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Abstract
Experimental studies to exploit photoelastic data of conformal geometries to extract contact parameters are non-existent because
closed-form stress field equationswere not available until recently. In this paper, the explicit equations recently reported in the literature
for a flat punchwith rounded edges are generalized so that a single set of equations can be used for a flat punchwith rounded edges and
Hertzian contacts with arbitrary radii of curvatures. The generality of the governing equations is verified by plotting isochromatics for
conformal and non-conformal contact situations. A generic method to evaluate unknown contact parameters from the whole-field
isochromatic data for conformal and non-conformal geometries is implemented. The methodology is initially verified using theoret-
ically generated isochromatic data and is then used to experimentally evaluate two contact situations. In view of high-fringe gradient
zones, the suitability of various digital photoelastic methods is compared. A novel four-step phase shifting technique is proposed in
which isochromatic and isoclinic data can be evaluated using the minimum number of images.

Keywords Contact mechanics . Flat rounded punch .Muskhelishvili potential . Digital photoelasticity . Phase shifting technique

Introduction

In many mechanical devices, contact between two or more
parts exists and is crucial in the load transfer from one com-
ponent to another. Although analytical modeling of contact
zones has received attention [1–6], reports of whole-field
equations for stress fields are limited. For non-conformal con-
tacts, Smith and Liu [5] in 1953 derived stress field equations
in terms of the contact length and frictional coefficient.
Contact problems involving conformal geometries, such as a
flat punch with a rounded edge, are more complex since a
combination of complete and incomplete contact zones can
be produced [1, 2]. Although the subsurface stress fields can
be formulated based on the Muskhelishvili complex potential
approach [3], most work focuses on obtaining pertinent

information on only the contacting interface or along the line
of symmetry [2, 4, 6]. Experimental studies to exploit
photoelastic data of conformal geometries to extract contact
parameters are non-existent since closed-form stress field
equations have not been available until recently. Only in
2014, Jesus Vazquez et al. [7] reported the stress fields for a
flat punch with rounded edge contact.

In this paper, the explicit equations reported in the literature
for a flat punch with rounded edges are generalized so a single
set of equations can be used for a flat punch with rounded edges
and Hertzian contacts with arbitrary radii of curvatures by con-
sidering the relative curvature term. To obtain insight into the
contact of a flat punch with rounded edges, theoretically simu-
lated isochromatics and isoclinics are obtained by varying the
friction between the bodies in contact.With the modified explicit
stress field equations, a generic methodology is implemented to
determine contact stress parameters for conformal and non-
conformal geometries from the whole-field experimental
isochromatic data using a nonlinear least squares approach.
The methodology is initially verified using analytically simulat-
ed contact fields and then applied to two examples of conformal
and non-conformal contact problems. In view of high-fringe
gradient zones, the suitability of various digital photoelastic
methods is compared, and an improved four-step Phase
Shifting Technique (PST) is proposed to evaluate isochromatic
and isoclinic data using a minimum number of images.
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Sub-Surface Stress Fields for Contact Zones

Muskhelishvili Potential in terms of arbitrarily distributed nor-
mal p(s) and tangential load q(s) for the contact problem is
given as [2, 3].

Φ zð Þ ¼ 1

2πi
∫

contact

p sð Þ−iq sð Þ
s−z

ds ð1Þ

where z = x + iy and s is the measure of distance along the
contacting interface in the x-direction from the origin
(Fig. 1(a)). Stress components are related to Muskhelishvili
potential (Φ(z)) as

σxx þ σyy ¼ 2 Φ zð Þ þ Φ zð Þ
� �

σyy−σxx þ 2iτxy ¼ 2 zΦ
0
zð Þ þΨ zð Þ

� � ð2Þ

where Ψ zð Þ ¼ ‐Φ zð Þ‐Φ zð Þ−zΦ0
zð Þ. Here, the over bar sign

indicates the complex conjugate, and the dash indicates the
derivative of the complex variable.

Failure or yielding according to von Mises criteria can be
obtained as Φ(z)a function of Muskhelishvili Potential and its
derivatives as

σ2
vM ¼ γ21 þ 3δ1δ1; for plane stress

1−2νð Þ2γ21 þ 3δ1δ1; for plane strain

(
ð3Þ

where

γ1 ¼ 1=2ð Þ σx þ σy
� � ¼ Φ zð Þ þ Φ zð Þ

� �
δ1 ¼ 1=2ð Þ σy−σx þ 2iτxy

� � ¼ zΦ
0
zð Þ‐Φ zð Þ‐Φ z

� �
−zΦ

0
zð Þ

� � ð4Þ

Since this could be evaluated directly using equation
(2), separation of the individual stress components
(σxx, σyy, τxy) is not necessary, and explicit equations
were not reported for conformal contacts until recently.

For conformal contacts, the classic rigid punch is
simple to evaluate but not realistic. Civerella et al. [6]
and Sackfield et al. [4] studied the influence of the
corner radius of a flat punch using a complex potential
approach, thereby providing a realistic alternative to the
classic rigid-flat punch idealization. Extending the work
of Civerella et al. [6] and Sackfield et al. [4], Jesus
Vazquez et al. [7] obtained the explicit solutions in the
real domain for the stress field for a flat punch with
rounded edge contact (Fig. 1). When external load is
applied, the flat region -b to b is in complete contact,
and the segments b to a and -b to -a are in incomplete
contact.

The Muskhelishvili Potential for normal (Φn) and
tangential load (Φt) for generic loading is expressed as

Φn zð Þ ¼
i zþ bð ÞΔ

2C
þΔ

i
ffiffiffiffiffiffiffiffiffiffiffi
z2−a2

p
π−2sin−1 kð Þ� �

− z−bð Þln Ω z; bð Þð Þ þ zþ bð Þln Ω z;−bð Þð Þ
2Cπ

; x≤0

i z−bð Þ
2C

þΔ
−i

ffiffiffiffiffiffiffiffiffiffiffi
z2−a2

p
π−2sin−1 kð Þ� �

− z−bð Þln −Ω z; bð Þð Þ þ zþ bð Þln −Ω z;−bð Þð Þ
2Cπ

; x > 0

8>><
>>: ð5Þ

Φt zð Þ ¼
−μ zþ bð ÞΔ

2C
þ iμΔ

ffiffiffiffiffiffiffiffiffiffiffi
z2−a2

p
π−2sin−1 kð Þ� �

− z−bð Þln Ω z; bð Þð Þ þ zþ bð Þln Ω z;−bð Þð Þ
2Cπ

; x≤0

−μ z−bð ÞΔ
2C

þ iμΔ

ffiffiffiffiffiffiffiffiffiffiffi
z2−a2

p
π−2sin−1 kð Þ� �

− z−bð Þln −Ω z; bð Þð Þ þ zþ bð Þln −Ω z;−bð Þð Þ
2Cπ

; x > 0

8>><
>>: ð6Þ

where k is the ratio of the two contact lengths b/a (Fig. 1),C is
a measure of compliance of the bodies in contact andΔ is the
relative curvature defined as

Δ ¼ 1

R1
þ 1

R2

� �
ð7Þ

where R1 and R2 are the radii of the curvature of the contacting
bodies. For similar bodies, the measure of compliance (C) is
defined asC = (κ + 1)/(2G), whereG is the shear modulus and

κ is Kolosov’s constant, which is κ = (3 − ν)/(1 + ν) for plane
stress and κ = (3 − 4ν) for plane strain situations with ν being
Poisson’s ratio. The symbol Ω in equations (5) and (6) is
defined as

Ω z; tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi
z−a
zþ a

r
−i

ffiffiffiffiffiffiffiffiffiffiffi
a−t
aþ t

r
ffiffiffiffiffiffiffiffiffiffiffi
z−a
zþ a

r
þ i

ffiffiffiffiffiffiffiffiffiffiffi
a−t
aþ t

r ð8Þ
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For a flat punch with a rounded edge, the pressure term can be
obtained in dimensionless form as [6]

p ωð Þ ¼ P
b

−2=π
π−2ω0−sin2ω0

π−2ω0ð Þcosωþ ln
sin ωþ ω0ð Þ
sin ω−ω0ð Þ
				

				
sinω

tan
ωþ ω0

2
tan

ω−ω0

2

			 			sinω0

" #( )

ð9Þ

where

ω ¼ sin−1
x sin ω0

b

� �
andω0 ¼ sin−1 b=að Þ

A generalized explicit solution of the normal and tangential
stress component (superscripts ‘n’ and ‘t’) for conformal and
non-conformal geometries with varying radii of curvature of
the contacting bodies is expressed as

σn
xx x; yð Þ ¼

−2yΔ
C

−Δ
v1 þ yu6ð Þ

�
π−2sin−1 kð Þ þ 2y v3−v2ð Þ− bþ xð Þu3 þ x−bð Þu2

Cπ
; x≤0

−2yΔ
C

−Δ
−v1−yu6ð Þ

�
π−2sin−1 kð Þ þ 2y v3−v2ð Þ− bþ xð Þu3 þ x−bð Þu2

Cπ
; x > 0

8>>>><
>>>>:

ð10Þ

σnyy x; yð Þ ¼
−Δ

v1−yu6ð Þ π−2sin−1 kð Þ� �
− bþ xð Þu3 þ x−bð Þu2

Cπ
; x≤0

−Δ
−v1 þ yu6ð Þ π−2sin−1 kð Þ� �

− bþ xð Þu3 þ x−bð Þu2
Cπ

; x > 0

8>><
>>: ð11Þ

σn
xy x; yð Þ ¼

−Δ
y
�
v6 2sin−1 kð Þ−π� �þ u3−u2

Cπ
; x≤0

−Δ
y
�
v6 π−2sin−1 kð Þ� �þ u3−u2

Cπ
; x > 0

8>>>><
>>>>:

ð12Þ

σt
xx x; yð Þ ¼

−μΔ
2u1−yv6ð Þ

�
π−2sin−1 kð Þ þ 3y u3−u2ð Þ þ 2 bþ xð Þ v3 þ πð Þ−2 x−bð Þv2

Cπ
; x≤0

−μΔ
−2u1 þ yv6ð Þ

�
π−2sin−1 kð Þ þ 3y u3−u2ð Þ þ 2 bþ xð Þ v3 þ πð Þ−2 x−bð Þv2

Cπ
; x > 0

8>>>><
>>>>:

ð13Þ

σt
yy x; yð Þ ¼

−Δ
v1−yu6ð Þ π−2sin−1 kð Þ� �

− bþ xð Þu3 þ x−bð Þu2
Cπ

; x≤0

−Δ
−v1 þ yu6ð Þ π−2sin−1 kð Þ� �

− bþ xð Þu3 þ x−bð Þu2
Cπ

; x > 0

8>><
>>: ð14Þ

σt
xy x; yð Þ ¼

−μΔ
v1 þ yu6ð Þ

�
π−2sin−1 kð Þ þ 2y v3−v2−πð Þ þ bþ xð Þu3− x−bð Þu2

Cπ
; x≤0

−μΔ
−v1−yu6ð Þ

�
π−2sin−1 kð Þ þ 2y v3−v2ð Þ− bþ xð Þu3 þ x−bð Þu2

Cπ
; x > 0

8>>>><
>>>>:

ð15Þ

Fig. 1 Schematic diagram of
contact zone of (a) flat punch with
rounded edge and (b) two discs
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Parameters u1, u2, u3, u6, v1, and v6 used in equations
(10)–(15) are functions of x, y, a and b and are defined in
Appendix 1.

For combined loading conditions, which are prevalent in
most practical applications, the stress components can be ob-
tained through the linear superposition of normal and tangen-
tial components as

σij x; yð Þ ¼ σn
ij x; yð Þ þ σt

ij x; yð Þ ð16Þ

For a punch with a rounded edge contacting a base
plate with an infinite radius of curvature (Fig. 1), Δ
has a value of (1/R), where R is the radius of the punch
and the set of equations (equations (10)–(16)) takes the
form reported in Ref. [7]. For an incomplete contact
length b = 0, i.e., k = 0, this takes a contact interface of
two discs such as the Hertzian case (Fig. 1(b)), where a
is defined as semi-contact length and 2a is the total
contact length with appropriate values for Δ depending
on the curvatures of the contacting bodies. A simple
modification of introducing a relative curvature term of
the contacting bodies (Δ) extends the equations for a
flat punch with rounded edge contact [7] to model a
Hertzian contact field with any arbitrary radius of cur-
vature of the contacting bodies.

Verification of Generalized Governing Equations
by Plotting Isochromatics for Contact Zones

The principal stress difference (σ1 - σ2) in the entire domain
can be easily obtained using equations (10)–(16). The
isochromatic fringe field for the contact zone can be simulated
using the Stress- Optic law as

Id ¼ 255sin2
t σ1−σ2ð Þ
2πFσ

� �
ð17Þ

where Id is the intensity value of the dark field isochromatics, t
is the thickness of the model (mm) and Fσ is the material stress
fringe value (N/mm/fringe). Equation (17) converts the retar-
dation information into an 8-bit grayscale representation,
where the intensity value 255 represents pure white and 0
represents pitch black.

In equations (10)–(16), if k is equal to zero, the so-
lution is the Hertzian solution. Figure 2(a) shows typical
isochromatics for Hertzian contacts. Figure 2(b) shows
the variation in the fringe order at x = 0 along y/a for
different values of k with Δ = 1/R. For k values other
than zero, it simulates various combinations of a flat
punch with rounded edges. Figure 2(c) shows the sim-
ulated isochromatic fringes for k = 0.4, which splits the
eye of the Hertzian contact and pulls the maximum
fringe order zones towards the ends of the punch.

Nature of Isochromatic and Isoclinic Fringe Fields
for Flat Punch with Rounded Edges

To show the equations model a flat punch with rounded edges,
a sample problem with R = 2 mm, b = 3 mm, E = 3.3 GPa, ν =
0.37, and k = 0.96 is theoretically generated with and without
friction (μ = 1.5, 0). The principal stress data obtained are
plotted as dark field isochromatics (Figs. 3(a) and 3(b)).
Figure 3(c) shows the fringe order variation along a line at
y = −0.1a for different frictional coefficients, μ = 0, 0.1, 0.15,
0.2, and 0.3. From Fig. 3(c), the additional tangential traction
induced on the contacting surface increases the level of fringe
orders with increased frictional coefficients.

The isoclinic fringe fields provide information on the ori-
entation of principal stress throughout the model domain. The
isoclinics should be plotted over the domain as binary con-
tours of 10° steps to mimic the assembly of isoclinic contours
as seen in a conventional photoelastic experiment. The
isoclinic data obtained for μ = 0, and 0.15 is plotted as binary
contours and shown in Figs. 4(a) and 4(b). From Figs. 4(a) and
4(b), the isoclinics are symmetric with respect to the vertical
axis in the absence of friction. However, the presence of tan-
gential traction disturbs the symmetrical distribution of
isoclinics. Variation in the isoclinic data along a line at y =
−0.1a for different frictional coefficients, μ = 0, 0.1, 0.15, 0.2,
and 0.3, is plotted in Fig. 4(c). From Fig. 4(c), the effect of
additional tangential traction induced on the contacting sur-
face on isoclinic data is mainly in the region of −1 < x/a < 1,
i.e., along the contact length.

Evaluation of Contact Stress Field Parameters
from Isochromatic Fringe Field

Formulation of Nonlinear Least Squares

In this section, the methodology to determine the unknown con-
tact parameters from the whole-field isochromatics is described.
The fringe order N and principal stress difference (σ1 − σ2) are
related by the stress-optic law as [8, 9].

σ1−σ2 ¼ NFσ

t
ð18Þ

where t is the thickness of the model (mm) and Fσ is the material
stress fringe value. Substituting the principal stress difference
calculated from equations (10)–(16) into equation (18), an error
function g is defined for the nth data point as

gn a; b;μð Þ ¼ σ1−σ2ð Þ− N expFσ

t

� �
n

ð19Þ

Through equations (10)–(16), it is noted that the expression
for (σ1- σ2) is non-linear in terms of total contact lengths (a, b)

1252 Exp Mech (2018) 58:1249–1263



Fig. 3 Theoretically generated
isochromatics for flat punch with
rounded edge (R = 2 mm, b =
3 mm, k = 0.96, ν = 0.37) for (a)
frictionless and (b) friction
coefficient μ = 0.1. (c) Fringe
order variation along a line at y =
−0.1a for different frictional
coefficients
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Fig. 2 (a) Theoretically generated isochromatics of the contact zone for k = 0. (b) Variation in the fringe order at x = 0 for different k values (a = 1 mm,
R = 20 mm). (c) Theoretically generated isochromatics of the contact zone for k = 0.4
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and the frictional coefficient μ. Based on Taylor series expan-
sion, the error function can be expressed in terms of g and its
correction factor for the parameters (Δa, Δb, Δμ) for the ith

iteration as

− gnð Þi ¼
∂gn
∂a

� �
i
Δað Þi þ

∂gn
∂bx

� �
i
Δbð Þi þ

∂gn
∂μ

� �
i
Δμð Þi ð20Þ

Applying equation (20) to n data points can be represented in
matrix form as

g1
g2
⋮
gn

8>><
>>:

9>>=
>>;

i

¼ −

∂g1
∂a

∂g1
∂b

∂g1
∂μ

∂g2
∂a

∂g2
∂b

∂g2
∂μ

⋮ ⋮ ⋮
∂gn
∂a

∂gn
∂b

∂gn
∂μ

2
66666664

3
77777775
i

Δa
Δb
Δμ

8<
:

9=
;

i

ð21Þ

Following ref. [8], this set of equations is solved in an over-
deterministic approach and the parameters are modified in the
i + 1th iteration using (Δa,Δb,Δμ). Iteration is stopped using
fringe order minimization criteria. In fringe order

minimization, the fringe orders corresponding to the selected
data points are calculated theoretically for every iteration and
compared with the experimental fringe orders. This iteration is
stopped using the convergence criterion:

∑ N theory−N exp

		 		
no:of data points

≤convergence error ð22Þ

Initially, the correctness of this methodology is verified using
the theoretically generated data shown in Figs. 3(a) and (b). In
photoelastic data analysis of crack problems, collecting data
on fringe contours has been shown to provide improved re-
sults [10]. Following this, the fringe order data and corre-
sponding positional coordinates are obtained along the fringe
contours. The results from the least squares algorithm for Fig.
4(a) (a = 3.151 mm, k = 0.96, μ = 3.9 × 10−6, Convergence
error = 8.07 × 10−6) and for Fig. 4(b) (a = 3.149 mm, k = 0.96,
μ = 0.149, Convergence error = 6.3 × 10−6) are in good agree-
ment with the parameters used for theoretical generation,
which indicates the correctness of the implemented procedure.
The contact zones are reconstructed using the results obtained
from the least squares analysis with the data echoed back and

Fig. 4 Binary representation of
theoretically generated isoclinics
for flat punch with rounded edge
(R = 2 mm, b = 3 mm, k = 0.96, ν
= 0.37) for (a) frictionless and (b)
friction coefficient μ = 0.15. (c)
variation in isoclinic data along a
line at y = −0.1a for different
frictional coefficients
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are shown in Figs. 5(a) and (b). A convergence error value less
than 0.1 generally produces good solutions.

Experimental Evaluation of Whole-Field
Isochromatics of Contact Zones

Different digital photoelastic methods are explored for
data extraction, and a brief summary of the methods is
provided.

Whole-Field Isochromatic and Isoclinic Evaluation
of Contact Zones Using Phase Shifting

Recent developments in digital photoelasticity have allowed
evaluating the isochromatics and isoclinic parameters over the
entire model domain with considerable accuracy [11, 12].
Among the different phase shifting algorithms [12], the ten-
step phase shifting method proposed by Ramji and Ramesh
[13] provides photoelastic parameters with the highest accu-
racy [9, 12]. The optical configurations for the ten-step PST
are given in Table 1. The first four configurations (1 to 4)
correspond to a plane polariscope [14, 15] (Fig. 6(a)), and

the next six configurations (5 to 10) correspond to a circular
polariscope [16, 17] (Fig. 6(b)). In the intensity expressions, Ia
and Ib represent the amplitude of light and background light
intensity, respectively. Phase retardation and the principal
stress direction in the model are represented by δ and θ. The
orientations of the polarizer and analyzer axes with respect to
the horizontal axis are referred to as α and β. The orientations
of the slow axis of the first and second quarter wave plates are
indicated by ξ and η, respectively.

From the first four phase-shifted images, the whole-field
Isoclinic parameter can be obtained using

θc ¼ 1

4
tan−1

I4;R þ I4;G þ I4;B
� �

− I2;R þ I2;G þ I2;B
� �

I3;R þ I3;G þ I3;B
� �

− I1;R þ I1;G þ I1;B
� �

 !
ð23Þ

where subscript ‘c’ indicates the principal value of the inverse
trigonometric function and is calculated using the ‘atan2()’
function. Subscripts R, G, and B refer to the Red, Green and
Blue color planes of the image. Isoclinic values obtained using
equation (23) are in wrapped format, i.e., they are in the range
of –π/4 to π/4, whereas physically, θ is in the range of –π/2 to
π/2. The wrapped isoclinics are unwrapped using an adaptive
quality guided algorithm [13].

Table 1 Optical arrangement for ten-step PST and corresponding intensity equations

α ξ η β Intensity Equation

π/2 – – 0 I1 ¼ Ib þ I asin2 δ
2 sin

22θ

5π/8 – – π/8 I2 ¼ Ib þ I a
2 sin

2Ia
2 1−sin4θ½ �

3π/4 – – π/4 I3 ¼ Ib þ I asin2 δ
2 cos

22θ

7π/8 – – 3π/8 I4 ¼ Ib þ I a
2 sin

2Ia
2 1þ sin4θ½ �

π/2 3π/4 π/4 π/2 I5 ¼ Ib þ I a
2 1þ cosδð Þ

π/2 3π/4 π/4 0 I6 ¼ Ib þ I a
2 1−cosδð Þ

π/2 3π/4 0 0 I7 ¼ Ib þ I a
2 1−sin2θsinδð Þ

π/2 3π/4 π/4 π/4 I8 ¼ Ib þ I a
2 1þ cos2θsinδð Þ

π/2 π/4 0 0 I9 ¼ Ib þ I a
2 1þ sin2θsinδð Þ

π/2 π/4 3π/4 π/4 I10 ¼ Ib þ I a
2 1−cos2θsinδð Þ

Fig. 5 Reconstructed
isochromatics and data points
echoed back using contact
parameters obtained from the
nonlinear least squares result for
the contact shown in (a) Fig. 3(a)
and (b) Fig. 3(b)
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From the corresponding phase-shifted images, the
isochromatic information can be obtained using the relation

δc ¼ tan−1
I9−I7ð Þsin2θþ I8−I10ð Þcos2θ

I5−I6ð Þ
� �

ð24Þ

Monochromatic illumination is preferred for isochromatic
evaluation using Equation (24). This requires an image acqui-
sition system with the same pixel resolutions in the color and
monochromatic domains, which is difficult in many experi-
mental situations. To circumvent this issue, the phase-shifted
images can be acquired in the color domain, the three channels
(Red, Blue and Green) can be used for isoclinic evaluation,
and the green channel can be used to process the isochromatic
information using equation (24) [18].

The ten-step method advocates using an unwrapped theta
(θ) for evaluating delta information using equation (24), which
results in an ambiguous-free wrapped isochromatic phase
map. The fringe order evaluated using equation (24) is also
in wrapped form, which is subsequently unwrapped to obtain
the total fringe order in the entire model domain.

Isochromatic Evaluation by twelve Fringe
Photoelasticity

In Twelve Fringe Photoelasticity (TFP), only one image is
recorded, and the total fringe order is evaluated by comparing
the color components of the experimental isochromatics with
those in the calibration table using a color difference formula,
which is given as

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rm−Rcð Þ2 þ Gm−Gcð Þ2 þ Bm−Bcð Þ2 þ Hm−Hcð Þ2 þ Sm−Scð Þ2 þ Vm−Vcð Þ2

q
ð25Þ

where subscript ‘m’ refers to the experimentally obtained in-
tensity values for a data point in the model and ‘c’ denotes the
values in the calibration table. Subscripts R, G, and B andH, S,
and V refer to the Red, Green, and Blue color planes and the
Hue, Saturation, and Value of a pixel in the image, respectively.

Equation (25) may lead to a false estimation of fringe or-
ders in some regions of the model due to the repetition of
colors. This noise is removed by imposing fringe order conti-
nuity using a modified window search method given as

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rm−Rcð Þ2 þ Gm−Gcð Þ2 þ Bm−Bcð Þ2 þ Hm−Hcð Þ2 þ Sm−Scð Þ2 þ Vm−Vcð Þ2

q
N∈ Np−ΔN ;Np þΔN

 � ð26Þ

where ΔN = 0.4. The average value of the fringe order
of all neighboring resolved pixels is used as Np in
equation (26). Equation (26) is employed using an im-
proved scanning scheme called Fringe Resolution-based
scanning for Twelve Fringe Photoelasticity (FRSTFP)
[19], where the progression is guided by the spatial
resolution of the isochromatic fringes.

Improved Four-Step Phase Shifting Technique in TFP

In the four-step phase shifting technique, four isoclinic
images of 0°, 22.5°, 45° and 67.5° are recorded (first
four arrangements of Table 1). It is worth noting that
the dark field isochromatics can be generated by post-
processing the isoclinic images. The intensities of the

Fig. 6 Generic optical configurations: (a) circular polariscope and (b) plane polariscope
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Red, Green and Blue color planes of the isochromatics
can be obtained using the relation [14]

IRc p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I c p3 −I c p1
� �2 þ I c p

4 −I c p2
� �2q

ð27Þ

Here, ‘cp’ refers to the image planes of the Red, Green
and Blue color space. The fringe orders can be

evaluated using TFP (equations (25), (26) and isoclinics
by equation (23).

Experimental Methodology

Photoelastic experiments with different contact situations have
been designed to verify the concepts discussed in Sections BSub-

Fig. 7 Magnified view of the left side of the plate – punch with rounded edge interface. Ten-step phase shifting images according to Table 1 (a) – (j)
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Surface Stress Fields for Contact Zones^ and BEvaluation of
Contact Stress Field Parameters from Isochromatic Fringe
Field^. Experimental models are built using photoelastically sen-
sitive material by mixing CY230 resin and HY951 hardener in a
10:1 ratio by weight. Two contact zones of conformal and non-
conformal types are obtained by suitably changing the models.
Initially, a flat punch with a rounded edge of a length of 11 mm
and edge radius of 2 mm contacts a flat base plate with a length
of 100 mm and a width of 40 mm. Next, a disc contacts another
disc with the same radius (R = 30 mm). A loading fixture is
designed and fabricated to apply compressive loading to the
disc/punch. To investigate the isoclinic and isochromatic

information in the conformal contacts, the ten-step experimental
phase-shifted images as per the optical arrangement specified in
Table 1 are recorded using a color 3CCD camera (SonyXC-
003P) (Fig. 7(a)–(j)). Images are taken so the high-fringe gradient
zone towards the contact region is captured.

Evaluation of experimental isochromatics using PST

In ten-step PST, isoclinics are calculated in the first step as
discussed in Sec. BWhole-Field Isochromatic and Isoclinic
Evaluation of Contact Zones Using Phase Shifting^. Wrapped
isoclinic phasemap obtained using equation (23) is shown in

Fig. 8 Plate-Punch with rounded
edge interface. (a) Wrapped
isoclinic phasemap with seed
point used for unwrapping. (b)
Unwrapped isoclinic phasemap.
Binary representation of isoclinic
phasemap in 10° steps. (c)
Unsmoothed. (d) Smoothed using
multi-directional algorithm with a
scanning sequence of 0°, 45°,
135°, 90°. (e) Theoretically
simulated
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Fig. 8(a). Unwrapping is performed using a single-seed point,
shown in Fig. 8(a), and the unwrapped isoclinics are shown as a
phasemap in Fig. 8(b). A binary representation of isoclinics in
steps of 10° is shown in Fig. 8(c). The noise in the isoclinics is
clearly visible and is reduced using themulti-directional smooth-
ing algorithm [20] in which smoothed data from a scan are used
as the input for subsequent scans. A scanning sequence of 0°,
45°, 135°, and 90° with a span length of 15 pixels for 0° and 90°
scans and 20 pixels for 135° and 45° is effective for removing
noise from the isoclinic data. A binary representation of
smoothed isoclinic data is shown in Fig. 8(d), which compares
well with the theoretical isoclinic data shown in Fig. 8(e).

Using the unwrapped value of isoclinics in equation (24),
phasemap of wrapped isochromatics is obtained and shown in
Fig. 9 (a). This phasemap is unwrapped to obtain the total
fringe order. Whole-field fringe order data after multi-
directional smoothing with a scanning sequence of 90°,
135°, 45°, and 0° is shown as a whole-field plot in Fig. 9(b).

The problem of two discs in contact (Fig. 10(a)) (diame-
ter = 60 mm, Δ = 2/R, load = 316 N and Fσ = 12.16 N/mm/
fringe) is also analyzed using the ten-step PST as explained in

Sec. BWhole-Field Isochromatic and Isoclinic Evaluation of
Contact Zones Using Phase Shifting^. Dark-field
isochromatics of a magnified portion of the contact region is
shown in Fig. 10(b) and phaseshifted images are processed
using ten-step PST. Unwrapped fringe order variation after
multi-directional smoothing with a scanning sequence of
135°, 90°, 45°, and 0° and a span of 5 pixels is shown as a
whole-field plot in Fig. 10(c).

Evaluation of experimental isochromatics using TFP

In this section, fringe order evaluation by TFP from circular
polariscope-based dark field isochromatics and from the im-
proved four-step method is compared with PST. From the
recorded plane polariscope images (Figs. 7(a) – (d)), dark field
isochromatics are generated using equation (27) and shown in
Fig. 11(a). The fringe order obtained using equation (25) for
generated isochromatics is shown in Figs. 11(b). Abrupt dis-
continuities in the fringe order data is refined using equation
(26) with FRSTFP and the smoothed result with a scanning
sequence of 0°, 45°, 135°, and 90° and a span length of 15

Fig. 10 Interface of two discs: (a) Schematic diagram. (b) Dark field isochromatics. (c) Whole-field plot of total fringe order obtained using PST

Fig. 9 Plate-Punch with rounded
edge; (a) Wrapped isochromatics.
(b) Whole-field plot of
unwrapped isochromatics after
smoothing

Exp Mech (2018) 58:1249–1263 1259



pixels are shown in Fig. 11(c). Since processing involves re-
fining and smoothing, isochromatic regions where the fringes
are smudged are masked (Figs. 11(b) and (c)) and not consid-
ered in the processing to minimize noise propagation from
such zones. A similar process is used to evaluate the fringe
orders using Fig. 7(f). A comparison of the fringe order data
obtained using TFP from a conventional circular polariscope
dark field image (TFP_CP) and from the improved four-step
method (TFP_PP) with PST data along line AB is shown in
Fig. 11(d). The comparison of fringe orders from the im-
proved four-step PST is quite good and can yield fringe orders
up to 8.6. There are minor deviations in the fringe order results
from processing the dark field circular polariscope image with
a standard deviation of 0.23 fringe orders and fringe orders
only up to 7.8 were yielded. Note that if the maximum fringe
order to be processed is less than 3, TFP and the improved
four-step method yield identical results [21]. Note that the
isochromatics generated using equation (27) eliminate the
quarter-wave plate mismatch errors since they are purely
based on a plane polariscope algorithm.

The results obtained using TFP for the circular polariscope
and improved four-step method yielded correct variations
with maximum fringe orders of 7.8 and 8.6 for TFP_CP and
TFP_PP, respectively, where the spatial resolution of the
fringes is greater than 15 pixels per fringe. Hence, if the ob-
jective is to obtain information of both the isoclinics and
isochromatics, the four-step PST proposed in Sec.

BImproved Four-Step Phase Shifting Technique in TFP^ can
be used, and equations (27) and (23) can be used to obtain the
fringe order and isoclinic results. If the objective is only fringe
order evaluation, a single conventional isochromatic color im-
age with TFP analysis would be sufficient. However, if there
are constraints in the image acquisition system for obtaining
high fringe resolutions (minimum of 15 pixels per fringe) in
the key regions, PST is preferable.

Evaluation of Contact Parameters
from Experimental Isochromatic Data

In this section, the whole-field fringe order data obtained from
different digital photoelastic methods are utilized to determine
unknown contact parameters for two different contacting in-
terfaces. The fringe order data from PST and corresponding
positional coordinates along the fringe contours are processed.

For a plate-punch interface contact, the contact parameter a is
5.72 mm with k = 0.958 and μ = 0.075. This indicates the com-
plete contact length closely matches the dimensions of the flat
region of the punch. The unknown incomplete contact length
due to the edge radius is 0.24 mm for this case. The
isochromatics in the contact zone are reconstructed with the
results obtained from the least squares analysis, and the data
used for the analysis are echoed back on the reconstructed image
(Fig. 12(a)). A whole-field error plot between the experimental
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Fig. 11 (a) Generated dark field
isochromatics of Plate–Punch
with rounded edge interface from
plane polariscope using equation
(27). (b) Isochromatics in
grayscale obtained using TFP
from equation (26). (c) Refined
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and contact model using a least squares procedure is shown as a
contour plot in Fig. 12(b). From Fig. 12(b), it is clear that other
than localized zones where the fringes are smudged, the error in

fringe orders range from 0.02 to 0.03. The variation in the fringe
orders along line y = 0.4a (line - IJ) from PST and the recon-
structed contact zone is plotted in Fig. 12(c).
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To verify the generality of the equations proposed (equations
(10)–(16)), the contacting situation of the two discs shown in
Fig. 10(b) is also analyzed, where contact parameter a is
0.69 mm with k = 0.024 and μ = 0.013. The isochromatics in
the contact zone are reconstructed with the results obtained from
the least squares analysis. Fringe orders at y = 2a (lineGH) from
PST and the reconstructed contact zone are plotted in Fig. 13.

Similarly, the fringe order data obtained from TFP are also
processed for both contact zones, and the results are comparable
for both digital photoelastic methods (Table 2). The contact pa-
rameters obtained for the Hertzian contact zone are compared
with the results obtained from contact field equations reported in
the literature [5]. These results clearly show the generality of the
proposed expressions. For non-conformal contacts, the value of
k indicates that the complete contact length (b) is negligible in
this case, and the proposedmodel (equations (10)–(16)) captures
the Hertzian contact field [22, 23].

Conclusion

In this work, the application of digital photoelasticity to deter-
mine contact parameters in conformal contacts zones is
established for the first time. In the initial part of this work,
the explicit equations reported for a flat punch with rounded
edges are generalized to represent both conformal and non-
conformal (Hertzian) contact zones with an arbitrary radius of
curvature of the contacting bodies. The set of generalized
equations is verified by plotting simulated isochromatics for
different contact parameters. A generic algorithm is developed
to determine unknown contact parameters for conformal and
non-conformal geometries from the whole-field isochromatic
data using a nonlinear least squares method and is initially
verified using theoretically generated isochromatic data.

For high-fringe gradients near the contact zones, the suit-
ability of different digital photoelastic methods is discussed in
detail. An improved four-step PST is proposed, allowing the
evaluation of isochromatic and isoclinic data with the mini-
mum number of images. This is mainly due to recent advance-
ments making it possible to extract fringe order data from a
single isochromatic image up to twelve fringes [11].
Isochromatic data for conformal and non-conformal contact
zones are experimentally obtained and used in conjunction

with the implemented non-linear least squares algorithms.
For a flat punch with rounded edge contact, the value of k
obtained from the nonlinear least squares (k = 0.958) is in
the expected range of conformal contacts. When the contact
model is switched to non-conformal geometry, the value of k
is 0.024, which indicates a typical Hertzian contact.

Acknowledgements The authors would like to acknowledge partial sup-
port from the IITM-ISRO cell project (APM/14-15/154) for carrying out
the research reported in this paper.

Appendix 1

Parameters u1, u2, u3, u6, v1, and v6 used in equations
(10)–(15) are functions of x, y, a and b and are defined as

u1 x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffiffiffi
c1

p þ 2c2
p

2
ðA:1Þ

u2 x; yð Þ ¼ ln γ1ð Þ
2

ðA:2Þ

u3 x; yð Þ ¼ ln γ2ð Þ
2

ðA:3Þ

u6 x; yð Þ ¼ x x2 þ y2−a2 þ ffiffiffiffiffi
c1

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c11:5 þ 2c1c2

p ðA:4Þ

v1 x; yð Þ ¼ −sgn xð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffiffiffi
c1

p
−2c2

p
2

ðA:5Þ

v2 x; yð Þ ¼ θ1−θ2 ðA:6Þ
v3 x; yð Þ ¼ θ3−θ4 ðA:7Þ

v6 x; yð Þ ¼ −
y x2 þ y2 þ a2−

ffiffiffiffiffi
c1

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c11:5 þ 2c1c2

p ðA:8Þ

The additional functions used in equations (A.1)–(A.8) are
defined as

γ1 ¼
ffiffiffiffiffi
c3

p þ c5 þ
ffiffiffiffiffiffiffi
2c5

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c3

p þ c4
p

ffiffiffiffiffi
c3

p þ c5−
ffiffiffiffiffiffiffi
2c5

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c3

p þ c4
p ðA:9Þ

γ2 ¼
ffiffiffiffiffi
c3

p þ 1=c5 þ
ffiffiffiffiffiffiffiffiffi
2=c5

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c3

p þ c4
p

ffiffiffiffiffi
c3

p þ 1=c5−
ffiffiffiffiffiffiffiffiffi
2=c5

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c3

p þ c4
p ðA:10Þ

Table 2 Comparison of contact zone parameters obtained for different contacting interfaces

Contacting Interface Radius (mm) Parameters obtained from nonlinear least squares result Using Equations from Ref. [5]

From PST From TFP

a (mm) k μ a (mm) k μ a (mm) μ

Two discs 30 0.69 0.024 0.011 0.65 0.06 0.025 0.68 0.018

Plate - punch 2 5.72 0.958 0.075 5.65 0.953 0.034 – –
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θ1 ¼ arcsin

ffiffiffi
2

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c3

p
−c4

q
;

ffiffiffi
2

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c3

p þ c4
q

þ ffiffiffiffiffi
c5

p� 
ðA:11Þ

θ2 ¼ arcsin

ffiffiffi
2

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c3

p
−c4

q
;

ffiffiffi
2

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c3

p þ c4
q

−
ffiffiffiffiffi
c5

p� 
ðA:12Þ

θ3 ¼ arcsin

ffiffiffi
2

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c3

p
−c4

q
;

ffiffiffi
2

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c3

p þ c4
q

þ
ffiffiffiffiffiffiffiffiffi
1=c5

p� 
ðA:13Þ

θ4 ¼ arcsin

ffiffiffi
2

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c3

p
−c4

q
;

ffiffiffi
2

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c3

p þ c4
q

−
ffiffiffiffiffiffiffiffiffi
1=c5

p� 
ðA:14Þ

With the terms c1,- c5 defined as

c1 ¼ aþ xð Þ2 þ y2
� �

a−xð Þ2 þ y2
� �

ðA:15Þ

c2 ¼ x2−y2−a2 ðA:16Þ

c3 ¼ a−xð Þ2 þ y2

aþ xð Þ2 þ y2
ðA:17Þ

c4 ¼ a2−x2−y2

aþ xð Þ2 þ y2
ðA:18Þ

c5 ¼ a−b
aþ b

ðA:19Þ
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