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Abstract
This paper details the creation of experimental and computational frameworks to capture high-resolution, microscale deformation
mechanisms and their relation to microstructure over large (mm-scale) fields of view. Scanning electron microscopy with custom
automation and external beam control was used to capture 209 low-distortion micrographs of 360 μm× 360 μm each, that were
individually correlated using digital image correlation to obtain displacement/strain fields with a spatial resolution of 0.44 μm.
Displacement and strain fields, as well as secondary electron images, were subsequently stitched to create a 5.7 mm × 3.4 mm
field of view containing 100 million (7678 × 13,004) data points. This approach was demonstrated on MgWE43 under uniaxial
compression, where effective strain was shown to be relatively constant with respect to distance from the grain boundary, and a
noticeable increase in the effective strain was found with an increase in the basal Schmid factor. The ability to obtain high-
resolution deformations over statistically relevant fields of view enables large data analytics to examine interactions between
microstructure, microscale strain localizations, and macroscopic properties.
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Introduction and Background

The development of scientific instruments and computational
power has enabled the capture of large amounts of experimental
data and spurred the development of novel analysis approaches.
One approach to study materials deformation at the microstruc-
tural length scale is thermo-mechanical testing inside a scanning
electron microscope (SEM). Over the past decades, in-situ SEM
testing has focused on the microscale response to mechanical
loading, for example the development of dislocation slip [1], void
formation [2], fracture and fatigue behavior [3–5], and grain
boundary sliding and cracking during creep [6]. In addition, the
development of micromachining and microelectromechanical-
systems (MEMS) has enabled testing at even smaller length
scales, such as micro/nano-pillars [7] and thin films [8]. Such
experiments provide high-resolution observations and stress-

strain measurements of size-dependent material properties.
However, these approaches do not probe the large volumes and
surfaces needed for statistical representations.

One experimental approach to quantify high-resolution, full-
field microscale deformations across statistically representative,
mm-scale fields of view is a combination of scanning electron
microscopy and digital image correlation (SEM-DIC). Digital
image correlation (DIC) is a non-contact, length scale indepen-
dent technique to measure full-field surface displacements with
sub-pixel resolution by tracking the movement of a random
speckle pattern on the sample surface. By comparing a ‘reference
image’ to a ‘deformed image’ of the same sample area, the dis-
placement fields, and thereby the strain fields, can be calculated.
The application of DIC to the field ofmechanics originated in the
1980s [9–14], and is primarily used with optical imaging sys-
tems. In the recent decades, following the pioneering work of
Sutton et al. [15, 16], an increasing number of studies have ex-
plored the implementation of DIC in the SEM (SEM-DIC).

In order to obtain accurate DIC results, the sample surface
needs to have an isotropic, high-contrast, and random speckle
pattern. The speckle size must also be tuned to the imaging
conditions, including the field-of-view (FOV) size and pixel
size. Various patterning methods for SEM-DIC have been
developed, including the application of self-assembled gold

* Z. Chen
chenzhe@ucsb.edu

1 Materials Department, University of California Santa Barbara, Santa
Barbara, CA 93106, USA

2 Department of Mechanical Engineering, University of California
Santa Barbara, Santa Barbara, CA 93106, USA

Experimental Mechanics (2018) 58:1407–1421
https://doi.org/10.1007/s11340-018-0419-y

http://crossmark.crossref.org/dialog/?doi=10.1007/s11340-018-0419-y&domain=pdf
http://orcid.org/0000-0001-5464-6323
mailto:chenzhe@ucsb.edu


nanoparticles to a functionalized metallic surface [17, 18], e-
beam lithography [19], laser-assisted through thin film abla-
tion [20], preferential etching of microstructural features with
an optimized field of view [21, 22], nanoscale remodeling of
metallic films [23, 24], and UV photolithography [23].

In addition to small-scale patterning, SEM-DIC requires
consideration of spatial and temporal (drift) distortions to the
images that are imparted by the SEM. An advantage of SEM
over optical imaging is its higher, diffraction-limited spatial
resolution. While SEM images reveal detailed features of spec-
imens, various types of (spatial and temporal) image distortions
are imparted by the electron optics and become detectable with
the application of DIC analysis. Spatial distortions in a SEM
are due to lens imperfections, similar in concept to distortions
in optical lenses, although in SEM electromagnetic lenses bend
electrons instead of light. While optical imaging distortions are
often corrected by parametric models [25], spatial distortions in
the SEM are position-dependent, and based on the location of
the electron beam that is controlled by the electromagnetic
lenses during the scan process. The spatial distortion imparted
by a SEM is non-parametric, and is more significant at lower
magnifications where the effects of lens defects are magnified.
In addition, SEM imaging exhibits drift distortions that vary
over time as a function of pixel location. This is often an effect
of a material (sample) charging, and not necessarily due to the
SEM. This effect increases at higher magnifications, where the
amount of beam drift is larger relative to the field of view.
Following the work of Sutton et al. [15, 16], there are on-
going efforts to develop processes for calibration and correction
of SEM image distortions [26–28].

In addition to distortion correction through calibration, an
underutilized way to significantly minimize distortion-related
issues in a SEM is by improved scan control of the electron
beam. As a SEM image can be viewed as the strength of
secondary/backscattered electron signals as a function of beam
position, a physical mitigation of distortions can be achieved by
improving control over the beam position. One approach is to
externally generate a tunable scan signal to use as the external
source for the SEM to control the electron beam scan path/
position. An external scan control procedure created by
Lenthe WC, Charles J, Echlin MP, et al. (Advanced detector
signal acquisition and electron beam scanning for high resolu-
tion SEM imaging, 2018, submitted) can significantly reduce
spatial distortions in SEM-DIC investigations to the point
where distortion calibration procedures are unnecessary [29].

Once an optimized speckle pattern and minimal imaging dis-
tortions were achieved, a primary challenge was to capture high-
resolution microscale displacement fields over relatively large
(e.g. mm-scale) fields of view. This relates to a fundamental
challenge that is currently being addressed in the mechanics of
materials community, namely the capture of experimental data
across large surfaces and volumes that is needed to statistically
represent microstructure/feature variation, and the development

of analytical frameworks to mine the resultant large data. This
was accomplished in this work by collecting multi-tile datasets
of the full-field displacements, strains, andmicrostructure during
a test for subsequent stitching and alignment. Approaches for
stitching are presented in this work; there are a limited number of
studies to date on the stitching of displacement and strain data,
although this is a critical step in obtaining high-resolution, large
FOV data. A methodology for stitching high-resolution strain
fields was introduced by Carroll et al. in 2010 [30], on images
captured ex-situ using optical microscopy during tensile and
fatigue crack growth experiments. The strategies of stitching
optical images and then performing DIC, versus performing
DIC on individual images and then stitching, were compared.
It was found that the former method created artificial bands in
the strain field that were non-negligible when the globally ap-
plied strain was less than 1%. Although such artifacts could be
eliminated in the latter method after interpolation of the strain
values, this created sharp displacement discontinuities at the
seams that complicated displacement field stitching. A strategy
to minimize seam discontinuities for displacement field stitching
is discussed in this work.

Polycrystalline microstructures are generally characterized in
SEM experiments by electron backscatter diffraction (EBSD).
However, it can be difficult to properly focus the beam dynami-
cally across a large area due to the high sample tilt during EBSD
data collection, and a trapezium distortion can exist if the tilt
geometry is not compensated by the system [31]. In addition,
spatial distortions are magnified as the FOV size increases.
Therefore, rather than perform a single scan over a large area,
EBSD scans of multiple small areas were captured in this work
using a combination of beam control and stage control, and then
stitched in post-processing. Multi-tile EBSD data can also be
collected by an automated procedure supported by the built-in
functions of the TSLOIMData Collection software, and stitched
by the TSL OIM Analysis software (EDAX, Inc., Mahwah, NJ,
07430, USA). Customization of these approaches has been pre-
viously investigated [32–34]; for example, an approach to pro-
cess multi-tile EBSD data was outlined by Pilchak et al. [32], in
which EBSD data was stitched based onmanual inputs of the tile
overlap and a constant relative shift. This approach was later
updated [33] to first locate grain boundaries and phase boundaries
in the overlapping regions, and then use cross-correlation algo-
rithms to determine the relative position of individual scan tiles.

Statistical and unsupervised learning approaches are being
increasingly used to examine interactions between microstruc-
ture and microscale deformation mechanisms, and the impact
of this activity on the macroscopic material behavior. This
paper details the development of experimental frameworks
needed to capture high-resolution, microscale deformation
mechanisms over mm-scale fields of view, which serves as a
basis for statistical approaches to examine interactions be-
tween microstructure, microscale strain localization, and mac-
roscopic properties in the future.
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Experimental Approach

Displacement and strain fields were captured during in-SEM
testing across large mm-scale FOVs, by the automated capture
of individual μm-scale FOVs that were processed using DIC
and stitched together using custom approaches. The procedure
for doing this, including automation of the image capture pro-
cess, DIC data stitching, EBSD data stitching, and alignment
of the DIC and EBSD data, is discussed below.

Experiments that collect multi-tile datasets in-situ generally
involve prolonged, continuous operation that limits the num-
ber of individual tiles. Automation of the testing procedure
can significantly increase experimental quality and repeatabil-
ity. In this work, an external scan control was combined with a
FEI iFast script and custom C++ scripts to run an automated
procedure that included SEM stage translation, auto focus,
auto brightness and contrast, auto stigmation, and image cap-
ture. This significantly improved the quality of the
displacement/strain fields, as discussed below.

Mechanical Testing

AWE43 magnesium alloy provided by Magnesium Elektron
Ltd. was used in this work. The as-received material (T5 con-
dition) was hot rolled plate aged for 48 h at 204 °C. The
material was solution treated at 525 °C for eight hours, water
quenched, and peaked-aged (T6 condition) at 250 °C for 16 h.
The composition was 3.74 wt% Y, 2.10 wt% Nd, 0.52 wt%
Gd, 0.45 wt% Zr, 0.016 wt% Zn, andMg (balance). Dogbone-
shaped test specimens of the geometry shown in Fig. 1 were
cut using electrical discharge machining and mechanically
polished with SiC paper and diamond paste to a 1 μm finish,
followed by a final polishing with a high pH colloidal
alumina/silica mixture. The sample was etched with a mixture
of 50mlmethanol, 6 ml hydrochloric acid, and 4 ml nitric acid
before EBSD. A microstructural analysis revealed the grain
distribution shown in Fig. 1, with an average grain size of
approximately 116 μm.

A globally applied uniaxial compressive strain of εxx =
−4.7% was applied to the WE43-T6 Mg alloy using a
thermo-mechanical testing stage (Kammrath and Weiss) in a
FEI Teneo SEM. SEM-DIC was performed to capture high-
resolution full-field strains at the sub-grain scale. Before me-
chanical testing, the sample was patterned (see Fig. 1(d)) with
300 nm diameter gold nanoparticles purchased from Sigma-
Aldrich, following the method described in Kammers and
Daly [17]. Displacement-controlled loading was applied, and
the loading was interrupted at specified globally-applied dis-
placements to capture secondary electron images of the sam-
ple surface. Images were taken with accelerating voltage of
30 kV, spot size 11, and 4096 × 4096 pixel resolution, with a
3.2 μs dwell time at each pixel position. A strain gage was
centrally applied to the backside of the gage section for

continuous macroscopic strain monitoring. Digital image cor-
relation was performed using commercial software VIC-2D
[35], with a subset size of 21 by 21 pixels (1.85 μm ×
1.85 μm) and a step size of 5 pixels (0.44 μm), using opti-
mized 8-tap interpolation and zero-normalized squared differ-
ence correlation criterion, to calculate the displacement fields
and therefore Lagrangian strain fields.

Determination of Image Tile Position

DIC was performed on individual image tiles, and the
displacement/strain fields were stitched together. To avoid da-
ta loss and analysis complications, the number and magnifi-
cation of image tiles, as well as the center-located feature of
each image tile, remained constant at each globally applied
load step. With increasing globally applied strain, the de-
formed images can contain smaller areas of DIC data, as fea-
tures near the FOV boundary can move outside of the FOV
due to the applied deformation (particularly for tensile tests).
In this work, an approximately 15% overlap was applied for
the reference image tiles. This overlap provided common fea-
tures for image stitching, ensured that an overlap of the defor-
mation fields could still be found in the neighboring tiles after
deformation, and avoided over-collection of redundant data
that would result in a significant increase in experiment time.

For each tile position, the feature located at the center of the
reference image was imaged as close to the center of the de-
formed image as possible. The SEM stage location at which each
image should be taken (image position) was determined using a
bilinear interpolation, as follows: First, assume a rectangular grid
of R ×C images is captured to later stitch together. The stage
position for an arbitrary image is a function of the row number
and column number, denoted by P(r, c) = (x, y), where r ∈ [0,R]
is the image row number and c ∈ [0,C] is the image column
number. The image positions at the four corners of the grid,
i.e., P(0, 0), P(0, C), P(R, 0), and P(R, C), were determined by
inspecting surface features and used as references to interpolate
all other positions. A linear interpolation was applied to the 0th

row and Rth row, for an arbitrary column c:

P 0; cð Þ ¼ C−c
C

P 0; 0ð Þ þ c
C
P 0;Cð Þ ð1Þ

P R; cð Þ ¼ C−c
C

P R; 0ð Þ þ c
C
P R;Cð Þ ð2Þ

For an image in the cth column and an arbitrary row r, a
linear interpolation was applied using the image position of
the 0th row and the Rth row:

P r; cð Þ ¼ R−r
R

P 0; cð Þ þ r
R
P R; cð Þ ð3Þ
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By substituting in the expression of P(0, c) and P(R, c), an
expression for P(r, c) was obtained:

P r; cð Þ ¼ 1

R⋅C
ð R−rð Þ⋅ C−cð Þ⋅P 0; 0ð Þ þ R−rð Þ⋅c⋅P 0;Cð Þ

þr⋅ C−cð Þ⋅P R; 0ð Þ þ r⋅c⋅P R;Cð ÞÞ

ð4Þ

The image position for an arbitrary tile was then deter-
mined based on the above relationship.

Mitigation of SEM Image Distortions

Figures 2 and 3 illustrate two examples of spatial distortions
observed at different length scales. Such distortions have been
observed across different SEMs, including a FEI Teneo SEMand
a Tescan Mira 3 SEM, and were found to be greatly minimized
with the application of the custom external scan control.

Spatial noise patterns in the strain fields were observed
when using the stock scan controller to image a sample sub-
jected to a rigid body translation, as shown in Fig. 2. Two
examples are shown in Fig. 2(b) and (c), where noise appeared
as crosshatches and vertical/diagonal lines respectively. Such
distortion was also observed in other studies [36]. However,
the use of external scan control resulted in a significant miti-
gation of this image noise, as evident in Fig. 2(d).

Spatial distortion also existed in another form, wherein the
relative positions of the same features were not the same on
different images. In Fig. 3, the sample was subjected to a rigid
body translation close to the width of the FOV. Features were
found to be imaged differently depending on their location in the
image, with more severe distortion at the left edge of the image.
This precluded a high quality overlay needed to stitch neighbor-
ing images, which significantly affected the reconstruction of the
whole sample area. Thus, if this distortion is found to be present,

Fig. 1 (a) Dogbone-shaped test
specimen geometry, (b) grain size
distribution, (c) EBSD inverse
pole figure (IPF) map in the nor-
mal direction (ND) of the Mg
WE43 subjected to uniaxial com-
pressive loading, and (d) second-
ary electron image of a represen-
tative image tile. A small window
marked by the black rectangle in
(d) is magnified to show the
speckle pattern quality. Please
note that patterning ofmagnesium
and its alloys requires a different
approach than for other metallic
alloys, due to its high susceptibil-
ity to corrosion, and typically re-
sults in sparser patterns
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it is advised to capture images with a large area of overlap and
discard the highly distorted data near the edges, using the remain-
ing data where the distortions are relatively small for image
stitching. Alternatively, the application of external scan control
produced a high quality overlay and eliminated the need to dis-
card data near the edges, as shown in Fig. 3(c).

In the current study, a NI USB 6251 BNC M Series DAQ
Device (referred to as a DAQ) was used for external scan
control to customize the imaging process on a FEI Teneo
SEM. A brief introduction of the setup is introduced as fol-
lows, and the reader is referred to for further details. Two
analog output terminals of the DAQ were connected to the

Fig. 2 Image distortions can vary in character and can bemitigated by external scan control. (a) An illustration of the relative positions of a reference and
deformed image, wherein the test specimen underwent a rigid body translation. (b) With a sample translation of 2 μm in a TescanMira 3 SEMwith stock
scan control, noise appeared as diagonal cross-hatched lines. (c) With a sample translation of 20 μm in a FEI Teneo SEM with stock scan control, noise
appeared as vertical and diagonal lines. (d) The application of external scan control during a sample translation of 20 μm in a FEI Teneo SEM resulted in
significant noise mitigation. Note that (d) was performed on the same area of the sample (same pattern quality) as (c), with the same pixel resolution and
imaging parameters adjusted for an image capture time of approximately 45 s. The area imaged in (d) is indicated by the white square window in (c)

Fig. 3 Image distortion in the overlay between two FOVs can significantly affect image stitching and be mitigated by external scan control. (a) Two images
with a stitching overlap region (located on the right side of image 1 and left side of image 2). Each image contributed 50% of the grayscale value in the
overlap region. Four small windows in the overlap area are labeled 1–4 and magnified for observation. (b) For images captured using internal/stock scan
control, the quality of overlay can vary significantly. (c) For images captured using external scan control, the overlay quality is consistently improved
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external scan control port on the SEM, sending horizontal (X-
axis) and vertical (Y-axis) scan signals to the microscope. An
analog input terminal was connected to the Everhart-Thornley
Detector (ETD), sampling the input signal at 1.25 MHz for
imaging. No line integration or frame integration was applied.
As illustrated by Fig. 4, the electron beam was driven by the
scan signal to sequentially reach each of the target pixel posi-
tions, where the selected dwell timewas applied. At each pixel
position, the sampled detector data were stored in an array. An
image was constructed from the detector data arrays from each
pixel and stored as a multiple image TIFF stack, where the N-
th image in the stack was constructed from the N-th element in
the detector data arrays. Different electron beam scan patterns,
such as a raster or a snake pattern, can be applied. It was found
that a few microseconds of dwell time was generally required
for the beam to stabilize at each pixel dwell location. As a
result, compared to higher-numbered image stacks, lower-
numbered image stacks in the rastermode exhibited a system-
atic shift of the features imaged, and lower-numbered image
stacks in the snake mode exhibited interlaced line defects,
represented by ragged feature edges. A one-dimensional dis-
crete Fourier Transform (DFT) based algorithm was devel-
oped that aligned each line of pixels in a lower-numbered
image stack with the corresponding line of pixels in the last
image stack. The snake scan led to lower image distortions; a
dwell time > 10μs was used to stabilize the beam at each pixel
location and thereby eliminate interlaced line defects in the
last image in the detector sampling TIFF stack. For raster
scans, a shorter dwell time (e.g., 3.2 μs) can be applied, as
the last image in the detector sampling TIFF stack contained
no interlaced line defects and therefore was suitable as a ref-
erence to align the detector sampling image set as described
in. However, a distinctive distortion near the left edge of the
image still existed, and resulted in noise in the strain field.

This is illustrated by the high absolute strain (blue) region in
Fig. 2(c), and imperfection in image stitching as illustrated in
Fig. 3(b). This may be due to the large jump of the beam
position from the end of the previous row to the beginning
of the current row, and the related error in beam position
control.

To reduce distortion, a new raster scan strategy was applied
wherein the beam was paused at the start position of each scan
line for an additional wait time equal to 25% of the time re-
quired to scan an entire line. This allowed the beam position to
stabilize, which was essential to reduce the long range image
distortion shown in Figs. 2(c) and 3(b). Comparing to applying
a snake scan with >10 μs dwell time, the long range image
distortion was reduced to comparable level with the application
of the new raster scan strategy with a dwell time of 3.2 μs.

Stage translation, focus, brightness, and contrast adjust-
ment during image capture were automated by a script in the
FEI iFast (Developer’s Kit 5.1) interface. The auto stigmation
and switching external scan on/off functions were performed
through a C++ automation script that sends commands direct-
ly to the FEI xT microscope interface. A lab PC was used to
operate the DAQ and externally control image capture. To
synchronize the imaging parameter adjustment on the micro-
scope PC with the imaging on the lab PC, communication
between the two PCs was established through wired connec-
tions using custom C++ scripts. Once imaging conditions
were adjusted, the microscope PC sent a signal of set frequen-
cy with the imaging tile position encoded, for example:

Frequency ¼ 1000þ 100� r þ 4� c ð5Þ

where r = row number and c = column number. The lab PC
detected this frequency by a Fourier transform of the time-
domain signal to the frequency domain. Once imaging was

Fig. 4 Illustration of the imaging algorithmwith the custom external scan controller. (a) The electron beamwas driven by the scan signal to sequentially
reach each of the target pixel positions. At each pixel position, the detector signal was sampled multiple times (with the data indicated by the colored
squares) and stored in an array. TheN-th sample in the array of each pixel was used to construct theN-th image stack. (b) Illustration of the electron beam
path in the raster scan mode and snake scan mode
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complete, a signal was sent from the lab PC to the microscope
PC to resume stage translation and imaging condition adjust-
ments. The setup of the automated imaging system is illustrat-
ed in Fig. 5.

SEM Image Stitching

The image of a 5.7 mm × 3.4 mm sample area was recon-
structed by stitching individual image tiles using a custom
Matlab script. Due to image distortions and the limited preci-
sion of the SEM stage translation control, the relative position
of the image tiles could not be accurately determined from the
stage positions recorded by the SEM (the manufacturer-stated
precision of the Teneo SEM stage is 3 μm repeatability with
1μm resolution). Instead, the positions were determined using
cross-correlation for image registration. Cross-correlation is a
measure of the similarity between two signals as a function of
the displacement of one signal relative to the other. The cross-
correlation of an M-by-N matrix, F, and a P-by-Q matrix, G,
representing the grayscale value of two images, is defined as:

F⋆Gð Þ x; yð Þ ¼ ∑
M−1

m¼0
∑
N−1

n¼0
F m; nð ÞG mþ x; nþ yð Þ ð6Þ

where x ∈ [−(M − 1), P − 1], and y ∈ [−(N − 1),Q − 1]. Zero
padding is usually applied to elements outside of the original
index range. F is referred to as the template or filter.

To demonstrate its use in imagematching, cross-correlation
for two images is shown in Fig. 6(a) and (b), which have an
overlap region indicated by the black box in Fig. 6(a) and (b).
The result is shown in Fig. 6(c). A peak found at (0, 0) did not
represent the true relative position of the two images, as the
cross-correlation exhibited a background noise that was relat-
ed to the total number of overlapping pixels during the calcu-
lation of each element in the cross-correlation matrix [33].

This background noise was estimated by applying a first-
order Savitzky-Golay smoothing filter with window size of
five to the cross-correlation result. It was then subtracted from
the cross-correlation; the result is shown in Fig. 6(d). A dis-
tinct peak was found at position (−3383, 11), which represents
the true relative position; i.e., image (a) was 3383 pixels to the
left and 11 pixels to the bottom of image (b).

As discussed by Lewis [37], use of cross-correlation as
defined in Eq. (6) for image matching requires the image
energy to be approximately constant. This suggests that the
effectiveness of SEM image stitching by cross-correlation in
the current study was aided by the uniform speckle pattern of
the sample and the relatively consistent image quality.
Normalized cross-correlation can be used to enhance peak
definition:

γ x; yð Þ ¼
∑
m;n

g m; nð Þ−�gx;y
h i

f m−x; n−yð Þ−�f� �

∑m;n g m; nð Þ−�gx;y
h i2

∑m;n f m−x; n−yð Þ−�f� �2�0:5
( ð7Þ

where g is the image, f is the template positioned at (x, y), f is
the mean of the template, and gx;y is the mean of g(m, n) in the
region under the template. The normalized cross-correlation
between the images in Fig. 6(a) and (b) is shown in Fig. 6(e).
The normalized cross-correlation corrected by the Savitzky-
Golay filter is shown in Fig. 6(f). While both peaks were
found at the correct position, the peak in the filtered normal-
ized cross-correlation was more distinctive. The application of
normalized cross-correlation was found to be effective in
aligning grain boundary maps during EBSD data stitching,
as shown later in Section EBSD Data Stitching.

To create a stitched image, the cross-correlation algorithm
was applied to each neighboring image tile to obtain their

Fig. 5 Illustration of the
automated imaging system
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relative positions. Taking into account tile size, the size of the
stitched image and the position of each image tile in the stitched
image were calculated. In regions where multiple image tiles
overlapped, stitching was performed using a simple image
blending algorithm that averaged the greyscale values at each

point. The stitched image was only used to visually confirm the
quality of the overlay; if DIC analysis had been performed on
the stitched image (versus individual images), it is possible that
a more advanced blending algorithm would need to be used to
ensure sufficient accuracies for the stitched regions.

Fig. 6 Illustration of cross-
correlation for image matching.
(a) and (b) Two images with an
overlap highlighted by the black
box. c) Cross-correlation of (a)
and (b), calculated according to
Eq. (6). d) Cross-correlation after
subtracting background noise es-
timated by a Savitzky-Golay filter
with a window size of 5. The inset
is a magnified view of a small re-
gion near the correlation peak. (e)
Normalized cross-correlation ac-
cording to Eq. (7). f) Normalized
cross-correlation after back-
ground correction using the
Savitzky-Golay filter. g) A region
near the normalized cross-
correlation peak for two images
(not shown here) taken with the
stock scan controller. A diagonal
streak of high value points can be
observed that corresponds to the
overlay error discussed in Fig. 3b.
The color bar in (c)-(g) indicates
the cross-correlation values
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A few additional considerations for SEM image stitching
are provided in Appendix A.

DIC Displacement and Strain Data Stitching

DIC was performed on individual image tiles, and the resul-
tant displacement and strain fields were stitched together. A
practical reason for applying this method, rather than
performing DIC on the stitched images, was the large size of
the stitched images (~30,000 × 70,000 pixels). The deforma-
tion data of individual image tiles were exported as matrices,
where the output variables included: the initial pixel positions
x and y on the reference image, the displacement values u and
v (where the pixel position on the deformed image was (x + u,
y + v)), and selected strain values (in this case, Lagrangian
strain values εxx, εxy, εyy). Similar to image stitching, each of
the deformation data fields of individual image tiles (local
matrices) were stitched to form a single, global matrix that
represented the deformation data of the stitched image.

To simplify data processing, the global matrices were con-
structed to describe deformation at evenly spaced positions on
the stitched reference image, with a step size equal to that in
the DIC analysis. For example, when a step size of 5 pixels
was used, the global pixel position matrices were:

X ¼
0 5 10 …
0 5 10 …
0 5 10 …
… … … …

2
664

3
775andY ¼

0 0 0 …
5 5 5 …
10 10 10 …
… … … …

2
664

3
775

The position of the local matrix in the global matrix was
directly related to the position of the DIC reference image tile
in the stitched image. For example, if an image tile was
stitched to a region starting at pixel position (a, b), the data
points at position (x, y) in the local matrix should be stitched to
position (x + a, y + b) in the global matrix. However, as posi-
tion (a, b) was rarely a multiple of the step size used in DIC
analysis, a nearest neighbor interpolation was applied, where a
and b were rounded to the nearest integer values that were
multiples of the step size. For example, if a step size of 5 pixels
was used, (a, b) = (3, 4) was rounded to (a, b) = (5, 5). Once
the stitch position of the local matrices was determined, the
values were used to construct the corresponding subset of the
global matrices. The accuracy of this method increased with
reduced step size; other interpolation methods are possible if
needed.

Stitching of strain fields was more straightforward than
stitching of displacement fields, as strain was calculated for
each data point using the displacement of itself and its four
nearest neighbor data points, then smoothed by a Gaussian
filter of a limited size (here, a filter size of five data points
was used) [35]. Theoretically, the strain fields in different local
matrices should be the same in regions where the local

matrices overlap, as strain is not affected by rigid motion. In
practice, they are different, due to image noise and distortion.
When the image distortion was larger in one of the contribut-
ing matrices, i.e., the matrix where the overlap area is on the
left side, those values were discarded and the more accurate
values of the other matrix were used. If image distortion was
relatively consistent across the contributing matrices, the
strains were averaged between multiple overlapping matrices.

Stitching displacement matrices required more consider-
ation than stitching strain matrices. As local matrices represent
the displacement of individual deformed image tiles with re-
spect to the corresponding reference image tiles, and global
matrices represent the displacement of the stitched deformed
image with respect to the stitched reference image, the dis-
placements depend on the physical displacement of the
trackable features and on the origin of each image. This rela-
tionship is illustrated in Fig. 7. A trackable feature is imaged at
position (xi, yi) on the reference image tile, and at position (xf,
yf) on the deformed image tile. Therefore, the displacement
values (u′, v′) in the local matrices are:

u
0
; v

0
� �

¼ x f −xi; y f −yi
� �

ð8Þ

The position on the stitched image is (xr, yr) for the refer-
ence image tile, and (xd, yd) for the deformed image tile.
Therefore, on the stitched image, the position of the feature
is (xr + xi, yr + yi) in the reference image, and (xd + xf, yd + yf) in
the deformed image. The displacement values (u, v) in the
global matrices are:

u; vð Þ ¼ xd þ x f
� �

− xr þ xið Þ; yd þ y f
� �

− yr þ yið Þ
� �

¼ u
0 þ xd−xrð Þ; v0 þ yd−yrð Þ

� � ð9Þ

Therefore,

u
0 ¼ u− xd−xrð Þ ð10Þ

v
0 ¼ v− yd−yrð Þ ð11Þ

For a given feature, the displacement measured from the
stitched image is a set value. Therefore, it can be seen from
Eqs. (10) and (11) that the displacement measured from a
given image tile (in local matrices) is dependent on the stitch
position (xr, yr) and (xd, yd). For a feature located in the overlap
area, as the stitch positions of the image tiles are different, the
displacements measured from different image tiles are also
different. Such difference in the displacement data between
overlapping image tiles is illustrated in Fig. 8(a), which plots
the horizontal displacement fields of two neighboring image
tiles. In the overlap area, half of the displacement field was
plotted using the values of image tile 1, and the other half
using the values of image tile 2. A discontinuity was observed
in the middle of the overlap area.
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To avoid this stitching discontinuity, the values in the local
matrices were corrected using Eq. (9), such that the displace-
ment fields in different local matrices become the same in the
overlap region. When stitching local matrices to the global
displacement matrices, the values (xd - xr) and (yd - yr) were
added to the local displacement matrices u’ and v’. As shown
in Fig. 8(b), this correction minimized the discontinuity in the
displacement field. Note that the discontinuity shown in Fig.
8(a) is mainly due to the fact that reference and deformed

image tiles have their origins located at different positions
on the stitched image. The stitching defect being corrected
here is different from that in SEM image distortion [15, 16,
26–28].

The displacement field stitching method introduced above
requires stitching both reference and deformed image tiles. An
alternative approach that requires only stitching reference im-
age tiles is also possible, as follows: As discussed, the stitch
position of the local matrices only depends on the stitch posi-
tion of the reference image tiles. The purpose of displacement
field stitching is to equalize the local displacement matrices in
the overlap region. Consider the horizontal displacement u as
an example. Each local matrix needs to be corrected by adding
a specific constant that represents the difference between the
stitch position of the deformed image and reference image
tiles (xd − xr), as discussed previously. However, this approach
solves for this constant as an unknown variable. Taking into
account all image tiles, a least squares method was used to
solve for all constants required to correct the local displace-
ment matrices. The sum of squared difference between the
corrected displacement values in all the overlap areas was
expressed as:

E ¼ ∑
i
∑
j
∑
Kij

k¼1
uik þ Ui−ujk−U j
� �2 ð12Þ

where i and j are the indices referring to different local matrices,
k is the element index in the overlap region of the matrices, Kij

is the total number of overlap elements between matrices i and
j, andUi andUj are the constants to be added to matrices i and j
to correct the displacement value. A minimized E indicates that
the corrected displacement fields from different local matrices
exhibit minimal difference in the overlap region. The minimi-
zation of E is equivalent to setting the derivative of E with
respect to all the Ui, Uj, ... values equivalent to zero, which
results in an overdetermined system of linear equations. By

Fig. 7 Illustration of the effect of image tile stitch position on the
displacement values. A single reference image tile and the stitched
reference image are represented by red solid rectangles. A single
deformed image tile and the stitched deformed image are represented
by blue dashed rectangles. A trackable feature is represented by a circle
before (solid red) and after (dashed blue) deformation. All images have
their own local coordinate system with the origin located at their upper-
left corner. The position of the feature is (xi, yi) on the reference image tile,
and (xf, yf) on the deformed image tile. The stitch position of the reference
image tile is (xr, yr). The stitch position of the corresponding deformed
image tile is (xd, yd). The relationship between the displacement values
measured from the image tiles and from the stitched images is discussed
in the text

Fig. 8 Displacement fields of different image tiles need to be corrected during data stitching. (a) The displacement field measured from two image tiles
with a discontinuity evident in the overlap area. In the overlap area, half of the displacement field was plotted using values from image tile 1 and the other
half using values from image tile 2. (b) Correction minimized the discontinuity in the displacement field
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solving this system, the constants used to correct the individual
local matrices were obtained. Similar to stitching strain fields,
the corrected displacement values can be either averaged in the
local matrix overlap region or selected preferentially, depend-
ing on the distortion of the image tiles.

Figure 9 shows the DIC-obtained displacement and strain
maps over a very large area of 5.7 mm× 3.4 mm, constructed
by stitching 209 matrices of individual 360 μm × 360 μm
tiles. The corresponding macroscopic strain was approximate-
ly −3.7%. The step size between each neighboring data point
was five pixels, which is approximately 0.44 μm.
Deformation mechanisms including dislocation slip and twin-
ning are clearly resolved, as shown in the inset of Fig. 9(b),
where slip traces are shown as sets of sharp, thin, and straight
lines with highly localized strain, and twinned areas inside a
grain are observed as a region with a relatively constant strain
that is different from the parent grain, with a lenticular shape
and sharp edges.

EBSD Data Stitching

Electron backscatter diffraction (EBSD) data was collected
from the same sample area as the deformation maps by an
automated multi-tile scan procedure supported by the built-
in functions of the TSL OIMData Collection software. A total
of 135 (5 × 27) EBSD data tiles were collected. As previously
discussed, the individual EBSD maps contain distortions, and
the precision of the SEM stage control in the multi-tile EBSD
scan is limited. Therefore, instead of using the stitch function
in the TSLOIMAnalysis 7 software, the multi-tile EBSD data
was stitched using a custom script.

First, a rough cleanup by grain dilation was performed using
the OIM Analysis software. A grain boundary map was gener-
ated for each tile, and the same normalized cross-correlation
algorithm as that in image stitching was used to find the stitch
position of each data tile in the global map. A confirmation step
allowed for additional manual adjustment, if needed, of the tile

Fig. 9 The DIC-obtained (a) dis-
placement and (b) strain maps of
the 5.7 mm× 3.4 mm area of in-
terest of the Mg WE43 sample
were constructed by stitching 209
matrices of individual 360 μm×
360 μm tiles. The step size be-
tween each neighboring data
point is 0.44 μm. The region
highlighted by the black box has a
size equal to that of a single image
tile, and is located at the intersec-
tion of four neighboring image
tiles
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position. After the stitch positions were confirmed, the raw data
of all tiles were stitched together to construct a global data set,
and exported as a single .ang file for analysis in the OIM
Analysis software. Figure 10 shows the global grain boundary
map, where averaged grayscale values were used in the overlap
areas of individual tiles. As shown in Fig. 10(a), assuming a
constant translation between neighboring tiles led to amisalign-
ment of grain boundaries, particularly in the last few columns
of the second row of the tiles. The EBSD stitching method
described here significantly improved grain boundary align-
ment, demonstrated in Fig. 10(b).

The image quality (IQ) and confidence index (CI) were aver-
aged in the overlap regions between local matrices, and set to
zero in regions outside of the area of interest to facilitate data
processing. Due to the time-consuming nature of averaging the
crystal orientation, which requires calculation in the orientation
space, the Euler angles were copied from individual data tiles to
the global data set. The data in the overlap area were overwritten
with the data last stitched to the global data set. The procedure to
calculate the average grain orientation was to first select a seed
orientation, then convert every other orientation to the nearest
symmetric equivalent orientation to the seed orientation, and then

calculate the average orientation in the quaternion space, and
finally convert it back into Euler angles.

When determining the stitch position of individual data
tiles using the normalized cross-correlation algorithm, maps
other than the grain boundary map can also be used; for ex-
ample, maps of the IQ, CI, or misorientation with respect to a
given orientation are suitable. However, these did not provide
better results than grain boundary maps in the current study.

DIC-EBSD Data Alignment

To facilitate the correlation between the deformation and the
underlying microstructure, the stitched SEM-DIC data and the
EBSD data were aligned as shown in Fig. 11. As the SEM
images exhibited less distortion than EBSDmaps, the position
of the EBSD data was transformed from the EBSD to the DIC
data coordinate system.

A projective transformation was used for alignment. This
transformation maps lines to lines but does not necessarily
preserve parallelism. N control point pairs corresponding to
the same physical locations on the sample were manually
selected on both the strain and EBSD maps. Assume the con-
trol points on the EBSD map have coordinates (xi, yi), where
i ∈ [1,N], and the corresponding control points on the DIC
map have coordinates (Xi, Yi). A projective transformation
can be represented by a 3-by-3 matrix H, where

H ¼
h1 h4 h7
h2 h5 h8
h3 h6 h9

2
4

3
5 ð13Þ

where h9 = 1, and the following relationship is satisfied for
each pair of control points:

X i ¼ xih1 þ yih2 þ h3
xih7 þ yih8 þ h9

ð14Þ

Y i ¼ xih4 þ yih5 þ h6
xih7 þ yih8 þ h9

ð15Þ

Rearranging the relationship for all control point pairs re-
sults in the following system of linear equations:

X 1

Y 1

X 2

Y 2

…
X n

Yn

2
666666664

3
777777775
¼

x1 y1 1 0 0 0 −X 1x1 −X 1y1
0 0 0 x1 y1 1 −Y 1x1 −Y 1y1
x2 y2 1 0 0 0 −X 2x2 −X 2y2
0 0 0 x2 y2 1 −Y 2x2 −Y 2y2
… … … … … … … …
xn yn 1 0 0 0 −Xnxn −Xnyn
0 0 0 xn yn 1 −Ynxn −Ynyn

2
666666664

3
777777775

h1
h2
h3
h4
h5
h6
h7
h8

2
66666666664

3
77777777775

ð16Þ
which is abbreviated as

Fig. 10 Global grain boundary map constructed by stitching individual
tiles. The upper left corner of each tile is indicated by a white square.
Average grayscale values were used in the overlap area of neighboring
tiles. (a) Assuming a constant translation between neighboring tiles led to
grain boundary misalignment in the global map, as highlighted by the
white box. (b) EBSD stitching resulted in improved grain boundary
alignment
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Q ¼ PA ð17Þ

A projective transformation requires four control point
pairs. If more than four control point pairs were provided,
i.e., N > 4, Eq. (16) became an overdetermined system of lin-
ear equations. Therefore, matrix Awas solved by the general-
ized inverse to average the effect of more than four control
point pairs:

A ¼ PTP
� �−1

PTQ ð18Þ

which provided all the required elements to define the trans-
formation matrix H.

During an EBSD scan, it is possible for the sample to have
out-of-plane misalignment. Therefore, a projective transfor-
mation was used to align a single EBSD map with a SEM
image. The global EBSD scan was composed of multiple tiles
(captured using SEM stage control) that could all be modeled
by similar projective transformations, and the overall distor-
tion could not be described by a single projective transforma-
tion. Performing projective transformation piecewise, i.e.,
separately on multiple regions of the whole EBSD map,

requires a significant number of control points and would be
prone to cause discontinuities in the transformed map.
Therefore, the averaged projective transformation was ap-
plied. Note that the alignment was performed only to the po-
sition of the data points, and the Euler angles were not mod-
ified, as the correction could not be determined from the pro-
jective transformation.

The ability to obtain high-resolution deformations over sta-
tistically relevant fields of view enables large data analytics to
examine interactions between microstructure, microscale
strain localizations, and macroscopic properties. Two exam-
ples of the analyses made possible by this approach are shown
in Fig. 12. Figure 12(a) shows the distribution of effective
strain versus distance to the grain boundary for all data points
at a globally applied uniaxial compressive strain of −3.7%.
The effective strain is defined as:

εeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
ε2xx þ ε2yy þ 2� ε2xy

� �r
ð19Þ

where εxx, εxy, and εyy are the three components of the exper-
imental Lagrangian strain tensor, and uniaxial compressive

Fig. 11 EBSD grain boundary
map for the sample area projected
onto the DIC data coordinate
system and overlaid with the
stitched εxx Lagrangian strain
map at a global uniaxial
compressive strain of −4.7%

Fig. 12 Box plots of the effective strain distribution versus (a) distance to the grain boundary, and (b) basal Schmid factor, for all data points in the tested
sample at a globally applied compressive strain of −3.7%. The boxes indicates the 25th, 50th, and 75th percentiles of the sample distribution. The end of
the whiskers indicates the ±3σ of the sample distribution
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loading was applied along the x-direction.
The effective strain distribution was found to be relatively

uniform inside the grains, with only a slight decrease as dis-
tance to the grain boundary increased as seen in Fig. 12(a).
The basal Schmid factor was found to have a larger impact on
the effective strain distribution, as shown in Fig. 12(b).
Regions with high basal Schmid factor exhibited higher effec-
tive strains, as evident in the box plot of Fig. 12(b).
Interestingly, regions with a small basal Schmid factor (<
0.2) also exhibited higher effective strains, which may be re-
lated to increased twinning activity.

Summary

An experimental approach to map high-resolution, sub-grain
deformations across mm-scale fields of view, and to investi-
gate their interactions with the surrounding microstructure,
was presented and demonstrated on the magnesium alloy
WE43 under uniaxial compressive loading. In the demonstrat-
ed test case, deformation mechanisms including dislocation
slip and twinning are resolved with a spatial resolution of
0.44 μm in a 5.7 mm× 3.4 mm field of view containing 100
million (7678 × 13,004) individual data points. This was con-
structed by stitching 209 low-distortion micrographs of
360 μm× 360 μm each. This required the creation of new
approaches for distortion mitigation, testing automation, and
displacement/strain/image field stitching, which are described
in detail herein.

This approach enables the investigation of the spatial
evolution of microscale deformation and damage under
thermo-mechanical loading across a wide range of ma-
terials. Examples of the broad range of analysis made
possible by this approach are demonstrated in this pa-
per, including the analysis of effective strain distribution
versus distance to the grain boundary and basal Schmid
factor of the sample when globally subjected to a −
3.7% uniaxial compressive strain, as representative ex-
amples shown in Fig. 12. The ability to obtain high-
resolution deformations over statistically relevant fields
of view enables the future application of large data an-
alytics to examine interactions between microstructure,
microscale strain localizations, and macroscopic
properties.
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Appendix

This appendix provides a few additional considerations for
SEM image stitching:

(1) The brute-force calculation of cross-correlation de-
fined in Eq. (6) is computationally intensive, and
was therefore optimized using cross-correlation theo-
rem, wherein for two images with their grayscale
values represented by matrices I and J, the cross-
correlation was calculated as:

I⋆J ¼ F−1 �F �Ið ÞF Jð Þð Þ ð20Þ
where F denotes forward Fourier transform, F−1 denotes in-
verse Fourier transform, and the bar over F denotes the com-
plex conjugate. The calculation of Eq. (7), as demonstrated by
Lewis [37], can be converted into calculating a cross-
correlation that can be optimized using Eq. (20), and calculat-
ing terms involving the image sum and sum squared.

(2) For image tiles taken on a regular grid, their relative
positions can be estimated before calculating the cross-
correlation. A subset of images in the estimated overlap
area can be used for the calculation to significantly re-
duce computation time and narrow the search area for the
cross-correlation peak. If a reasonable solution is not
found, a custom script can be used to manually select
an image subset with distinctive features to improve
cross-correlation.

(3) Due to image distortions and random noise, it is impos-
sible to produce a perfect overlap of two neighboring
images. For example, Fig. 6(g) shows a small region near
the background-corrected cross-correlation peak for two
images captured using the stock scan controller. A diag-
onal streak of high value points exists that corresponds to
the overlay error discussed in Fig. 3(b). The peak repre-
sents the relative shift of the images with the most over-
lap of common features.

(4) The relative position was determined at pixel-level reso-
lution. For sub-pixel image registration, the reader is re-
ferred to [38]. As the step size in DIC analysis was on the
order of a few pixels, sub-pixel image registration was
considered unnecessary in this study.
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