 mm; for the details the reader is
referred to the DIC table in Appendix C.

Table 1 Summary of the tests performed

Name of specimen Angle (α) to the RD Number of samples

DB-0 0◦ 3

DB-90 90◦ 3

DB-45 45◦ 3

DN-30 30◦ 3

DN-45 45◦ 4

DN-60 60◦ 3
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Fig. 5 Loading rate used in the tensile tests

In the bulge test, the biaxial stress-strain curve is derived
from the membrane stress and the through-thickness strain
near the pole of the bulged specimen according to the
procedure outlined in [58].

In membrane theory of a thin-walled pressure vessel, the
biaxial stress is calculated as:

σ = pR

2t
(22)

where p is the pressure obtained from a pressure sensor, R

the current radius of curvature and t the current thickness.
The current thickness is calculated from:

t = t0 exp εt (23)

where t0 is the initial thickness and εt the through-thickness
strain, obtained from the in-plane strains through: εt =
−ε1 − ε2, where ε1 and ε2 are major and minor strains. The
current radius of curvature R is obtained from:

R = 1

κ
= 1

1
2 (κxx + κyy)

(24)

where κ is the curvature. Both the in-plane strains and cur-
vature were measured with Vic-3D (Correlated Solutions).
The in-plane strains were calculated by averaging major and

Fig. 6 Schematic diagram of the bulge test

Fig. 7 View of the bulge test experimental set-up

minor strains within the circle centred at the apex and with
the radius r2 = 10 mm. The curvature κ was calculated by
averaging curvatures κx and κy along the horizontal and ver-
tical diameters of a circle centred at the apex and with the
radius r1 = 20 mm respectively.

Two specimens were tested and it was found that the
deviation was very small between the two membrane stress-
thickness strain curves.

Data Processing

Dogbone specimens

Raw grey-level images were exported to a DIC package
(MatchID 2018.2.2) and processed using stereo-DIC. Due
to significant plastic deformation of the specimen upstream
of the gauge section the small ROI that remained in the
camera field of view for the whole test was selected. The
camera parameters and DIC settings are summarized in
Table 8 available in Appendix, as per recommendation from
the International DIC Society Good practice guide [57]. The
measured fields were used to reconstruct the stress-strain
curve and identify yield stress and hardening law for each
of orientation (0◦/45◦/90◦), using the uniform and uniaxial
stress assumptions. The average longitudinal plastic strain
was plotted against the average transverse plastic strain,
and a straight line was fitted to the data in order to obtain
the Lankford coefficient [59]. The line passed through the
origin and was fitted to the data corresponding to 8–12%
range of plastic deformation.
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Fig. 8 Stress-strain curves measured with the dogbone tests

Deep-notched specimen

Raw grey-level images were exported to MatchID and dis-
placements in the gauge section were obtained using stereo-
DIC, with the parameters presented in Table 9 included in
Appendix C. The data was exported to Matlab, where dis-
placements were temporarily and spatially smoothed and
then down-sampled to a number of load levels (time steps).
Gaussian filter (defined with the standard deviation σsmooth

and the kernel size is chosen as the lowest odd number that is
larger than �6 × σsmooth�) with edge correction was used
for spatial smoothing and Savitzky-Golay filter was used
for temporal smoothing, characterised with two parame-
ters: polynomial order mT S and the window size wT S .
The down-sampling purpose was to improve signal-to-noise
ratio of strain increments and reduce the computational

Fig. 9 Longitudinal versus transverse plastic strains measured using
dogbone samples. The data was used to calculate Lankford coefficients
in the range of 8%–12%

Table 2 Parameters identified using dogbone specimens. The uncer-
tainty is presented as a single standard deviation

Specimen σ
y

0.002 [MPa] σ0 [MPa] K [MPa] n [-] r0.08−0.12 [-]

DB-0 203 ± 1 164 ± 2 459 ± 4 0.43 ± 0.01 1.90 ± 0.08

DB-45 218 ± 3 185 ± 3 475 ± 5 0.46 ± 0.01 1.35 ± 0.09

DB-90 217 ± 2 185 ± 1 445 ± 5 0.47 ± 0.01 2.05 ± 0.13

effort. Central finite difference was used to compute kine-
matic data (deformation gradient, rotation tensor, Hencky
logarithmic strains), which were then passed to an in-house
VFM code to identify the material parameters.

Results and Discussion

Dogbone Testing

For each of the orientations (0◦/45◦/90◦), three specimens
were tested. The measured true stress-strain curves are
presented in Fig. 8. A visible bump around the strain value
of 3% is believed to be caused by the step change in the
cross-head velocity as indicated in Fig. 5 and is consistently
seen in all collected data (including DN samples).

The curves were used to identify the hardening param-
eters (equation (12)) and coefficients for Hill48 (equa-
tion (6)) and Yld2000-2D (equation (8)). The hardening law
was identified using strain of up to 10%, as at the higher
deformation the assumed hardening model does not capture
the material behaviour accurately. This could be improved
upon in the future, however the main objective of this con-
tribution is to demonstrate the effectiveness of the SBVFs,
as opposed to improving the constitutive description of the
material. Apart from the yield stress defining the hardening

Fig. 10 Variation of flow stress ratios with plastic work (Wp)
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(a) Variation of the initial yield stress. (b) Variation of Lankford coefficient.

Fig. 11 Variation of yield stress and r parameter with orientation of the material obtained using Hill48 and Yld2000-2D models

law (σ0), a 0.2% offset yield stress (σy

0.002) was identified to
quantify the anisotropy between orientations.

Longitudinal plastic strain was plotted against transverse
plastic strain as shown in Fig. 9. The Lankford coefficients
were identified in the range of 8%–12%. Across all samples
the trend has shown good linear relationship with little
variation between different samples. All of the identified
parameters are presented in Table 2.

The reference hardening curve was constructed based on
the average behaviour along the RD:

σ̄ = 164 + 459(ε̄p)0.43 [MPa] (25)

The ratios of flow stress in each direction to the flow
stress in RD have been investigated under different values of
plastic work. This is now a standard practice in evaluating
anisotropy of metal sheets, as the ratios are difficult to iden-
tify reliably at low levels of plastic deformation, especially
when the bulge test is employed [10]. The obtained curves
are presented in Fig. 10.1

Clearly, the anisotropy in yield stress changes rapidly
at low deformation levels. This has to be taken into
consideration when selecting the reference parameters for
comparison with the DN results. It is reasonable to consider
the average ratios based on plastic work between 10 and
50 MPa: 1.014 for 90◦ and 1.040 for 45◦. The approximate
flow stresses for 90◦ and 45◦ were then calculated based
on the ratios and the value measured along 0◦ resulting in:
σ45 = 1.040 × σ0 = 170.56 MPa and σ90 = 1.014 × σ0 =
166.30 MPa.

The collected data was used to obtain Hill48 parameters
in two ways: using all Lankford coefficients, or using σ0

from all tests and the Lankford coefficient from DB-90,
for the details the reader is referred to the appendix. The

1Technically, this quantity is plastic work density and corresponds to
the area under the stress-plastic strain curve. Here, we use the term
‘plastic work’ due to its popularity in literature.

variation of the initial yield stress and Lankford coefficient
with material orientation is presented in Fig. 11. The
corresponding parameters are presented in Table 3. The
two sets are different due to the limitations of the model
and its inability to describe different degrees of anisotropy
of the yield stress and deformation at the same time [60].
Importantly, the two sets differ only by the magnitude of σ

y

12
which drives the values at 45◦.

The biaxial flow stress (σb) and the strain ratio at
balanced biaxial loading (rb = 0.77) were measured in the
bulge test. The ratio of σb to the RD flow stress as a function
of work hardening is presented in Fig. 10. The equibiaxial
yield stress varies significantly at low level of deformation
due to differential hardening [61]. This ultimately leads to
a set of different Yld2000-2D surfaces identified from the
standard tests, two of the surfaces identified (with ratios
taken at 10 and 25 MPa) are presented in Fig. 12. The
method used for fitting the parameters is detailed in the
appendix. As seen from the plot, the biaxial yield stress is
over-predicted when Hill48 is used, due to lack of flexibility
of the model.

Naturally, Yld2000-2D offers a much better fit to the
experimental data as demonstrated in Fig. 11, where the
variation in both yield stress and Lankford parameters is
captured correctly with a single set of parameters.

The identified parameters for the Yld2000-2D models
are presented in Table 4 for two different levels of work
hardening (10 MPa and 25 MPa).

Table 3 Reference parameters for Hill48 identified from dogbone
testing

Model fitted to σ
y

11 [MPa] σ
y

22 [MPa] σ
y

33 [MPa] σ
y

12 [MPa]

Yield stresses 164.0 166.3 201.2 94.1

Lankford coefficients 164.0 166.1 201.2 104.6
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Fig. 12 Identified yield surfaces using the standard testing protocol
using two models: Hill48 and Yld2000-2D

Deep-Notched Test

Three directions were tested: (30◦/45◦/60◦), so that
different test configurations could be combined together
in a single cost function. For instance, by combining two
tests performed at 30◦ and 60◦, richer data is available
to identify the models, which should improve accuracy of
identification. Additionally, these other orientations may
be used as a validation tool for testing the performance
of the model and the quality of identified parameters. As
indicated in Tables 8–9, DN tests exhibited a smaller strain
uncertainty. This is believed to be caused by a better lighting
set-up during DN experiments.

Figure 13a2 shows an image of a typical specimen in
the unloaded configuration. Only the region bounded by
the solid box was correlated and the data corresponding
to the dashed box was then passed on to the identification
routine. The magnification in the experiment was chosen
such that the field of view used in identification would
be captured by both of the cameras, regardless of the
deformation of the ROI or the rigid body motion due to
the deformation upstream the test piece. Additionally, if
the cameras were positioned closer to the test machine,
obtaining sufficient depth of field would be challenging.
The strain fields obtained at 10.5 kN (45◦ specimen) are
presented in Figs. 13b–d and the force-displacement curves

2The spikes in the histogram were identified after the experiments
were conducted and come from a (now resolved) software issue
when saving 8-bit images. Since the quality indicators (grey level
noise, displacement and strain noise-floors) seem to be reasonable
it is suspected that those artefacts do not significantly affect the
measurements.

are shown in Fig. 14. The displacements in that plot were
first corrected for rigid body motion and then measured
at the point indicated in Fig. 13(a) with a red dot. The
figure demonstrates that consistent measurements were
obtained with multiple test specimens and that the variation
in force measurements between the three orientation is
minor. Note, that although force-displacement curves for the
three orientations are similar, they correspond to different
deformation fields.

Samples were strained until failure and the base of white
paint did not fail during the experiment, however it de-
bonded from the specimen when the neck started to develop,
see Fig. 15. If observation of the strain localization was
of interest, the base layer could be removed, and white
speckles could be used instead of black ones. In that case,
the contrast could be achieved by means of the material
surface, combined with cross-polarization of light to remove
the specular reflection.

Displacements obtained in MatchID were exported to
Matlab, temporarily smoothed with mT S = 3 and window
wT S = 11, then the data was down-sampled to the
desired number of load levels and spatially smoothed with a
Gaussian of square kernel of 13 × 13 pixels (corresponding
to σsmooth = 2).

A representation of the data in minor-major strain space
is shown in Fig. 16. DN tests occupy the space around
uniaxial tension, with a large number of points lying in
between uniaxial tension and pure shear/plane strain. As
expected, the data is contained in the second quadrant and
thus not representative of biaxial tension which is relevant
to the Yld2000-2D model.

The kinematic data was fed to the in-house VFM
program to identify the parameters of Hill48 and Yld2000-
2D. For the identification, a virtual mesh of 10 × 10
elements, a material variation of 15% (δχi = −0.15χi)
and a scaling parameter (see [47] for more details) of 0.3
were used. As the baseline total stress sensitivities were
used to construct SBVFs as they yielded better results, as
shown later. Additionally, the elastic properties were set a
priori to the typical values for steel, i.e. E =200 GPa and
ν = 0.3.

Minimisation of the cost function (equation (15)) was
carried out in Matlab, starting from four points selected
with a random number generator, from the region contained
between 50% and 200% of the reference values. Initially, the
Levenberg-Marquardt algorithm was used (lsqnonlin)
but it was found that the algorithm could not converge to
a unique global minimum. The method was then switched
to fmincon with the sequential quadratic programming
algorithm (SQP) which was capable of converging to the
same solution regardless of the starting point. The gradient
of the cost function was calculated internally by Matlab
using the central finite difference scheme.
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Table 4 Reference parameters
for Yld2000-2D identified
from dogbone testing and the
bulge test

Plastic work [MPa] Corresponding α1 [-] α2 [-] α3 [-] α4 [-] α5 [-] α6 [-] α7 [-] α8 [-]

strain at 0◦ [%]

10 4.4 1.071 1.000 0.774 0.899 0.923 0.880 0.975 1.010

25 9.7 1.061 0.994 0.663 0.879 0.899 0.740 0.964 1.092

To quantify the identification accuracy a metric based on
the reconstructed apparent yield stress was used [47]. In this
approach, instead of comparing parameters on a one-to-one
basis, the models are used to reconstruct the apparent yield
stress that would cause yielding at a given orientation in a
1D loading scenario (see Fig. 11a). Additionally, the effect
of hardening can be accounted for which results in a map
of the apparent yield stress as a function of orientation and
level of plastic strain. The global mean error is constructed
as a mean difference between the map corresponding to
parameters derived from the dogbone tests and the map
corresponding to the identified parameters. This procedure
helps quantify the identification error in a more meaningful
way than the standard one-to-one parameter comparison.

Identification of Hill48 with SBVFs

The first set of parameters was identified using specimens
cut at 45◦ to RD. In total, four different samples were
tested and processed, but the data from DN-45-2 was
discarded as it was found that there was significant out-of-
plane bending during the test which violates the through-
thickness homogeneity assumption. The data from the
three successful tests were passed to the in-house VFM
code and the details regarding time steps included in the
identifications are presented in Table 7. Note that frames
were selected such that the majority of points were within
10% of strain in the load direction so that the DN data were
consistent with the hardening law definition assumed for the

Fig. 13 Image of a tested DN
specimen. (a) is a grey level map
with marked correlation region
(solid box) and region used in
identifications (dashed). (b)–(d)
represents strain maps obtained
from the DIC using spatial
smoothing of σsmooth = 2 and
temporal smoothing of
mT S = 3, wT S = 11

(a) Raw image of a DN specimen with histogram
in the right bottom corner2. The solid box rep-
resents the correlation region, the dashed box
represents the region used in identification, the
red dot indicates the position at which the ver-
tical displacement was measured for the force-
displacement curves.

(b) Horizontal strain at 10.5 kN.

(c) Vertical strain at 10.5 kN. (d) Shear strain at 10.5 kN.
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Fig. 14 Force-displacement curves for all tested DN samples. The
displacements were measured at the point indicated with a red dot in
Fig. 13(a)

dogbone tests. The criterion for the final time step was that
the strain corresponding to μ + 2σ was about 10%, with μ

being the mean and σ the standard deviation of the strain in
the loading direction. This ensures that about 98% of data is
below 10% strain. On average each identification run took 3
hours to complete.

The identified parameters were used to compute the
mean error based on the apparent yield stress metric. A
typical map corresponding to DN-45-3 is shown in Fig. 17.
The dashed cut (Fig. 17b) shows how well the yield stress
was reconstructed at equivalent plastic strain of 0.002, and
the solid cut shows the hardening behaviour along the
orientation of 45◦, indicating good identification of both
anisotropy and hardening. The identified parameters and the
corresponding mean error values for all samples are shown
in Table 5, and graphically in terms of the apparent yield
stress and predicted Lankford coefficients in Fig. 18.

The results show that the parameters obtained with the
DN tests are repeatable and in good agreement with the
dogbone data in terms of yield stress and hardening, how-
ever the Lankford coefficients are significantly lower than
for the dogbone.The vertical position of the reconstructed

Fig. 15 A deformed DN specimen. The white base paint has debonded
over the area of strain localization

Fig. 16 Strain paths measured in a DN test shown in minor-major
strain space

Lankford curves is driven by σ
y

33 which also controls how
far the biaxial part of the yield surface extends. As in the
DN tests much richer information is available in compar-
ison the homogeneous counterparts, the limitations of the
model become much clearer. Because of the interactions
between the yield surface, the flow potential and the biax-
ial yield stress, it is impossible to match all the data at the
same time with Hill48. This signifies that more advanced
constitutive models are required to accurately describe the
material under investigation.

Identification of Hill48 with UDVFs

An alternative to the SBVFs are the user-defined VFs. A
set of viable virtual fields for Hill48 and the geometry used
in this test has been presented in [15] based on a trial-and-
error method and expertise of the lead author. The virtual
displacements were defined in the coordinate system pre-
sented in Fig. 19 and were constructed in a way to include
all stress components in the cost function. These fields are:
{

u
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u
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The same data as used in Section “Identification of Hill48
with SBVFs” were fed to the VFM algorithm, however now
the UDVFs were used instead. The identified parameters
were used to reconstruct the variations of the yield stress and
Lankford coefficient with orientation as shown in Fig. 20.
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(a) The difference map obtained
with the reference parameters
and the parameters identified
from a single DN test at 45 .

(b) Cut through the dashed line
in (a).

(c) Cut through the solid line in
(a).

Fig. 17 Difference between parameters identified in a single DN test compared to the reference data from 3 DB tests. a the difference map, b
variation of yield stress with orientation at the plastic strain of 0.002, c variation of yield stress at 45◦ with plastic strain

Table 5 Identified parameters using DN test for Hill48 model

VFs Specimen σ11 [MPa] σ22 [MPa] σ33 [MPa] σ12 [MPa] K [MPa] n [-] r0 [-] r90 [-] r45 [-] Mean difference [%]

SBVFs DN-45-1 176.4 182.4 196.3 110.4 511.7 0.55 1.29 1.52 1.08 2.7

DN-45-3 174.3 176.7 190.5 106.3 504.4 0.51 1.31 1.40 1.10 1.4

DN-45-4 177.7 177.3 190.0 106.2 534.0 0.51 1.30 1.28 1.10 1.2

UDVFs DN-45-1 179.1 218.4 199.0 109.0 525.4 0.57 0.76 1.18 1.79 6.2

DN-45-3 130.4 229.2 164.0 111.8 317.0 0.57 0.53 0.58 −15.8 18.9

DN-45-4 169.9 100.0 145.9 115.7 480.5 0.53 −4.77 0.29 0.78 19.4

Reference 164.0 166.3 201.2 94.1 459.0 0.43 1.90 2.05 1.35 0.0

(a) Apparent yield stress reconstructed using
identified data with DN tests at 45 (ε̄ p = 0.002).

(b) Lankford coefficient reconstructed using
identified data with DN tests at 45 .

Fig. 18 Reconstructed apparent yield stresses and Lankford coefficients using Hill48 and parameters identified with the DN tests performed at 45◦
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Fig. 19 The coordinate system used to define virtual fields manually
within the region of interest

It is apparent from the figure that the UDVFs were not as
successful at characterising Hill48 model as SBVFs were.
The yield stress was accurately predicted at about 45◦ which
corresponds to the orientation of the test specimen, however
large differences were noted elsewhere. By using the same
metric as before, the global difference was calculated and was
found to be in the range 6%–19%. Judging on the Lankford
coefficients it is clear that the reconstructed parameters are
not physical as they lead to a non-continuous distribution.

The first virtual field (equation (26)) represents a uniform
extension, which leads to a direct comparison between the
measured force and the force reconstructed from the stress
field. In the case of anisotropic properties this integral
quantity is not sufficient to describe the model. Although
other virtual fields have been included in the cost function,
they were formulated in a way not to include the work
of external forces. As a result, the residuals corresponding
to those fields are much smaller than the one of the first
field and they are not very effective at including the other

two stress components in the cost function. These results
highlight the problem of manually defining virtual fields, as
they need to be hand tailored to every application with great
care and expertise in order to be functional.

The parameters identified in DN-45 tests with both
UDVFs and SBVFs were used to predict the internal
reaction forces based on the stress field reconstructed
from the measured strains. These forces were compared to
the experimentally measured ones to give an independent
validation in terms of quality of the material model and the
accuracy of identification with the DN-30 and DN-60 tests.
Fig. 21 shows the reconstructed forces corresponding to the
properties identified with DN-45-4 and strain measurements
from DN-45-4, DN-30-1 and DN-60-1. In the case of DN-
45-4 both SBVFs and UDVFs accurately reconstructed
the force measurement. When these parameters were used
to predict the responses of DN-30-1 and DN-60-1 a
large discrepancy was found with UDVFs, indicating poor
identification of anisotropy by UDVFs. On the contrary, the
parameters derived from the same test, but using SBVFs,
lead to a much better prediction of the experimentally
measured force-displacement curves indicating that a single
test performed along 45◦ is sufficient to identify the material
plastic anisotropy with the Hill48 model, which confirms
the results obtained in [27].

Influence of data range on Hill48 parameters identification

In order to investigate whether the results depend on how
much data is used in the identification, a study was
performed where increasingly more time steps were fed to
the cost function. Specimen DN-45-4 was chosen as the
baseline, which in the original study contained the maximal
strain of 14.0%.

Here, we investigated how the identified parameters
depend on the number of frames used in the identification.

(a) Apparent yield stress re-
constructed using identified data
with DN tests at 45 and UDVFs
(ε̄ p = 0.002)

(b) Lankford coefficient recon-
structed using identified data
with DN tests at 45 and UDVFs

(c) Real and reconstructed
forces for Specimen 3 using
UDVFs

Fig. 20 Identification of Hill48 model using a single DN test at 45◦ and UDVFs. a reconstructed yield stress variation with orientation; b
reconstructed variation of Lankford coefficient with orientation; (c) reconstructed loading force from stresses for Specimen 3
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(a) DN-45-4 (b) DN-30-1 (c) DN-60-1

Fig. 21 Validation of the Hill48 parameters derived from the DN-45-4 test with SBVFs and UDVFs in terms of the loading forces in DN tests. a
DN-45-4, b DN-30-1, c DN-60-1

At the low end, the maximum strain in the load direction
was 9.6%, and at the high end 20.3%, with the intermediate
steps approximately every 1.4% of additional strain, as
indicated in Fig. 22. In principle, as larger deformations
are supplied to the identification, more emphasis should be
put on the model to match the Lankford coefficients more
accurately. However, the incremental stress sensitivities
related to yielding tend to filter out time steps at which most
of the deformation takes place. To address that, two studies
were run: one in which incremental stress sensitivities were
used as a base for generating SBVFs, and another one where
total stress sensitivities (equation (18)) were used instead.
The findings of this study are presented in Figs. 23 and 24
for incremental and total stress sensitivities respectively and
the mean error as a function of maximal strain supplied is
presented in Fig. 25.

Surprisingly, the results obtained using the total (as
opposed to incremental) stress sensitivities are much more
consistent and stable with respect to the total number of
time steps used, as indicated by the lower mean error over
the range of maximal plastic strains. This justifies using

Fig. 22 Force versus the displacement of the bottom of the ROI for
DN-45-3. Markers indicate data points included in the identification

total stress sensitivity as the baseline in this contribution and
comes as surprise as previous studies showed that the incre-
mental sensitivities generally yielded more accurate param-
eters. These were however performed on synthetic data so
did not include any modelling errors [46, 47]. Although
the identification was improved when the SBVFs were cal-
culated with total stress sensitivities, no improvement in
reconstruction of Lankford coefficients was found, despite
supplying total strain as large as 20%.

A possible explanation for the under-performance of the
SBVFs based on incremental stress sensitivities is due to
filtering out large amounts of data from the cost function
by the fields. As mentioned in Section “Sensitivity-Based
Virtual Fields”, the incremental form of stress sensitivities
was introduced to filter out history dependence of plasticity
models and highlight transition zones between elasticity and
plasticity. As a result, when most of the field of view (FOV)
is plastically deformed, the incremental stress sensitivity
fields only cover a very small part of the FOV and provide
little information to the cost function. This might have
a detrimental effect in anisotropic plasticity, particularly
when associated-flow models are used, as the information
about the anisotropy can be queried at different levels
of plastic work, not only during initial yielding, but also
during accumulation of deformation. This shows that more
research is required into understanding of the benefits and
limitations of incremental versus total stress sensitivity for
the SBVFs, so that optimal choices can be made.

Identification of Yld2000-2D with SBVFs

Yld2000-2D model was identified using data from 3 experi-
ments (DN-30, DN-45, DN-60), split into two different sets:
Set 1 (DN-30-2, DN-45-3, DN-60-2) and Set 2 (DN-30-1,
DN-45-1, DN-60-1), as the samples DN-30-3 and DN-60-3
were discarded due to violation of the plane stress assump-
tion, similar do DN-45-2. The combination of three tests
improves the range of stress states represented in the cost
function leading to better accuracy. To simplify the problem,
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(a) Apparent yield stress reconstructed using pa-
rameters identified from a DN test along 45 us-
ing incremental stress sensitivities and various
levels of maximal strain (plotted at ε̄ p = 0.002).
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(b) Lankford coefficient reconstructed using pa-
rameters identified from a DN test along 45 us-
ing incremental stress sensitivities and various
levels of maximal strain.

Fig. 23 Reconstructed apparent yield stresses and Lankford coefficients using Hill48 and parameters identified with a DN test performed along
45◦ using incremental stress sensitivities to generate SBVFs

the reference flow curve (equation (25)) was used, so that
only anisotropic coefficients were identified. The total stress
sensitivity fields were used to generate SBVFs as there was
no need to decouple yield and hardening related parame-
ters. The cost function was minimised using the fmincon
function in Matlab with the SQP algorithm. An additional
constraint was added to the minimisation problem to ensure
that the flow curve represented the behaviour of the material
along RD [11]:

∣∣∣∣
2α1 + α2

3

∣∣∣∣
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+
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2α3 − 2α4

3
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+
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4α5 − α6

3

∣∣∣∣

6

= 2 (29)

Four starting points were selected using a random number
generator with a lower bound of 0.5 and an upper bound
of 2.0. The identification procedure was restarted after
it converged for the first time to ensure that the global
minimum was found. Two of the starting points converged
to the same solution, shown in Table 6, and in terms of
the yield surface in Fig. 26. Here, we present only results
obtained with data from Set 1.

The identified yield surface shows a good agree-
ment with the reference one in the regions where
data were present, however deviates significantly
near the biaxial stress state. In the region covered
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(a) Apparent yield stress reconstructed using pa-
rameters identified from a DN test along 45 us-
ing total stress sensitivities and various levels of
maximal strain (plotted at ε̄ p = 0.002).
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(b) Lankford coefficient reconstructed using pa-
rameters identified from a DN test along 45 us-
ing total stress sensitivities and various levels of
maximal strain.

Fig. 24 Reconstructed apparent yield stresses and Lankford coefficients using Hill48 and parameters identified with a DN test performed along
45◦ using stress sensitivities to generate SBVFs
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Fig. 25 Variation of mean difference for Hill48 model identified using
DN-45-4 specimen and SBVFs

with data points, the difference between the two sur-
faces is less than 5% in terms of the shear stress.
This is further confirmed by looking at the compari-
son between the experimental and reconstructed forces
which match closely (Fig. 26(b)). The poor description
around the biaxial stress state indicates that the tests are not
sufficiently heterogeneous for how flexible the Yld2000-
2D function is, i.e. the data used in the identification is not
diverse enough to constrain the shape of the yield surface
over all possible loading states. A similar observation was
recently reported in [62], where the authors demonstrated
that their model was matched very well in the domain
represented in the tests, however it did not provide good
predictions outside of it. They suggested that adding an
additional information to the cost function (in their case
a test at different load rate) could significantly improve

predictions over a wider domain and relieve the issue of
non-uniqueness of the material parameters.

To confirm this hypothesis another identification has
been carried out, using exactly the same test configurations
as above, however adding an additional constraint to
the optimisation problem. The optimisation function was
constrained such that the identified yield surface passed
through σb and rb measured in the bulge test. Four
randomly selected starting points were used, and at least
two converged to a similar solution, with similar final values
of the cost function (Table 6). The minimisation procedure
took between 2–3 days depending on the starting point,
irrespective of whether UDVFs or SBVFs were used. The
majority of the computation time was taken by the stress
reconstruction algorithm, due to the large number of data
points and combination of three tests. The identified yield
surface, apparent yield stress and Lankford coefficients are
presented in Fig. 27. The identified model matches the
reference well in terms of the yield surface and the Lankford
coefficients, confirming that the three deep-notched tests
did not represent enough data to identify Yld2000-2D,
however once the additional constraint was added to the
optimisation the SBVFs did a good job at identifying the
correct parameters. Importantly, both data sets were reliable
as they provide consistent material parameters.

To get a further insight into the completeness of the test, the
number of DN tests has been gradually reduced, first to two
tests (30◦+ 60◦) and then to a single test (45◦), both of which
included information from the bulge test. The parameters
were identified with these reduced tests using the same
methodology as described before. To quantify the accuracy
of identification, 3D yield surfaces were compared; each
surface was reconstructed in the spherical coordinate sys-
tem consisting of three variables: the azimuth angle, β, in
σ11-σ22 plane, the elevation angle, ψ , above the plane, and

Table 6 Anisotropic parameters and the final value of cost function for Yld2000-2D model identified with DN tests

Test configuration α1 [-] α2 [-] α3 [-] α4 [-] α5 [-] α6 [-] α7 [-] α8 [-] Φf inal

Initial Guess

Set 1 0.870 1.204 1.403 0.945 0.888 0.500 1.012 0.805

Set 1 + Bulge 1.735 0.552 1.693 1.470 1.520 1.248 0.836 1.549

Set 2 + Bulge 0.736 1.700 1.688 1.774 1.615 1.559 0.646 1.925

Set 1 + Bulge (UDVFs) 1.370 1.433 0.614 0.860 1.917 1.850 1.085 0.698

Final values

Set 1 1.120 0.979 0.913 0.900 0.930 1.067 1.009 0.857 0.175

Set 1 + Bulge 1.090 0.982 0.752 0.902 0.920 0.900 0.977 0.968 0.282

Set 2 + Bulge 1.104 0.945 0.752 0.903 0.922 0.894 0.981 0.979 0.233

Set 1 + Bulge (UDVFs) 1.146 0.939 0.843 0.860 0.892 0.951 1.003 1.009 8.3 × 106

Reference 1.071 1.000 0.774 0.899 0.923 0.880 0.975 1.010 −
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(a) Reconstructed yield surface (b) Reconstructed experimental force

Fig. 26 Identification of Yld2000-2D using 3 DN tests. a Comparison of the identified Yld2000-2D yield surface and the references one
(corresponding to 10 MPa of plastic work). The yield surface and the experimental data points were plotted for equivalent plastic strain of 3% to
represent only the load-paths achieving significant plastic strains. The outlines are drawn for change in the shear stress corresponding to 5% of
the yield stress under pure shear. b Comparison between the experimental and the reconstructed forces using identified material parameters and
measured strains

the radius d . For every combination of the two angles, the
distance from the origin to the yield surface was calculated
and compared between the reference and identified sets of
parameters. We then used the relative difference between
the two distances to quantify the matching:

rdiff (β, ψ, χ id ) =
∣∣∣∣
dref (β, ψ, χ ref ) − did(β, ψ, χ id )

dref (β, ψ, χ ref )

∣∣∣∣

(30)

The difference metric is convenient for comparing 3D yield
surfaces as it offers an one-to-one correspondence between
the models. The difference maps associated with the three
test combinations are presented in Fig. 28. From the figure,
it is clear that the larger the number of tests included in
the identification, the smaller the difference between the
reference and identified models. In general, the differences

were small for three and two tests set-ups (mean differ-
ence < 1%). Surprisingly, the discrepancies were most
pronounced for the stress states represented in the tests.
Potentially, this might be due to better fitting of the yield
surface to those represented stress states, in comparison
to the parameters derived from the homogeneous tests.
We hypothesise that the reference set of parameters is not
optimal for all stress states, since Yld2000-2D is fitted to
experimental data in a least-square sense. Thus, it is possible
that the deep-notch tests actually do a better job at capturing
the material response under these multi-axial loading con-
ditions. Significant differences were also found close to the
uniaxial tension at 90◦. This however could be explained by
the fact that the reference set of parameters was generated
with the average flow stress ratios; in reality, the reference
yield surface represents material behaviour approximately
over a large range of plastic work, whereas DN tests contain

(a) Identified yield surface from
three deep-notched tests under
constraints of biaxial behaviour

(b) Reconstructed apparent
yield stress for Yld2000-2D (at
ε̄ p = 0.002)

(c) Reconstructed Lankford co-
efficients for Yld2000-2D

Fig. 27 Comparison of the identified Yld2000-2D yield surface and the references one (corresponding to 10 MPa of plastic work). The yield
surface was identified using three deep-notched tests and the data from the bulge test
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Fig. 28 Difference maps for combinations of DN tests used to identify Yld2000-2D. The increasing number of tests included in identification
decreases the overall difference

information corresponding mostly to the low plastic work
at which the ratios vary considerably (Fig. 10). In the case
of the single test, the error in this region is much larger,
suggesting that the test is not sufficient to characterise
all possible orientation angles of the material. This was
confirmed by reconstructing force-displacement curves,
similarly to the procedure employed in Fig. 21. The forces
corresponding to 30◦ and 45◦ were reconstructed with high
accuracy, as they were constrained with experimental data
and the optimisation constraint of equation (29). However,
this was not the case for 60◦ test, in which the force was
predicted with an error of about 5% (data not shown).

To further elaborate on the viability of the three different
test combinations, the corresponding Lankford coefficients
have been calculated and are presented in Fig. 28d.
Interestingly, in spite of similar mean difference levels in
terms of stress envelope (Fig. 28a–b), the two tests set-up

experienced larger errors in terms of Lankford coefficients
close to 90◦ compared to the three tests combination. This
is most likely due to the fact that plastic flow is related to
gradients of stress field, making it much more sensitive to
the identified parameters values and experimental noise as
well. It must be noted however that the information about
3D plastic deformation is present during the identification
procedure as it is encoded in the strain measurements when
isochoric plastic flow is assumed.

The results presented in this contribution might seem
inferior to those reported by Rossi et al. [15] who used
the same test to identify Hill48 and Yld2000-2D models
for a stainless steel alloy. However, under closer inspection
this is not the case either for Hill48 or Yld2000-2D. In the
former case, they managed to correctly predict experimental
forces for all three orientations only when all three tests
were used to identify Hill48 parameters. As shown in
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Fig. 21 SBVFs achieved that successfully with only a single
test. In the case of Yld2000-2D, they demonstrated that
the model significantly decreases the error on Lankford
coefficients reconstructions, however the error on the values
they reported is of similar magnitude (Δr ≈ 0.10)
to that reported in this contribution. Finally, they did
not measure the reference behaviour under biaxial loading
thus the quality of Yld2000-2D identification could not be
fully judged. In terms of experimental forces they observed
a good agreement between the predicted and measured ones.
In this report we were able to reproduce this observation
even with the data set not including the bulge test (see
Fig. 26b), indicating that those quantities can be matched
correctly while the biaxial response of the material is not
matched closely. Interestingly in that paper the authors
used a direct method for integrating plasticity equations
which rely on the measured strains to estimate the flow
direction. This procedure might process the experimental
noise, modelling errors and interact with virtual fields
differently leading to different results compared to the
elastic predictor-plastic corrector schemes. In the future it
would be interesting to investigate which of the two schemes
is more suitable for identifying plastic laws.

The results suggest that the DN tests alone are not rich
enough to fully identify Yld2000-2D model. It may be
possible to work on the specimen shape to improve the
situation but it is unlikely that this will ever be enough
to place points close enough to the biaxial stress state.
However, using two axes for load introduction may lead to
enough degrees of freedom to obtain complete model. A test
like that in [63], combined with non proportional loading
may populate the stress space widely enough to obtain all
parameters in one test.

Full-field measurements give an insight into a large
range of load paths which the model is calibrated to. These
identified parameters represent a more complete response
of the material, compared to the parameters derived from
three uniaxial tests and a biaxial one. Further work needs
to be done to establish which of the two sets of parameters
reflects the behaviour of materials more comprehensively.
The validation procedure could be performed by modelling
an independent test using the two models, and comparing
the predictions with measurements. This is an exciting
opportunity for future studies.

Identification of Yld2000-2D with UDVFs

To complete the evaluation of SBVFs performance an iden-
tification of Yld2000-2D was carried out using the UDVFs
defined in Section “Identification of Hill48 with UDVFs”.
In this experiment the data from Set 1 (including bulge test)
were used to obtain Yld2000-2D parameters. The identified
parameters are shown in Table 6 and graphically in Fig. 27.

Clearly, the obtained parameters with UDVFs are not as
good as the ones obtained with SBVFs, confirming that the
proposed virtual fields significantly improve the identifica-
tion process. The final value of the cost function is much
larger compared to the SBVFs, however this was expected
as the virtual fields have completely different values and
scale the stress fields differently.

Conclusions

In this work we have tested a sheet of DC04 steel
alloy using the standard testing protocol and experiments
on deep-notched specimens to identify two constitutive
models: Hill48 and Yld2000-2D. The virtual fields method,
combined with the sensitivity-based virtual fields, has been
employed to extract constitutive parameters from full-field
measurements. The main outcomes of this study can be
summarized as follows.

– The results presented in this contribution suggest
that the sensitivity-based virtual fields are effective
at extracting information about material parameters,
particularly for advanced models such as Yld2000-2D.

– When the heterogeneous tests were used to identify
Hill48, the material parameters matched the yield stress
variation and the loading force well, however under-
estimated the Lankford coefficients. We suggest that
the underlying mechanism lies in the over-constraining
of the model, and that the biaxial behaviour influ-
ences the identified Lankford coefficients. Overall, the
three standard tests were successfully replaced with one
deep-notched test performed at 45◦

– User-defined virtual fields, selected based on the
recommendations of [15], were used as an alternative to
the SBVFs. It was found that the identified parameters
were less accurate compared to the ones obtained with
the SBVFs. The behaviour of the material was only
matched along the orientation of the test used for
characterisation (45◦) and experimental forces in other
directions could not be predicted correctly.

– For Hill48 using total, as opposed to incremental,
stress sensitivity fields to generate SBVFS, improved
consistency of the identification. This is most likely due
to incremental stress sensitivity fields filtering out the
majority of the supplied data, especially once the entire
ROI has yielded. On the contrary, when the total stress
sensitivity fields are used, time steps with larger plastic
deformation have more impact on the cost function and
identification.

– The number of load levels included in the identification
did not significantly influence the values of identified
material parameters for Hill48.
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– Deep-notched tests were not rich enough to identify
Yld2000-2D over all possible loading states. It was
found that the identified and the reference yield surfaces
matched well, but only in the regions represented in the
test. When data from the bulge test was used to con-
strain the cost function, the identified model matched
the reference very well over the entire stress space.

– It was found that the commonly used Levenberg-
Marquardt algorithm was not capable of finding the
global minimum of the cost function. The sequential
quadratic programming algorithm was used instead as it
was robust enough to converge to the global minimum
from a number of independent starting points.

The authors believe that the sensitivity-based virtual fields
provide a significant step forward to calibrate non-linear
models with the VFM, but there are still problems worth
investigating. In particular, there are no guidelines on how
much data should be used in identification (e.g. maximum
strain, magnitude of strain increments). This should be
studied rigorously, particularly employing the procedure
of image deformation to account for the DIC parameters
involved in the data processing [64].

Finally, the selection of the sample geometry still
remains an open problem, and the results could certainly be
improved further if the test was richer in terms of load paths.
An important question to answer is how to design a better
test that will contain sufficient information about the model
and reduce the number of tests involved. Currently, numer-
ical strategies are being developed, capable of optimising
specimen geometries that promote heterogeneity and par-
ticular strain states [30, 31]. They were applied to modify
uniaxial tension specimens and although greatly improved
heterogeneity of the test, struggled to produce data at biaxial
tension thus had limited applicability to advanced consti-
tutive models such as Yld2000-2D. Alternatively, a single
modified cruciform specimen could be used, which pro-
duces data covering a large portion of the yield surface,
including equibiaxial tension [63]. In future, the method
presented in this contribution could be applied to those test
configurations to identify models such as Yld2000-2D or
Yld2004-18p.
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Appendix A: Identification of model
parameters from the statically determinate
tests

Hill48

There are multiple ways in which parameters involved in
equation (6) can be identified. In this report, two methods
were applied following the guidelines reported in [65]. The
first approach involves three Lankford coefficients: r0, r90

and r45:

H(1)

G(1)
= r0,

F (1)

G(1)
= r0

r90
,

N(1)

G(1)
=

(
r45 + 1

2

) (
r0

r90
+ 1

)
(31)

An additional equation comes from assuming that the
behaviour along 0◦ matches the hardening law, which leads
to G + H = 1. The explicit forms of each parameters can
be shown to be:

F (1) = r0

r90(1 + r0)
,

G(1) = 1

r0 + 1
,

H (1) = r0

1 + r0
,

N(1) =
(

r45 + 1

2

) (
r0

r90
+ 1

)
1

1 + r0
(32)
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The alternative involves three yield stresses correspond-
ing the same level of plastic work: σ0, σ90 and σ45 and the
Lankford coefficient for TD:

H(2) = r90

(1 + r90)σ
2
90

,

F (2) = H(2)

r90
,

G(2) = 1

σ 2
0

− H(2),

N(2) = 2

σ 2
45

− (G(2) + F (2))

2
(33)

Afterwards, the calculated parameters (F (2), G(2), H(2),
N(2)) were multiplied by σ 2

0 to normalise them to unit-less
numbers.

Parameters F , G, H and N were identified with both of
those methods and then used to calculate σ

y

11, σ
y

22, σ
y

33 and
σ

y

12 for reporting using equation (7).

Yld2000-2D

The model is matched to 8 data points: r0, r90, r45, rb, σ0,
σ90, σ45 and σb according to the procedure outlined in [6].
In essence, experimental flow ratios are fed to the model
and the corresponding equivalent stresses and plastic flow
ratios are calculated with equation (8) and the associated
flow rule under appropriate stress states (uniaxial, biaxial).
These observation are then compared against experimental
measurements and the material parameters are adjusted such
that the two match in the least-square sense.

Appendix B: Raw Data Report

This appendix contains detailed information about the data
used in the report. Table 7 shows which images (available
from the online repository) were used in the identifications
carried out. Image offset is the number of the first image
correlated in the DIC software; load steps taken indicate
numbers of correlated images included in the identifications
(notation used here is consistent with the Matlab notation).

Table 7 Detailed information about images used to define data sets for
each individual test

Specimen Image Load steps taken Image capture

offset rate [Hz]

DN-45-1 20 [30:5:100, 110:10:360] 1

DN-45-2 20 [30:5:250] 0.5

DN-45-3 21 [90:10:200, 220:20:360, 1

370:10:550]

Table 7 (continued)

Specimen Image Load steps taken Image capture

offset rate [Hz]

DN-45-4 15 [100:10:490, 495:5:525] 1

DN-30-1 20 [40:10:160, 190:30:370, 1

380:10:510]

DN-30-2 17 [80:10:180, 200:30:400, 1

390:10:520]

DN-30-3 11 [80:10:180, 200:20:360, 1

365:5:450, 455:10:515]

DN-60-1 21 [60:10:160, 190:30:460, 1

470:10:580, 585]

DN-60-2 12 [80:10:180, 200:30:400, 1

390:10:520]

DN-60-3 11 [80:10:180, 200:20:360, 1

365:5:450, 455:10:525]

Appendix C: DIC parameters

Table 8 DIC settings for a dogbone specimen

Camera Manta G-504b

Sensor (px) and digitization 2452 × 2056, 8-bit

Lens 105 mm Sigma DG Macro

(F-mount)

Polariser Linear

Field-of-view (mm) 12.5 × 38.0

Pixel to mm conversion 1 px = 20 μm

Stereo angle 13◦

Stand-off distance 1000 mm

Image acquisition rate 1 Hz

Patterning technique Rubber-based white base coat

with printed black speckles

Pattern feature size 3 pixels / 65 μm

(approximate)

Camera noise 1.0

(% of range)

Technique used Stereo Digital Image

Correlation

DIC software MatchID 2018.2.2

Image filtering Gaussian, 5 pixels

Subset size 27 pixels / 0.54 mm

Step size 7 pixels / 0.14 mm

Subset shape function Affine

Matching criterion Zero-normalised sum of square

differences (ZNSSD)
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Table 8 (continued)

Interpolant Bicubic spline

Stereo transformation Affine

Reference image Updated (incremental correlation)

Edge data Extrapolated from shape

functions

Displacement noise-floor 0.02 px, 0.4 μm (in-plane)

Displacement spatial Gaussian (with edge corrections),

smoothing: filter, standard 2, 13 × 13

deviation, window

Displacement temporal Savitzky-Golay, 3, 11

smoothing: filter, order,

window

Deformation gradient Central finite difference

computation method

Strain (Hencky) noise-floor 215 με

(smoothed)

Table 9 DIC settings for a deep-notched specimen

Camera Manta G-504b

Sensor (px) and digitization 2452 × 2056, 8-bit

Lens 105 mm Sigma DG Macro

(F-mount)

Polariser Linear

Field-of-view (mm) 30.0 × 18.0

Pixel to mm conversion 1 px = 16 μm

Stereo angle 15◦

Stand-off distance 900 mm

Image acquisition rate 1 Hz

Patterning technique Rubber-based white base

coat with printed black speckles

Pattern feature size 4 pixels / 65 μm

(approximate)

Camera noise 0.8

(% of range)

Technique used Stereo Digital Image Correlation

DIC software MatchID 2018.2.2

Image filtering Gaussian, 5 pixels

Subset size 21 pixels / 0.34 mm

Step size 7 pixels / 0.11 mm

Subset shape function Quadratic

Matching criterion Zero-normalised sum of square

differences (ZNSSD)

Interpolant Bicubic spline

Stereo transformation Affine

Reference image Fixed

Edge data Extrapolated from shape functions

Displacement noise-floor 0.01 px, 0.25 μm (in-plane)

Displacement spatial Gaussian (with edge corrections),

Table 9 (continued)

smoothing: filter, standard 2, 13 × 13

deviation, window

Displacement temporal Savitzky-Golay, 3, 11

smoothing: filter, order,

window

Deformation gradient Central finite difference

computation method

Strain (Hencky) noise-floor 100 με

(smoothed)

Table 10 DIC settings for the bulge test

Camera Point Grey Grasshopper

GRAS-50S5M-C

Sensor (px) and digitization 2448 × 2048, 14-bit

Lens 105 mm Schneider

xenoplan 35 mm

Polariser Linear

Field-of-view (mm) 286.0 × 240.0

Pixel to mm conversion 1 px = 117 μm

Stereo angle 12.4◦

Stand-off distance 650 mm

Image acquisition rate 1 Hz

Patterning technique Matt white paint base coat

with black speckles

Pattern feature size 7 pixels / 820 μm

(approximate)

Technique used Stereo Digital Image Correlation

DIC software Correlated Solutions Vic-3D 8

Image filtering Gaussian, 5 pixels

Subset size 41 pixels / 4.8 mm

Step size 7 pixels / 0.82 mm

Subset shape function Quadratic

Matching criterion Normalised sum of square

differences (NSSD)

Interpolant Bicubic spline

Stereo transformation Affine

Reference image Fixed

Displacement noise-floor 0.01 px, 0.3 μm (in-plane),

1.0 μm (out-of-plane)

Displacement spatial Local polynomial regression,

smoothing: filter, order, 2, 20 × 20

window

Displacement temporal N/A

smoothing

Deformation gradient Local polynomial fit

computation method

Strain (Hencky) noise-floor 50 με

(smoothed)

Curvature noise-floor 2.2 × 10−4mm−1

(smoothed)
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51. Koh CG, Owen DRJ, Perić D (1995) Explicit dynamic analysis of

elasto-plastic laminated composite shells: implementation of non-
iterative stress update schemes for the Hoffman yield criterion.
Comput Mech 16(5):307–314

52. Yoon J-W, Barlat F, Dick RE, Chung K, Kang TJ (2004) Plane
stress yield function for aluminum alloy sheets—part II: FE
formulation and its implementation. Int J Plast 20(3):495–522
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