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Abstract
Due to challenges in generating high-quality 3D speckle patterns for Digital Volume Correlation (DVC) strain measurements,
DVC experiments often utilize the intrinsic texture and contrast of composite microstructures. One common deficiency of these
natural speckle patterns is their poor durability under large deformations, which can lead to decorrelation and inaccurate strain
measurements. Using syntactic foams as a model material, the effects of speckle pattern degradation on the accuracy of DVC
displacement and strain measurements are assessed with both experimentally-acquired and numerically-generated images. It is
shown that measurement error can be classified into two regimes as a function of the percentage of markers that have disappeared
from the speckle pattern. For minor levels of damage beneath a critical level of damage, displacement and strain error remained
near the noise floor of less than 0.05 voxels and 100 με, respectively; above this level, error rapidly increased to unacceptable
levels above 0.2 voxels and 10,000 με. This transition occurred after 30%–40% of the speckles disappeared, depending on
characteristics of the speckle pattern and its degradation mechanisms. These results suggest that accurate DVCmeasurements can
be obtained in many types of fragile materials despite severe damage to the speckle pattern.
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Introduction

Both digital image correlation (DIC) [1] and its three-
dimensional analogue digital volume correlation (DVC) [2]
compute the deformation field by tracking the aggregate mo-
tion of neighborhoods of features through a sequence of in situ
experimental images (or 3D tomograms acquired by volumet-
ric imaging techniques). This is achieved by correlating the
deformed image with the original undeformed image, and
computing the translation, rotation and deformation of the
image from the reference state into the deformed state.

Generally speaking, the sample should exhibit a high-quality,
high-contrast, random Bspeckle pattern^ to ensure the unique-
ness and accuracy of the deformation measurement [3, 4]. One
of the fundamental assumptions of DIC and DVC algorithms
is that the individual speckles in the pattern be durable to
allow them to be tracked in each image, so they should not
substantially change appearance or disappear throughout the
experiment. While such a speckle pattern can readily be ap-
plied to the surface of a specimen using spray paint, toner, or
one of many other techniques for two-dimensional or stereo
DIC, it is intrinsically challenging (and often undesirable) to
modify the internal microstructure of three-dimensional spec-
imens to meet these criteria for DVC measurement [5].
Instead, the intrinsic contrast and texture of the microstructure
can substitute for a high-quality artificial pattern.

As a result, a common deficiency of volumetric speckle
patterns is the degradation of the microstructure under
load, which can lead to decorrelation and inaccurate mea-
surements. One common example is due to the develop-
ment of damage in the material, which introduces new
contrasting features to the material that were not present
in the reference state. This is frequently encountered in
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brittle materials that undergo microcracking, such as ce-
ramic matrix composites [6–9], plasterboard [10], and
graphite [11]. Alternatively, this can be observed in the
rupture of ductile metals, which is commonly preceded
by void initiation, coalescence and growth into a crack
[12]. Unless the damage mechanisms are explicitly incor-
porated into the warping functions for the DVC algorithms
(such as Heaviside DVC [13] or extended-DVC analogous
to X-FEM techniques [14]), these features cause the image
to violate the principle of Bgray-level conservation^ and
therefore reduce the quality of the DVC measurement.
However, it is generally acknowledged that DVC measure-
ments will remain reasonably accurate provided the vol-
ume of damaged material remains small compared to the
quantity of markers in the speckle pattern, as is the case in
these examples.

Another scenario is the disappearance of individual
speckles between the reference and deformed states, which
also deleteriously affects DVC accuracy. This is particularly
relevant for DVC experiments that tend to rely on the intrinsic
texture of the material of interest, which may not be stable at
large deformation as in the cases of foams [15–17], bone [2,
18] and granular materials [19, 20]. Even in surface-based
DIC applications where artificial patterns are easily applied,
the pattern may degrade when painted markers flake off the
area of interest or fade with large deformation. It is currently
unclear how this degradation affects DVC accuracy.

Recent in situX-ray Computed Tomography (XCT) exper-
imental measurements by the authors have shown that DVC
remains viable even in cases of severe damage to the speckle
pattern with only minor losses in accuracy. As reported in Ref.
[21], tomograms of syntactic foams were acquired at increas-
ing levels of uniaxial compression. The syntactic foam
consisted of an elastomer matrix filled with hollow glass
microballoons (GMBs), which produced an archetypal 3D
speckle pattern in the undamaged state (Fig. 1(a)). At increas-
ing deformation, many of these GMBs crushed under mechan-
ical load and eventually disappeared from the tomogram (Fig.
1(b)), so a significant fraction of the markers that constituted
the speckle pattern eventually disappeared from the images.
Remarkably, accurate DVCmeasurements were obtained until
40% of the GMBs had collapsed.

The ability to accurately correlate heavily damaged tomo-
grams challenges our current assumptions about requirements
for speckle patterns. In particular, these findings indicate that
rules about gray level conservation can be relaxed in certain
cases to permit measurement of specimens with fragile speck-
le patterns. The objective of this paper is to explore the limits
of DVC for materials with fragile microstructures and speckle
patterns, and to quantify the effects of microstructure degra-
dation as well as DVC analysis parameters on measurement
accuracy. Certainly, use of DVC to study fragile microstruc-
ture comes at a cost of decreased accuracy, but how much

damage is tolerable? The feasibility of DVC in these scenarios
is first explored through experimental measurements using
rigid body motion experiments to capture the effect on error
under real imaging conditions. Later, analysis of synthetic
images with controlled levels of speckle pattern degradation
is used to more accurately quantify the effects on DVC accu-
racy. Finally, these effects are addressed from a theoretical
perspective to reconcile these trends with existing models of
DIC error.

DVC Preliminaries

The basis for all DVC algorithms is the cross-correlation be-
tween the reference and deformed subvolumes. Since cross-
correlation measures the similarity between two volumes, the
optimal solution is obtained when each pixel in the deformed
volume is mapped to the corresponding pixel in the reference
coordinate, i.e. the displacement field is solved. One way of
achieving this is by using optimization schemes to maximize
the zero-mean, normalized cross-correlation (ZNCC), which
is notably insensitive to systematic changes in contrast and
illumination [3]. The ZNCC is computed as,

CZNCC xð Þ ¼ 1

N
∑
x∈S

F xð Þ−F
σF

G xþ u xð Þð Þ−G
σG

 !
ð1Þ

where F and G correspond to the reference and deformed
images, x represents the coordinates within the reference sub-
set S, u(x) is the displacement field that maps undeformed

coordinates into their deformed state, F and G indicate the
average intensities of each subset, and σF and σG are the stan-
dard deviations of intensities within each subset. A high cor-
relation score CZNCC→ 1 would indicate a strong match be-
tween the two specimens, implying that the physical displace-
ment field has been accurately measured. The strain field can
then be obtained through the spatial derivatives of u(x).

Notation to Describe Specimen Degradation

The primary concern about correlating images of fragile
speckle patterns is that CZNCC will decrease as the specimen
degrades, increasing the possibility that the optimization algo-
rithm will identify inaccurate displacement and strain fields
due to decorrelation effects. For purposes of this paper, unique
notation is developed to concisely describe the damaged char-
acter of speckle patterns:

& ϕ – Volume fraction of markers in undamaged state (from
0 to 1)

& α – Fraction of markers that are damaged (from 0 to 1)
& C –Residual contrast of all damaged markers (from 0 to 1)
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Experimental Methods

Materials

Sylgard GMB specimens were prepared by mixing A16 glass
microballoons (3 M) into two-part Sylgard 184 silicone elas-
tomer (Dow Corning) and curing agent. The mixture was
drawn into a cylindrical syringe and cured at room tempera-
ture with an accelerator. After curing, the molded foam was
carefully cut into cylindrical specimens with 7 mm height and
diameters of 4.8 mm. The diameter of A16GMBs ranges from
30 to 95 μm within 10–90% distribution, with a mean diam-
eter of 60μm. Three specimens were manufactured with nom-
inal GMB volume fractions of 0.20, 0.30 and 0.46. Since the
low-resolution tomograms could not discern GMBwalls from
the matrix, the actual void volume fractions were 0.147, 0.225
and 0.422; to allow generalization to other types of speckle
patterns, all results are reported in terms of the void volume
fraction.

Rigid Body Motion Experiments

Experimental assessment of the error due to fragile specimens
was performed using rigid body motion experiments during in
situ compression of the syntactic foams. Syntactic foam spec-
imens were compressed uniaxially using a custom, screw-
driven loading stage as reported in [6, 22]. The specimen
was deformed between two acrylic platens to minimize

reconstruction artifacts near the specimen edges. Each speci-
men was compressed in roughly 500 μm increments until
DVC failed to achieve correlation, resulting in 5 or 6 in situ
load steps per specimen.

Three tomograms were acquired at each load step. First,
one high-resolution tomogram with voxel resolution of
[1.7 μm]3 was used to quantify the volume fraction of
GMBs in the undamaged state, and the fraction of damaged
GMBs in subsequent steps. Second, a low-resolution tomo-
gram was acquired with voxel resolution of [8.5 μm]3,
resulting in a typical speckle diameter of 6–8 voxels that
was ideal for DVC analysis. Finally, an additional low-
resolution tomogram was acquired after axially displacing
the sample 250 μm. The higher resolution tomogram was
necessary to accurately measure the size and Feret shape
(3D aspect ratio) of the GMBs [23], while the difference in
measured displacements and strains between the pair of low-
resolution tomograms enabled an assessment of DVC error.
All tomographic imaging was performed using X-radia
MicroXCT 200 with X-ray source parameters 80 keV and
8 W. High-resolution tomograms were reconstructed from a
set of 2401 radiographs between −103° and 103° rotation with
6.5 s exposure, and the low-resolution tomograms were recon-
structed from a set of 1401 radiographs between −103° and
103° rotation with 7 s exposure.

Dimensional quantification of the GMBs was performed
using Python image processing scripts and Avizo Fire 9.0.
The raw 16-bit high-resolution tomograms were sequentially

Fig. 1 Virtual cross-sections of
compressed syntactic foam dur-
ing in situ experiment. (a) Slices
from low-resolution for DVC
analysis at increasing strain, with
insets showing subvolume size.
(b) Slices from the corresponding
high-resolution XCT images,
showing collapse of GMBs.
Images adapted from experiment
in Ref. [21]
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smoothed using nonlocal means filters, downsampled to 8-bit
images, thresholded and segmented with standard image pro-
cessing techniques. The 3D Feret shape (FS, equivalent to the
particle’s aspect ratio) was used to identify the collapse of each
segmented GMB, where FS > 1.3 indicated an ellipsoidal ge-
ometry consistent with GMB collapse. In contrast, low FS
indicated spherical geometry of an intact GMB.

Both the mechanical response and the damage behavior are
reported in Fig. 2 for the three different volume fractions. The
stress-strain curves were typical for elastomeric syntactic
foams [24], which generally exhibit an initially stiff elastic
response, a plateau region associated with GMB collapse at
relatively constant stress, and densification of the foam [25].
Both the elastic stiffness and prominence of the plateau region
increased with higher GMB reinforcement, whereas the syn-
tactic foams with lower GMB volume fraction behaved more
like the elastomer matrix. In the three specimens, appreciable
GMB collapse occurred only after reaching the plateau region,
and damage increased approximately linearly thereafter. GMB
collapse occurred more rapidly at higher volume fractions, as
particle clustering is known to amplify the GMB stresses [21,
26, 27].

The low-resolution tomograms were independently corre-
lated against a single reference tomogram using commercial
DVC code (Vic-Volume, Correlated Solutions) with a subset
size of 29 voxels, and step size of 10 voxels. This subset size
was selected to include roughly 33 = 27 speckles per subset for
the ϕ = 0.147 specimen, which is a general guideline for DIC/
DVC analysis. A sensitivity study found that step size had no
effect on the displacement errors. Additionally, the step size
did not affect the nonlinear dependence between strain error
and damage, but simply scaled the error by a factor of 1/step2;
the latter relationship matches the sensitivity of a central-
differences numerical differentiation scheme to noise.

Strain was computed with a strain filter size of 5 subsets,
which was the minimum filter size available in the software.

The strain filter averaged the displacement gradient uniformly
across neighboring subsets, with the aim of decreasing mea-
surement noise compared to calculation of strain from a single
subset. As the objective of this analysis was to identify the
Bworst case^ DVC strain error due to speckle pattern degra-
dation, the total strain filtering was adjusted to the minimum
possible value in the software; future users could increase
strain filtering to further reduce the effects of speckle pattern
degradation at the cost of spatial resolution. This combination
of analysis parameters resulted in a virtual strain gage size of
[79 voxels]3 = [672 μm]3. All analysis was performed with a
4-tap spline-based interpolation scheme [3]. To measure the
error in the DVC-computed strain, the difference in measured
strain was recorded at each subset for the corresponding de-
formed and deformed rigid body motion tomograms.

Experimental Results

To experimentally evaluate the displacement and strain errors,
the DVC measurements were compared before and after rigid
body motion. Since both tomograms were acquired at the
same state of compression and were correlated independently
against the same reference tomogram, they should theoretical-
ly exhibit the same strain field. Any differences are attributed
to the various sources of measurement error. In particular,
error in the undeformed state (ε = 0) reflects the noise floor
of the measurement system, while subsequent increases in
error as the syntactic foam is compressed can be attributed
to the effects of speckle pattern degradation.

Displacement Error

The axial displacement field for a syntactic foam specimen with
void volume fraction ϕ = 0.225 is presented in Fig. 3 at three
increasing deformations. While the specimen exhibited some

Fig. 2 Mechanical behavior of
syntactic foam specimens. (a)
Engineering stress vs. engineer-
ing strain curves. (b) Fraction of
intact specimens vs. engineering
strain
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buckling at the highest loads, the displacement field was predom-
inantly uniaxial in nature (Fig. 3(a)). After removing rigid body
motion from the measurements, it was clear that the DVC mea-
surements exhibited strong repeatability (Fig. 3(b)). Any differ-
ences in the experimental displacement fields were imperceptible
at this level of contrast, even at the largest deformations.

To highlight any discrepancy between the two sets of
DVC measurements, Fig. 3(c) shows the difference in mea-
sured axial displacement Δw =w −wRBM at the same three
deformations. For nominal strains of strain ε0 = − 0.12 and
εo = − 0.24, the resulting DVC error was small in magnitude.
For all subsets the error remained below 0.2 voxels, and in
most cases was below .05 voxels. As confirmed in Fig. 3(d),
the displacement error was only marginally higher at εo = −
0.24 compared to εo = − 0.12. Additionally, variation in Δw
was uniform and random throughout the specimen, indicating
that the error calculation was not affected by distortion arti-
facts or damage localization.

However, at the final strain increment of ε0 = − 0.30, the
error noticeably increased throughout the specimen.
Inspection of Fig. 3(c) for this deformation identified several
anomalous Bhot spots^ in the displacement calculation, indi-
cating large discrepancy of Δw > 0.2 voxels between the w
and wRBM calculations at these points. Despite this, the major-
ity of the displacement measurements remained accurate to
within Δw < 0.1 voxels, indicating that the DVC analysis
was generally trustworthy despite severe degradation to the

speckle pattern. Thus, DVC may cautiously be used in spec-
imens despite widespread microstructural damage.

This analysis was repeated on the additional two specimens
to compare the error trends as a function of the syntactic foam
microstructure and damage characteristics (Fig. 4). These re-
sults loosely identify two key analysis regimes. First, DVC
error remained near the noise floor below a critical level of
speckle pattern degradation. These errors were approximately
Δw = 0.03 voxels for ϕ = 0.225 and 0.422, andΔw = 0.05 for
ϕ = 0.147. In this regime, DVC measurements could be con-
sidered Bstable,^ and good accuracy can be guaranteed.

Second, after exceeding a critical level of speckle pattern
degradation at α ≈ 0.3, the displacement error rapidly in-
creased. In other words, the effects of minor speckle pattern
degradation on DVC accuracy were less significant than other
experimental factors, including the initial speckle pattern qual-
ity or imaging noise. Only at severe degradation did this error
source become significant. Thus, these measurements became
Bunstable,^ where accuracy depended on the local damage
state and cannot be generally guaranteed.

Strain Error

Equivalent analyses were performed to interpret the effects of
speckle pattern degradation on strain measurement accuracy.
First, the axial strain fields are presented in Fig. 5(a). Under
uniform axial compression, the specimen exhibited strong

Fig. 3 Experimental assessment of axial displacement error for syntactic foam specimen with ϕ = 0.223. (a-b)Measured axial displacement in voxels (a)
before (w) and (b) after rigid body motion (wRBM); (c) difference between measured displacementsΔw; and (d) histogram ofΔw. Results are shown at
(top) nominal strain ε0 = − 0.12, (middle) εo = − 0.24, and (bottom) ε0 = − 0.30. Note that the rigid body motion is removed when plotting wRBM
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variation in axial strain due to heterogeneous collapse of
GMBs. As was previously discussed in [21] and also observed
in some other syntactic foams [28], this behavior was mecha-
nistically related to the redistribution of stress around col-
lapsed GMBs and the propagation of damage through the
syntactic foam. For the specimen with void volume fraction
ϕ = 0.225, the intensity of the strain field variation increased
from εzz ≈ 0.01 at a nominal strain of ε0 = − 0.12, to εzz ≈
0.05 at a nominal strain of ε0 = − 0.30. Analysis of the strains
after rigid body motion (Fig. 5(b)) showed very little

difference compared to the original analysis, confirming the
measurement accuracy.

To more precisely evaluate the error, the difference be-
tween measured strain fields, Δεzz ¼ εzz−εRBMzz , was comput-
ed at each subvolume (Fig. 5(c)). Here, while the Δεzz field
exhibited a similar banded appearance, the magnitude of var-
iation inΔεzzwas roughly 5 times smaller than the variation in
εzz. This trend was especially true when the specimen was
imaged at low strain with little degradation to the speckle
pattern (εo = − 0.12). In the low-strain images, variation

Fig. 5 Experimental assessment of strain error for syntactic foam specimenwith ϕ = 0.223. (a-b) Measured axial strain (a) before and (b) after rigid body
motion; (c) difference between measured strainΔεzz; and (d) histogram ofΔεzz. Results are shown at (top) nominal strain ε0 = − 0.12, (middle) εo = −
0.24, and (bottom) ε0 = − 0.30

Fig. 4 Displacement error as
function of (a) engineering strain
εo and (b) fraction of damaged
GMBs α in the different syntactic
foams
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approached the noise floor associated with this particular com-
bination of XCT imaging and DVC analysis parameters. At
higher strains (εo = − 0.30) with more damage, the error in-
creased marginally, although many subvolumes produced ob-
viously spurious strain values with |Δεzz| > 0.01; these points
appeared as yellow or purple spots in Fig. 5(c). This trend was
validated by comparing the histograms of Δεzz in Fig. 5(d),
which showed both an increase in both standard deviation and
number of outliers in each measured strain field. Interestingly,
the increase in strain error occurred rapidly, as error at an
intermediate strain of εo = − 0.24 remained small.

Similar analyses were repeated for all three specimens, and
the standard deviation of Δεzz as a function of the speckle
pattern degradation is reported for each load increment in
Fig. 6. These trends resembled those for displacement in
Fig. 4, and also showed that the accuracy of the DVC strain
measurements remained near the measurement noise floor un-
til a critical level of speckle pattern degradation was achieved.
Typical error in this regime of minor speckle pattern degrada-
tion ranged from σΔεzz ¼ 98 με for ϕ = 0.147 and 54 με for
ϕ = 0.422, with the different speckle pattern densities account-
ing for the discrepancies between specimens.

In contrast, error in the strain measurement rapidly grew to
unacceptable levels once the speckle pattern degradation
reached a critical value. This effect was much more prominent
for strain than for displacement, which can be attributed to the
sensitivity of numerical differentiation schemes (to compute
strain) to noise in the displacement signal. Due to volume-
fraction dependent damage mechanisms for the syntactic
foams, this transition varied somewhat between specimens.
This transition occurred most rapidly at εo = − 0.2 in the high
volume fraction specimen, and later at εo = − 0.35 in the low
volume fraction specimen.

When measured in terms of damage to the speckle pat-
tern, the results suggested that the critical level of

degradation varied with both the GMB content and the
damage mechanisms in the syntactic foam. For instance,
the low volume fraction specimen exhibited the least resil-
ience to speckle pattern damage with critical α ≈ 0.27 be-
fore error rapidly increased, which could be attributed to
the sparse speckle pattern. On the other hand, the two
specimens with higher volume fractions exhibited a critical
α ≈ 0.36, indicating the benefit of a denser speckle pattern.
Despite this, error increased faster in the ϕ = 0.422 speci-
men after the critical transition, possibly due to enhanced
strain localization.

Numerical Methods

While the experimental results clearly showed that accurate
DVC measurements could be obtained despite widespread
damage to the speckle pattern, these trends were convoluted
by imaging artifacts such as distortion and other XCT error
sources [29]. Additionally, heterogeneous deformation such
as crush-band effects or strain localization [28] could further
bias these measurements.

To address these challenges, synthetic images were gener-
ated and then analyzed by DVC to assess the separate roles of
fraction of damaged markers and degraded marker contrast
on the accuracy of DVC strain computations. These two pa-
rameters can approximate the degradation of many other ma-
terials in addition to syntactic foams. For example, while
GMBs tend to quickly collapse and disappear from tomo-
grams, other materials may exhibit a more gradual failure
process in which markers slowly lose contrast. Simulations
were performed for many volume fractions of markers. In this
way, the simulation results can be readily adapted to other
material systems.

Fig. 6 Strain error as function of
(a) engineering strain εo and (b)
fraction of damaged GMBs α in
the different syntactic foams
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Generation of Synthetic Images

To establish the effects of pattern degradation on DVC error,
artificial images with increasing levels of degradation and no
strain were generated. Synthetic images with prescribed dam-
age levels were developed through a three-step process of
generating an undamaged reference pattern, degrading select-
ed markers in the pattern, and then adding Gaussian noise to
simulate experimental image conditions. Correlation of the
synthetic volumes to the undamaged reference state using
commercial DVC software provided an assessment of errors
due to microstructure degradation.

First, a reference volume of size 1024 × 256 × 256 voxels
was generated with bright markers on a dark background by
perturbing the position of markers on a 3D regular grid, sim-
ilar to the technique used in [30]. The grid pitch was modified
to change the volume fraction ϕ between 0.136 and 0.407
which encompassed representative porosities found in many
syntactic foams and other DVC specimens [24, 28, 31, 32].
Speckles were modeled as modified 3D Gaussian signals with
standard deviations σ randomly selected between 1 and 3
voxels,

I xð Þ ¼ min 200; 400exp ∑
3

i¼1

− xi−xci
� �2
σ2

 ! !
ð2Þ

where xi represents the image coordinate, and xci represents the
subpixel center of the marker. The intensity of the central
region in each speckle was truncated to imitate the uniform
intensity of the hollow GMBs. In contrast to explicitly model-
ing the spherical particles, the modified Gaussian profile
allowed facile imposition of subpixel displacements and de-
formations without relying on downsampling or interpolation
filters. The speckles in the deformed images were analytically
translated by 0.5 voxels from their reference position.

To efficiently survey the different combinations of α and C
that represent various degrees of pattern degradation, damage
was introduced to each pattern by randomly flagging markers
for degradation as a linear function of the x coordinate. In this
way, the probability of damage increased from α = 0.0 at x = 0
to α = 1.0 at x = 1024 (Fig. 7). The residual contrast of each
flagged particle was incrementally decreased from C = 1.0 to
0.0, resulting in several images with many faint particles and
one image with fully deleted particles. Since damage only
varied in the x direction, there existed many data points on
each y − z plane to statistically analyze the effects of marker
degradation. The intensities of the 3D volumes were scaled for
8-bit images, with the dark background assigned an intensity
of 25, and the undamaged particles an intensity of 225; this
intensity range allowed noise to be added to the image.

Finally, Gaussian noise was independently added to each
image to approximate error in the imaging conditions. X-ray
tomograms typically exhibit higher levels of noise than 2D

optical images, and this noise will limit the accuracy of the
strain computation. We quantify noise using the Noise to
Signal Ratio (NSR), defined as

NSR ¼ σnoise

Imax−Imin
ð3Þ

where σnoise is the standard deviation of the noise, and Imax −
Imin is the intensity range in the signal. Our experimental re-
sults using laboratory-based XCT equipment yielded tomo-
grams with NSR of ~3%, whereas tomograms from synchro-
tron or more modern XCT systems could produce lower noise
levels. A sensitivity study found that error in strain computa-
tion due to NSR remained below 0.0001, which was insignif-
icant relative to the effect of a fragile speckle pattern (with
σε ≈ 0.001 − 0.01). Therefore, simulations were performed
with a representative NSR of 3%.

DVC Analysis

DVC analysis was performed using the commercial Vic-
VolumeDVC software (Correlated Solutions) with parameters
that matched the experimental error analysis (subset size of
293 voxels and step size of 10 voxels). These parameters re-
sulted in ~50,000 subsets per volume, and 529 subsets for a
given fraction of damaged markers. Strain measurement was
again performed with a strain filter of size [5]3 subsets, which
was the minimum amount of filtering in the DVC software.
Additional analyses were performed with a range of subset
sizes to assess the sensitivity to this parameter.

Numerical Results

Effect of Speckle Pattern Degradation

Analysis of the zero-displacement simulations clearly re-
vealed that the average marker volume fraction ϕ, the fraction
of damaged markers α, and the residual contrast of damaged
markers C strongly influenced the accuracy of the displace-
ment computations, as summarized in Fig. 8. Results are pre-
sented for three different volume fractions that corresponded
to those used in the experiments, and error is defined as the
standard deviation of the measured artificial displacement.

Similar to the experimental results, there appeared to exist
two domains for displacement computation. During the initial
stable computation regime, the displacement error increased
linearly with respect to α. This continued until a critical dam-
age value was reached, after which the computation became
unstable and error increased rapidly. Below the critical level of
speckle pattern degradation, the error increased gradually with
α but remained relatively small; in the worst-case scenario
with ϕ = 0.137 and C = 0.0, the error remained less than 0.2
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voxels throughout the stable DVC regime. The transition into
the unstable regime is identified by the inflection point in the
plots, which varied slightly with ϕ and C; values of this tran-
sition point (for C = 0.0) ranged from α = 0.62 for ϕ = 0.137,
α = 0.68 for ϕ = 0.217, and α = 0.70 for ϕ = 0.404. The mag-
nitude of error in the stable measurement regime varied with
the residual contrast of the damaged speckles C and the vol-
ume fraction of speckles in the image ϕ. In general, error
improved with increasing ϕ and C. This was qualitatively
consistent with the experiments, which also found that the
high ϕ specimens exhibited a lower noise floor than low ϕ
specimens.

Equivalent analysis on the strain error identified similar
nonlinearities in the measurement precision, as revealed in
Fig. 9. Specifically, the strain error increased linearly until a
critical level of damage that was approximately identical to
that identified in the displacement analysis. This transition
point occurred at strain error of ≈0.0025 (250 με); this critical
value (at C = 0) ranged from α = 0.48 for ϕ = 0.137, α = 0.60
for ϕ = 0.217, and α = 0.67 for ϕ = 0.404. Below this point,

the strain error increased linearly with α. Again, the error
decreased with larger ϕ and C.

Effect of Subset Size

Using the same synthetic tomograms (for C = 0), the DVC
analysis was repeated to understand the effect of subset size
on displacement error. These results are shown in Fig. 10,
which highlight the stabilizing benefit of large subset size M
on the DVC-measured displacement. These benefits were es-
pecially pronounced at low volume fractions: for ϕ = 0.137, a
displacement error of σu = 0.25 voxels was achieved at α =
0.47 for M = 21 voxels, but at α = 0.78 for M = 31 voxels. In
contrast, with a denser speckle pattern of ϕ = 0.422, the
change in subset size from M = 21 to 31 voxels increased the
DVC stability from α = 0.62 to 0.88. Thus, an experimentalist
can effectively adjust the subset size to compensate for speck-
le pattern degradation; of course, this benefit would also come
at the cost of the measurement’s spatial resolution.

Fig. 7 Damage gradient in
synthetic zero-strain images (a-c)
Corresponding 2D slices with (a)
C = 1.0, (b) C = 0.5, and (c) C =
0.0. Insets on right indicate subset
size (293 voxels) used in DVC
analysis, and highlight how se-
lected markers gradually faded
with decreasing C. ϕ = 0.137

Fig. 8 Effect of speckle pattern degradation and volume fraction ϕ on displacement error. (a-c) Results for ϕ of (a) 0.137, (b) 0.217, and (c) 0.404.
NSR = 3%
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Theoretical Analysis

Predicting DVC Instability Due to Fragile
Microstructures

The observed trends with regard to speckle pattern damage,
subset size, and speckle volume fraction can be reconciled
with existing theories of DIC/DVC error. Specifically, the fol-
lowing can be asserted:

& An increasing fraction of damaged speckles (α) will in-
crease the mismatch between the reference and deformed
subset, thereby increasing the DVC error.

& For constant α, a larger subset will retain more intact
speckles in the deformed subset. Accordingly, the subset
sizeMmay be used to improve DVC accuracy in cases of
pattern degradation.

& Similarly, a larger volume fraction ϕ of speckles will in-
crease the number of intact speckles and improve mea-
surement precision.

In the following section, these deductions are formal-
ized in terms of the Sum of Subset Squared Image

Gradients (SSSIG) criterion proposed by Pan [33]. In
Pan’s work, the DVC displacement error was quantitative-
ly related to the image intensity gradients used for
subvoxel interpolation in each subset. Ultimately, this anal-
ysis showed that the standard deviation of displacement
error σui scales proportional to variance of the image noise
D(η) and inversely with SSSIG.

σui∝
D ηð Þ

∑S
∂G
∂xi

� �2
0
B@

1
CA

0:5

ð4Þ

where ∑S( ) refers to a summation over all voxels in the
subset, and G is the deformed tomogram with damaged
speckles.

With some modification, the SSSIG criterion is shown to
accurately predict the DVC instability associated with severe
speckle pattern degradation for a variety of speckle patterns
and DVC parameters. In this analysis, the results from subset-
based sensitivity study described in the section "Effect of
Subset Size" are used to demonstrate this behavior.
Accordingly, their comparison is restricted to images with
consistent speckle geometry, DVC step size, and image noise.

Fig. 10 Effects of subset size M on displacement error for ϕ of (a) 0.137, (b) 0.217, and (c) 0.404. C = 0, NSR= 3%

Fig. 9 Effect of speckle pattern degradation and volume fraction ϕ on strain error. (a-c) Results for ϕ of (a) 0.137, (b) 0.217, (c) 0.404. NSR = 3%
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The analysis assumes that the images exhibit the following
characteristics

& Uniform speckle size, shape and contrast, with non-
overlapping speckles

& The average spacing of speckles can be characterized by a
wavelength λ

& DVC analysis is performed with cubic subsets of size M
& Consistent, independent noise for each voxel

Given these conditions, SSSIG can be defined precisely by
the number of intact speckles in each subset.

∑S
∂G
∂xi

� �2

¼ GiN intact ð5Þ

where Nintact = (1 −α)Nspeckles and Nspeckles ¼ M
λ

� �3
. Gi de-

scribes the individual contribution of each speckle to the

SSSIG, Gi ¼ ∑s
∂I speckle xð Þ

∂xi

� �2
, with Ispeckle as defined in Eq. 2

above.
Under this model, the DVC displacement error should

scale inversely with Nintact for all combinations of M and ϕ
(which is interchangeable with λ). This is tested in Fig. 11,
which indeed reveals a consistent transition point between
Bstable^ and Bunstable^ DVC measurement errors based on
Nintact. Specifically, σu increased linearly until Nintact = 11
− 20 speckles, and increased rapidly for subsequent dele-
tion of speckles. This threshold was valid for the wide
range of Nspeckles from 26 and 150 in the undamaged state,
and no obvious trends in the critical Nintact were identified
with respect to either M or ϕ. As a result, it is postulated
that this represents the minimum number of intact features
for accurate DVC analysis.

Effect Of Damage on Correlation Strength

It is further speculated that the effects of damage on DVC
error can be related to the correlation strength CZNCC. This
is validated using two sets of 2D synthetic images of size
3842 pixels (Fig. 12(a)), which were generated according
to the methods described in the previous section
Generation of Synthetic Images. In the first set, individual
markers were damaged by a Bfading^ technique. In the
second, the width of the markers was Bshrunk^ in propor-
tion to the speckle damage. While both sets of images were
identical in the undamaged and fully damaged states, the
intermediate states were somewhat different. The undam-
aged images included a speckle fraction of ϕ = 0.26. Half
of the markers (α = 0.5) were flagged for damage, while
the other half of the speckles remained unchanged in the
degraded images. The contrast C was reduced incremental-
ly between images, which approximated the collapse of
GMBs in the syntactic foam.

Results of the simulation in Fig. 12(b) indicated that the
two damage mechanisms both reduced CZNCC nonlinearly.

Fig. 12 Effect of BFade^ and BShrink^ speckle degradation mechanisms
on DVC. (a) Schematic of the two mechanisms. (b) Resulting ZNCC
scores as function of residual contrastC. α = 0.5 of speckles were flagged
for damage

Fig. 11 Normalized model of DVC displacement error for different
combinations of subset size M and volume fraction ϕ
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Reductions in CZNCC can hinder local optimization schemes
from successfully identifying the appropriate correlation peak
[34, 35], leading to spurious displacement and strain measure-
ments. Indeed, many commercial DIC and DVC software
packages are configured to ignore subsets with poor correla-
tion; in this case, severe decorrelation due to speckle pattern
degradation would prevent any displacement measurement at
all! Remarkably however, CZNCC remained above 0.9 for C ≥
0.5.While arbitrary, this threshold has been previously used to
update the reference image in incremental DIC schemes and
preserve measurement accuracy for large deformations [36,
37]. Given that the measurement accuracy scales with the
correlation strength, it seems reasonable that DVC measure-
ments could tolerate minor degradation to the speckle pattern,
but become increasingly sensitive to subsequent damage.

Discussion

Comparison Between Experiment and Numerical
Results

Most importantly, these results showed that accurate DVC
measurements can be obtained despite non-trivial levels of
degradation to the speckle pattern. This was confirmed using
both experimental tomograms and numerically-generated im-
ages with controlled levels of speckle pattern degradation. In
both cases, the DVC error remained small while below a crit-
ical level of degradation (i.e., the stable measurement regime),
after which the strain error rapidly increased to unacceptable
levels (unstable measurement regime). Thus, the transition
between stable and unstable measurement regimes reflected
the degradation of the speckle pattern rather than peculiarities
of the syntactic foams used in experiments. Fundamentally,
this appeared to be related to the effects of speckle pattern
degradation on the correlation strength CZNCC. The nonlinear
dependence of CZNCC on degradation allowed CZNCC to re-
main high after the disappearance of a small fraction of
speckles, but CZNCC rapidly decreased with further
degradation.

Despite this, several key differences were observed be-
tween the two analyses. First, DVC error analysis of the
experimental and numerically-generated images revealed
different trends within the stable measurement regime. In
particular, the experimental results suggested a constant
error of σu = 0.025 − 0.05 voxels and σε = 50 − 100 με for
all levels of degradation beneath the critical value, while
the numerical images suggested a linearly increasing error
within this range (for constant C). The likely explanation
of this trend was that the effective C for the collapsed
GMBs was not constant but decreased throughout the ex-
periment. Initially, the Feret shape of damaged particles
would be small, such that the particle would be pseudo-

spherical and would provide strong residual contrast C in
the tomogram. Subsequent loading would further compress
the particles, increasing Feret shape and decreasing C. At
small deformations, the typical C would remain large
enough to negligibly affect the error. For example, from
Figs. 8 and 9 it was shown that displacement or strain error
did not substantially increase with C ≈ 0.5 regardless of the
fraction of speckles damaged. This allowed error to remain
low when the GMBs were partially collapsed, but to rap-
idly increase as the damaged particles fully closed.

Second, analysis of the numerically-generated images
predicted critical damage levels that were higher than those
observed in the experiment. Plausibly, damage localization
in the experiment contributed to the increased error.
Detailed analysis of the tomograms showed that bands of
elevated strain (visible in Fig. 5) corresponded to regions
with clusters of crushed GMBs, such the speckle pattern
damage would locally exceed the global average and there-
fore increase the measurement error. This behavior was
caused by particle-to-particle interactions [38] and local
clustering of GMBs [26], and was particularly severe in
the high volume fraction specimens (ϕ = 0.422 and to a
lesser extent ϕ = 0.225).

Implications

The ability to accurately correlate heavily damaged speckle
patterns should enable DVC-based strain measurements in a
broad class of materials with fragile microstructures, including
syntactic foams and possibly many other materials. This was
previously thought to be impossible or ill-advised at best,
since it would violate the principle of gray-level conservation.
In contrast, our experimental results showed that roughly 30–
40% of speckles could disappear before strain error noticeably
worsened to σε > 0.01. Intriguingly, adjusting the subset size
may be a viable technique to enable accurate DVC measure-
ments in cases of even more severe degradation. In particular,
analysis of the simulated images suggested that DVC analysis
remained stable as long as each subset contained a minimum
of Nintact = 20 speckles. In any case, rigid body motion exper-
iments are essential to assess the error due to speckle pattern
degradation, and should be included in any experimental pro-
tocol where results may be affected by microstructural
damage.

The current findings were only obtained for particle-
based speckle patterns, where damage resulted in the dis-
appearance of particles in the pattern. Therefore, it remains
unclear how other types of speckle patterns and damage
mechanisms affect the stability of DVC measurements.
Future work is required to assess this behavior in granular,
foam or fibrous composites, and also materials that under-
go different damage mechanisms such as microcracking or
cell collapse. Simulation of these effects using numerically
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generated images may prove a cost-effective manner to test
viability of DVC measurement in these other materials.

Finally, these results demonstrate the importance of
restricting DVC measurement to scenarios with sub-
critical levels of speckle pattern degradation. For the cur-
rent syntactic foam, this was achieved by relating damage
to the uniaxial deformation, which was found to reliably
correspond to DVC error across multiple samples with
identical GMB volume fractions. Similar testing should
be performed on other materials to avoid inaccurate strain
measurements. Alternatively, in the case of super-critical
speckle pattern degradation, the spatial distribution of sub-
sets with large strain error could be used to identify regions
of severe microstructural damage.

It becomes more challenging to define the critical level
of speckle pattern degradation when damage is locally
concentrated rather than homogeneously dispersed
throughout the material, which would cause DVC error
to increase more rapidly near the location of damage.
While a straightforward but cautious approach would be
to manually trim the region of interest around the damaged
regions, this can be tedious and also disposes of many
accurate correlation points. Since the speckle pattern deg-
radation reduces the correlation strength, it may be possi-
ble to introduce automatic screening of each correlated
subset. One intriguing avenue for evaluating the quality
of the experimental strain measurement is to implement
so-called q-factor DVC, which assesses the sharpness
and uniqueness of the cross-correlation through image
quality factors [35]. Q-factor DVC was originally devel-
oped for cases of large deformation, which causes round
speckles to collapse into ellipses and is comparable to the
collapse of GMBs in the syntactic foam. Additionally, this
work can be integrated into the framework for incremental
DIC/DVC techniques [36, 37] to indicate when the refer-
ence image should be updated.

Conclusions

Accurate DVC measurements were obtained during in situ
testing of specimens with fragile microstructures even with
widespread damage to the speckle pattern. This was vali-
dated using experiments on three types of syntactic foams
with different volume fractions of glass microballoon rein-
forcement, as well as analysis of numerically-generated
images with controlled levels of speckle pattern degrada-
tion; in both cases, correlation succeeded despite large pro-
portions of individual markers in the speckle pattern
disappearing between the reference and deformed states
up to 20–35% compression and 30–40% damaged
speckles. These findings justify the use of DVC on many
types of materials with unstable or fragile microstructures,

including syntactic foams, ceramic composites, bone and
others. From these analyses, the following conclusions are
made:

& The performance of DVC as a function of speckle pattern
degradation was classified into two regimes. Below a crit-
ical level of speckle degradation, the DVC measurement
was Bstable^ and the error approached the experimental
noise floor. The displacement and strain errors were con-
stant within this regime, and varied inversely with the
speckle pattern density. Above this critical value,
the measurement became Bunstable^ and the error rapidly
increased with further degradation to the speckle pattern.

& In the experiments, the transition from stable to unstable
measurement regimes typically occurred after 30–40% of
the speckles were damaged. This critical value depended
on several factors including pattern quality, marker vol-
ume fraction and the degree of damage localization. In
particular, larger volume fractions of markers tended to
stabilize the DVC measurements to accommodate more
severe damage to the speckle pattern.

& The experimental trends were qualitatively replicated
using numerically-generated images, which successfully
captured the transition between stable and unstable mea-
surement regimes. However, the numerical analysis
tended to overestimate transition between these two re-
gimes, likely due to subtle differences in the damage
mechanisms between the syntactic foam and the simulated
images. Despite this, numerically-generated images may
be used to preliminarily simulate the viability of DVC
measurements in other types of fragile speckle patterns,
such as those found in foams or fiber-reinforced
composites.

& The effect of damage on measurement error was recon-
ciled with the Sum of Subset Squared Image Gradients
(SSSIG) criterion proposed by Pan [33]. Using numerical-
ly generated images, the displacement error was shown to
scale inversely with the number of intactNintact speckles in
each subset, and the DVC instability was triggered at
roughly constant Nintact for a variety of speckle patterns
and DVC parameters. As an implication, larger subset
sizes may be used to compensate for sparse speckle pat-
terns or severe pattern degradation.
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