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Abstract
Current methods for incremental hole-drilling in composite laminates have not been successfully applied in laminates of arbitrary
construction or where significant variation of residual stress exists within a single ply. This work presents a method to overcome
these limitations. Series expansion is applied to each ply orientation separately so that the discontinuities in the residual stresses at
ply interfaces can be correctly captured. Temperature variations described by power series are used to set up eigenstrains and
consequent stresses which vary in the through-thickness direction. The calibration coefficients at each incremental hole depth are
calculated through the use of finite element modelling. The inverse solution employs a least-squares approach which makes the
resulting solution insensitive to measurement uncertainty. Robust uncertainties in the residual stress distributions are determined
using Monte Carlo simulation. The residual stress distribution is found from that combination of series orders in the different ply
orientations that has the lowest RMS uncertainty, selected only from those combinations that have converged. The method is
demonstrated on a GFRP laminate of [02/+45/−45]s construction where it is found that transverse cracking of the plies at the inner
surface of the hole may have impacted on the accuracy of the results.
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Introduction

Residual stresses which originate from differences in the ther-
mal expansion coefficients of plies of different orientation,
amongst other sources, are known to appear in composite
laminates during the forming process [1]. While the distribu-
tion of these stresses depends on factors such as the laminate
configuration, the material properties of each ply and the
forming process used, a feature of residual stresses in compos-
ite laminates is that they are typically discontinuous at the
interfaces between plies of different orientation. The residual
stresses can be high and can have a significant influence on the
mechanical performance of the laminate. The stiffness,
strength and life of a composite component can be reduced
due to the negative effects caused by residual stresses such as
matrix microcracking, interface debonding and warping [2].

In the case of composite laminates, non-destructive residual
stress measurement methods such as X-ray and neutron diffrac-
tion cannot be applied, or have highly restricted application [3].
Measurement of the through-thickness residual stress distribu-
tions in composite laminates therefore usually demands the use
of relaxation methods which involve the measurement of de-
formations arising from the removal of stressed material [4].
The deformations, which are typically measured in the form
of displacements or strains, are used to calculate the residual
stresses that existed in the material prior to its removal.
Commonly used methods include layer removal [5], hole-
drilling [6] and incremental slitting (crack compliance) [7].

Irrespective of the method used, relating measured defor-
mations to the residual stresses creates a computational chal-
lenge [8] because the stresses are calculated at a different
location from where the deformation measurements are taken.
Additionally, all stress components throughout the volume of
removed material affect the measured deformation in the ad-
jacent material and the relationship is therefore in the form of
an integral equation. The relaxation methods all differ in their
material removal geometry and deformation measurement lo-
cation, but the resulting integral equations are similar [8].

Determination of the residual stresses from the integral
equations consists of two separate steps, namely the forward
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and inverse solutions [7, 8]. In the forward solution, the de-
formations as a function of depth of material removed, or the
‘calibration coefficients’, are determined for known through-
thickness stress distributions. In many cases, the through-
thickness stress distributions utilised to determine the calibra-
tion coefficients are unit pulses of uniform stress which are
assumed to be released with each increment in cut or hole
depth [7, 9]. Series expansion is an alternative approach,
where it is assumed that the residual stresses are expandable
into stress distributions defined by a series of functions [10].
While Legendre functions are the most commonly used, since
they automatically satisfy the self-equilibrium requirement
[11–13] for orders greater than 1, power series expansions
[9, 14] have also been employed.

The inverse solution makes use of the calibration coeffi-
cients, obtained from the forward solution, to determine the
residual stresses that would most closely approximate the
measured strain response. The inverse solution in the case of
unit pulses produces a strain fit that exactly matches the mea-
sured data, since the number of unknown coefficients is ex-
actly equal to the number of material removal depths [15].
This causes the approach to be quite sensitive to measurement
errors [16, 17] which places severe demands on the experi-
mental strain measurement technique, as well as the accuracy
of the results obtained from finite element (FE) calculations
[18]. Tikhonov regularisation [19] is often utilised to some-
what smooth the resulting residual stress distribution by
allowing a mismatch between the strain fit and the measured
strain data. While this technique has been shown to be robust
[20] when dealing with stress discontinuities in layered mate-
rials, it commonly requires an iterative process to determine
the degree of smoothing that should be applied [8]. When
series expansion is used, however, many of the problems of
the unit pulse method can be avoided because the inverse
solution employs a least-squares approach where the best fit
of the calibration coefficients to the measured data allows the
amplitude of each series order to be determined [7, 10]. Since
the strain fit is not constrained to pass through all the experi-
mentally measured data, this method is inherently tolerant of
small measurement errors [15]. The least-squares approach is
particularly effective when small depth increments are used
such that the number of strain measurements is considerably
greater than the number of unknown amplitude coefficients
[15]. The most common technique is to apply surface pressure
series, either power or Legendre, to the wall of the cut or hole.
Series expansion of initial strain, or eigenstrain, distributions
has, however, also been used to determine residual stress
using the incremental slitting and hole-drilling methods
[21–27]. The use of eigenstrain distributions is convenient in
that the residual stresses are guaranteed to be in equilibrium
since no external forces or moments are applied.

While all relaxation techniques require the use of inverse
solutions, the hole-drilling method is probably the most widely

used. It has the advantages of low cost [28], good accuracy and
reliability, standardized test procedures, and convenient practi-
cal implementation [3]. The method was first introduced by
Mathar [29] to determine uniform through-thickness residual
stress in homogenous isotropicmaterials. Themodern approach
is to introduce a blind hole of progressively increasing depth,
and is termed the incremental hole-drilling method [30]. This
approach has been widely used [31–33] to measure the residual
stress distribution in isotropic materials.

Application of the incremental hole-drilling method to com-
posite materials and laminates has been far less frequent, how-
ever. Schajer and Yang [34] proposed a procedure to determine
uniform through-thickness residual stress distributions in
orthotropic materials, but this approach cannot be used with
laminates because of the discontinuities in stress which exist
at the interfaces between plies of different orientations. Pagliaro
and Zuccarello [35] extended this technique to determine dis-
continuous residual stress distributions in symmetric cross-ply
and angle-ply laminates. In this work, the stresses were as-
sumed constant in each ply. Ghasemi et al. [36] made the same
assumption and used the integral method to determine the re-
sidual stresses in symmetric and unsymmetric cross-ply com-
posite laminates, as well as symmetric quasi-isotropic lami-
nates. The calculated residual stresses compared favourably
with theoretical calculations. Sicot et al. [37] adapted Lake’s
model [38] to determine the through-thickness residual stress
distributions in laminates using unit pulses. While only a cross-
ply laminate and other simple laminates [39] have been inves-
tigated using this approach, it has been found that similar results
are obtained from several different constant depth increments
per ply. Akbari et al. [40] assessed the residual stress distribu-
tion through a thin-walled filament wound carbon/epoxy ring
using the integral method with unit pulses. These researchers
found that the hoop stress varied significantly through the thick-
ness of each ply. Although the unit pulse method therefore
appears effective in composite laminates, it requires regulated
depth increments to ensure that the stress discontinuities at the
interfaces between plies of different orientations can be cap-
tured. Additionally, if a steep variation in stress exists within a
ply, many depth increments are required to approximate the
variation as a sequence of uniform stresses, since the stress in
each step is considered constant. These approaches have the
potential to increase the sensitivity to measurement errors when
using pulse functions, however, because the sensitivity can in-
crease with both the number of material removal increments [9,
40, 41] and the use of regular depth increments [42, 43]. It
therefore seems that current methods for incremental hole-
drilling have somewhat limited utility in composite laminates
where significant variation of residual stress within a single ply
may exist. Series expansion would seem to offer a route to
resolve this limitation.

Schajer [44] initially proposed the use of series expansion
with the incremental hole-drilling method for isotropic
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materials in 1981, but application of this approach has been
limited because numerical instabilities can arise from the use
of series orders greater than one [44, 45]. Higher order
Legendre series have, however, been successfully used with
the slitting method [15, 25, 41, 46]. Although instability can
be problematic in isotropic materials, the situation is different
in composite laminates. The discontinuous nature of the resid-
ual stresses at changes in fibre orientation, coupled with the
typically small thickness of individual plies, means that the
residual stress distribution within each ply orientation has low
complexity. It can therefore be well approximated by stress
distributions of low order which are less susceptible to numer-
ical instability.

While not discussed thus far, it is essential to know the
uncertainty in a stress measurement if the significance of the
measurement is to be assessed. In this regard, considerable
effort has been expended by the community. Notable recent
examples include the works of Peral et al. [47], Richter and
Müller [48], and Scafidi et al. [28]. In the present context, the
work of Prime and Hill [15] is also important. This work
makes use of Monte Carlo simulations [49] to demonstrate
that when series expansion is used, the uncertainties associat-
ed with the inability of the chosen series to exactly fit the
actual stress variation are important and must be considered
alongside the usual errors in the measured data. If this source
of uncertainty is ignored, a conventional uncertainty estimate
is generally non-conservative, sometimes by more than an
order of magnitude.

This work presents and demonstrates the use of series ex-
pansion to address the current limitations in residual stresses
measurement in composite laminates using the incremental
hole-drilling method. Power series expansion functions of
eigenstrain are applied to each ply orientation separately so
that the discontinuities in residual stress at the interfaces be-
tween these plies can be captured correctly. The inverse solu-
tion employs a least-squares approach, where a best fit of the
calibration coefficients to the measured data allows the ampli-
tudes of each term in the eigenstrain series to be determined
simultaneously in each ply, and consequently the residual
stress distributions to be completely defined. Because of the
use of least-squares curve fitting, the inverse solution is some-
what less sensitive to noise in the experimental data or to
single erroneous measurements than that of the unit pulse
approach. This reduces the uncertainty in the measured stress
distributions which are estimated through the use of Monte
Carlo simulations. The order of the least-squares fit to the
experimental data is increased until convergence in the resid-
ual stress distribution is obtained with minimal uncertainty.
The residual stress distributions determined from this method
are continuous across each ply and discontinuous at the inter-
faces between plies of different orientation. The technique is
not limited in its use, allowing the analysis of laminates with
any number of plies orientated in any direction.

Proposed Method

The proposed method to determine the through-thickness var-
iation in all three in-plane components of the residual stress is
based on the following assumptions. The material is elastic,
orthotropic within a single ply, and the stress component per-
pendicular to the surface (σz) is negligible. It is also assumed
that removal of material does not induce significant residual
stresses in the remaining laminate, which has been experimen-
tally validated by Nobre [50]. A hole is incrementally intro-
duced and the change in strain at each measurement location
on the surface is measured relative to the undrilled laminate.
The measured strains are affected by the relaxation of the x, y
and in-plane shear components of the residual stress and also
the geometry change of the specimen when the hole is drilled
[30]. The influence of these effects on the measured strains
must be determined and combined to relate the measured
strains to the stress distributions in the laminate before dril-
ling. In the case of a rectangular strain gauge rosette, this is
done simultaneously for strains measured in the x, y and 45°
directions. The calculation of the residual stress distribution
which gives rise to the measured strain response cannot pro-
ceed directly. An indirect method is required to relate the
measured strain release to the residual stress distributions by
using calculated calibration coefficients.

If one considers the residual stress component in the x
direction, where the variation with depth from the surface, z,
is σx(z), the unknown stress distribution is assumed to be ex-
pandable into the stress distributions, snj, arising from unit
power series of eigenstrain of order n in all three in-plane
components with undetermined coefficients anj; n = 0, 1, 2,
… and j = x, y, xy such that

σx zð Þ ¼ a0xs0x zð Þ þ a1xs1x zð Þ þ a2xs2x zð Þ þ…

þa0ys0y zð Þ þ a1ys1y zð Þ þ a2ys2y zð Þ þ…

þa0xys0xy zð Þ þ a1xys1xy zð Þ þ a2xys2xy zð Þ þ…

ð1Þ

As the hole depth increases, the strain response in the x
direction, εx(z), at a particular location can be written as

εx zð Þ ¼ a0xc0x zð Þ þ a1xc1x zð Þ þ a2xc2x zð Þ þ…

þa0yc0y zð Þ þ a1yc1y zð Þ þ a2yc2y zð Þ þ…

þa0xyc0xy zð Þ þ a1xyc1xy zð Þ þ a2xyc2xy zð Þ þ…

ð2Þ

where each cnj(z) is the strain response at that location in the x
direction to the j component of eigenstrain of order n. The
coefficients anj can be determined by a least-squares
minimisation of error between the measured strain release
and that calculated using equation (2). The original stress dis-
tribution can then be determined from equation (1). In vector-
matrix form, and considering all components of stress and
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strain, equations (1) and (2) can be expressed as equations (3)
and (4) respectively.

σ ¼ S⋅A ð3Þ
ε ¼ C⋅A ð4Þ

High orders of power series expansion are required if ex-
perimental strains vary abruptly or exhibit sharp turning
points, but higher orders can become unstable [44]. For exam-
ple, if the power series expansion method is applied to a lam-
inate with an experimental strain variation as presented in
Fig. 1, a high order series would be required to achieve a
reasonable fit to the measured strain data. The consequence
would be severe instabilities in the residual stress distribution
which prevents this approach.

The adaption of the power series method, employed in this
work, is to divide the material into multiple through-thickness
regions, as presented in Fig. 1, such that multiple separate
series of lower order can be used to achieve a good fit to the
strain data. The material properties in composite laminates can
vary abruptly at the interfaces between plies and the measured
experimental strains can therefore have turning points or sharp
changes in slope at the depth of such interfaces. This provides
a convenient means for defining the regions to which series
expansion can be separately applied. Within each of these
regions a higher order power series expansion yields a better
fit to the experimental data, but a certain order is reached
where the benefits of an improved fit are outweighed by the
inherent instability associated with a higher order series.
Convergence of the calculated residual stress distributions,
as the series order increases, and the magnitude of the associ-
ated uncertainty bounds can be used to determine the most
appropriate order within each region.

The response of the laminate to different through-thickness
stress distributions is evaluated using the FE method. The
stress distributions are generated by applying separate
eigenstrain distributions in each of the three in-plane strain
components to each set of plies having particular material
properties when observed in the global (x, y) coordinate

system. Differences in material properties from one ply to
the next could arise from changes in material type or, more
commonly, from changes in ply orientation within a laminate
of constant material type. The latter situation is assumed
throughout this work.

Eigenstrain is applied by the use of through-thickness tem-
perature variations, defined by functions with a range of [−1,
1], in conjunction with dummy coefficients of thermal expan-
sion in each of the desired directions; αx, αy and αxy. The use
of temperature variation to apply eigenstrain and the use of
functions with a range of [−1, 1] are used out of convenience
and not necessity. The temperature variations are defined by
functions ranging from 0th to 4th order according to equations
(5) and (6) for even and odd orders respectively, where z is the
normalised perpendicular position with respect to the
midplane, i.e. z has a value of 1 on the top surface and −1
on the bottom surface.

Teven zð Þ ¼ 2zn−1 ð5Þ
Todd zð Þ ¼ zn ð6Þ

Eigenstrain in any of the three in-plane strain components
causes a strain redistribution throughout the thickness of the
laminate and, in turn, a through-thickness stress distribution in
all the in-plane stress components. The use of eigenstrain to
generate the through-thickness stress distributions maintains
force and moment equilibrium in the laminate as a whole. The
temperature functions are applied to each and every ply ori-
entation separately by assigning a coefficient of thermal ex-
pansion of 1 to the ply orientation of interest and of 0 to the
remaining ply orientations. It is important to note that al-
though the eigenstrain is applied to each ply orientation inde-
pendently it creates a stress distribution through the entire
thickness of the laminate, i.e. in all remaining ply orientations.
When material is removed from a ply to which no eigenstrain
is directly applied, there are still stresses that are released and a
change in strain is observed at the strain gauge locations.
These released strains define a corresponding calibration co-
efficient and must be included in the analysis. This also ap-
plies to the stress distributions which result from eigenstrain in
other directions. The total released strain variation in the x-
direction, for instance, within a particular ply orientation thus
also has terms associated with eigenstrain applied to other ply
orientations and also those applied in the y direction and in-
plane shear. Therefore calibration coefficients need to be de-
termined for each strain gauge location for every applied
eigenstrain, regardless of direction, at each incremental depth.
For illustrative purposes, the balanced stress distribution in the
x direction of a [02/902]s laminate, produced by a 2nd order
eigenstrain in the x direction applied to the 90° plies is pre-
sented in Fig. 2 up to the midplane.

In the forward solution, the calibration coefficients are
calculated using FE modelling where the depth of a blind
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Fig. 1 Strain variation with depth
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hole is increased by incrementally removing a layer of
elements defining the hole, for each applied eigenstrain.
The calibration coefficients are unique for a particular
laminate configuration and set of experimental parameters
(length and position of strain gauges, hole diameter, depth
of each increment, etc.). In the case of a rectangular strain
gauge rosette, the longitudinal strain at the x, y and 45°
strain gauge locations are calculated at each incremental
depth within the FE model. The strain data for each suc-
cessive hole depth is used to construct the calibration
matrix, C, in the following form:

C ¼

C1x0x0
⋯ C1x0y0

⋯ C1x0xy0
⋯ C1xijn

C1y0x0
⋯ C1y0y0

⋯ C1y0xy0
⋯ C1yijn

C1450x0
⋯ C1450y0

⋯ C1450xy0
⋯ C145ijn

⋮ ⋯ ⋮ ⋯ ⋮ ⋯ ⋮
Ckp0x0

⋯ Ckp0y0
⋯ Ckp0xy0

⋯ Ckpijn

2
666664

3
777775
ð7Þ

where Ckpijn is the change in strain due to the presence of the
hole, k is the hole depth increment, p is the strain gauge loca-
tion, i is the ply orientation to which eigenstrain is applied, j is
the component of the eigenstrain, and n is the order of the
eigenstrain. The far-field stress distributions arising from the
applied eigenstrain functions are used to create a stress matrix,
S, in the following form:

S ¼

S1x0x0
⋯ S1x0y0

⋯ S1x0xy0
⋯ S1xijn

S1y0x0 ⋯ S1y0y0 ⋯ S1y0xy0 ⋯ S1yijn
S1450x0 ⋯ S1450y0 ⋯ S1450xy0 ⋯ S145ijn
⋮ ⋯ ⋮ ⋯ ⋮ ⋯ ⋮
Smp0x0

⋯ Smp0y0
⋯ Smp0xy0

⋯ Smpijn

2
666664

3
777775

ð8Þ

wherem is the nodal position in the through-thickness direction,
starting at 1 on the top surface and increasing with depth. Nodes
shared by elements in the through-thickness direction have two
stresses associated with them, one from each element, which
allows discontinuities in stress to be captured. Subscripts p, i, j
and n have the same meaning as in equation (7). The

experimental strains are assembled into a strain vector, E, in
the following form:

E ¼

ε1x
ε1y
ε145°
⋮
εki

2
66664

3
77775

ð9Þ

Once the calibration matrix is constructed, it is used with
the experimental strain vector in the inverse solution to deter-
mine the amplitude vector, A, by manipulating equation (4)
into the form presented in equation (10).

CT ⋅E ¼ CT ⋅C⋅A
A ¼ CT ⋅C

� �−1⋅CT ⋅E ð10Þ

In this equation, A is the unique set of amplitudes of the
applied unit eigenstrains that best matches the experimental
strain response, in the form:

A ¼
A0x0
A0x1
⋮
Aijn

2
664

3
775 ð11Þ

where i is the ply orientation to which eigenstrain is applied, j
is the component of the eigenstrain, and n is the order of
eigenstrain. The calculated amplitude vector is used to deter-
mine the though-thickness residual stress distribution vector,
Sres, for the laminate using equation (12), which is presented
in vector-matrix form:

Sres ¼ S⋅A ð12Þ

Since all coefficients of A, and subsequently the residual
stress distributions, are solved using a least-squares fit to the
experimental strains, the method is fairly insensitive to noise
in the strain measurements. The number of terms in Emust be
considerably greater than the number of terms in A to allow a
robust least-squares fit [15]. It is therefore advantageous for
the least-squares regression to have a large strain data set
which is achieved by using small depth increments. This also
allows the calculated residual stress distributions to vary
through the thickness of a ply.

At this point, the issue of correcting for transverse sensitiv-
ity of the gauges needs to be discussed. Usually, the strain
measurements in matrix E would be corrected for transverse
sensitivity, but because the strain field is not uniform around
the hole, the standard method of correction [51] is inaccurate
and an alternative approach is required. The approach follow-
ed in this work is to leave the strains measured by the gauges
as uncorrected, and instead modify the calibration coefficients
determined from FE calculations. In essence, the uncorrected
strain measurements are matched using calibration

zzz

σxEigenstrainTemperature

90° ply

90° ply

0° ply

0° ply

Symmetry

Fig. 2 Eigenstrain and resultant stress distribution
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coefficients that are adjusted so that they reflect the strains that
would be measured experimentally if transverse sensitivity
was to be ignored.

An entirely new set of calibration coefficients correspond-
ing to transverse strain is therefore required. The transverse
calibration coefficients are a direct match for the longitudinal
calibration coefficients and are readily obtained because all
the necessary data is available from the finite element analysis
required to obtain the longitudinal calibration coefficients.
Each term Ckpijn in the matrix of calibration coefficients now
corresponds to the change in strain that would be measured if
transverse sensitivity was not accounted for, where subscripts
p, i, j and n have the same meaning as in equation (7). The
matrix of “uncorrected” calibration coefficients can be deter-
mined from the calibration coefficients in the longitudinal and
transverse directions according to equation (13) which is
found by manipulation of the standard transverse sensitivity
equations given in [51]:

Ckpijn ¼ Ckpijn þ C ̂kpijn � Ktp

1−v0Ktp
ð13Þ

where Ckpijn and Ĉkpijn are the corresponding terms of the
longitudinal and transverse calibration matrices, respectively,
Ktp is the transverse sensitivity coefficient of the particular
strain gauge of the rosette and ν0 is the the Poisson’s ratio of
the material on which the manufacturer’s gauge factor was
measured.

The uncorrected C matrix found using FE calculations is
then used with the uncorrected experimental strains within the
strain matrix, E, to determine the coefficients of the amplitude
vector, A, using equation (10). The complete residual stress
distribution is found using equation (12).

Demonstration of Procedure

Experimental

The method outlined thusfar is demonstrated using a compos-
ite plate manufactured from E-glass/epoxy. The prepreg ma-
terial (Vf ≈ 60%, ply thickness ≈ 200 μm) was supplied by c-
m-p gmbh with manufacturer’s code T-GE-1250/635 CP002.
The laminate configuration used was [02/+45/−45]s with fibre
alignment being carefully controlled during lay-up. The plate
had dimensions 400 mm× 400 mm and was cured between
two steel plates of the same dimensions and 0.9 mm thickness.
The laminate was debulked at 85 °C before being cured at
6 bar and 120 °C for 3 h. The cured plate had smooth surfaces
on both sides, no noticeable voids and no apparent curvature.
The primary in-plane elastic properties of the composite ma-
terial were determined in accordance with the ASTM D 3039
[52] and ASTM D 3518 [53] standards and are listed in

Table 1. The value of v23 was estimated by the hydrostatic
approximation with the required bulk modulus estimated
using micromechanics. The properties of the lamina are trans-
versely isotropic in the material coordinate system and so the
material properties transverse to the fibre direction are all
identical. The remaining Poisson’s ratio terms are found from
the reciprocal relations and the shear modulus, G23, is obtain-
ed using equation (14).

G23 ¼ E2

2 1þ v23ð Þ ð14Þ

HBM foil strain gauge rosettes of type 1.5/350M RY61
were used for the incremental hole-drilling experiments.
Each rosette has 6 strain gauge grids in total, orientated at
45° offset, and each corresponding pair is connected to one
another during manufacturing. This results in a rosette which
self-compensates for drilling offset errors to some extent.
Strain gauges with a resistance of 350 Ω were used to reduce
heating effects on the low-conductivity material. A gauge ex-
citation voltage of 1.5 V was selected to achieve the desired
sensitivity whilst keeping the power consumed by the gauge
as low as possible. Each active gauge of the rosette was con-
nected in a quarter bridge configuration with a dummy gauge
to a National Instruments data acquisition system equipped
with a SCXI-1520 strain gauge card. The dummy gauge used
was of the same type as the active gauge and attached to the
same laminate type. This reduced thermal effects over the
experimental testing period which lasted approximately
35 min. Testing was performed in the basement of the labora-
tory where temperature fluctuations are minimal.

The Sint Technology Restan MTS 3000 incremental hole-
drilling machine was used for the physical experimentation. A
pneumatic turbine achieves cutting speeds of approximately
300,000 rpm which reduces the introduction of additional re-
sidual stresses during the drilling process. Drilling alignment
was controlled to ensure that drilling occurred perpendicular
to the surface of the laminate, and in the centre on the strain
gauge rosette. A stepper motor controls the incremental dril-
ling to a resolution of up to 1 μm, resulting in good reproduc-
ibility. The diameter and position of the hole can be deter-
mined with a resolution of 10 μm. A tungsten carbide inverted
cone bur of 1.40 mm diameter was used to cut the hole which
had final diameter of 1.59 mm.

Table 1 Orthotropic material properties

Longitudinal modulus, E1 (MPa) 38,154

Transverse modulus, E2 (MPa) 10,747

Shear modulus, G12 (MPa) 3712

Poisson’s ratio, v12 0.3113

Poisson’s ratio, v23 0.4124
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The test specimen had dimensions of 40 mm × 40 mm.
These dimensionswere assessed using FEmodelling to ensure
that no edge effects were present at the hole location in the
centre of the plate, or at the strain gauge locations. As a con-
sequence of the symmetric lay-up, incremental hole-drilling
was conducted up to the midplane only. The ratio between the
hole radius and the inner radius of the strain gauge was found
to be 0.44 which is in accordance with the recommendations
of Sicot et al. [54].

The depth increment was set to 1/60th of the final hole
depth to reduce the introduction of heat into the specimen as
far as possible. This also means that 60 depth increments were
used to populate the experimental strain vector, E. The feed
rate of the MTS 3000 was set to 0.2 mm/min. Strain readings
were taken 25 s after each drilling increment to allow for all
thermal effects to dissipate and for steady state conditions to
resume. Ten strain readings were taken over 5 s and averaged
to reduce the effects of noise.

The experimentally measured variation in strain release
with depth at the x, y and 45° strain gauge locations is present-
ed in Fig. 3.

Computational

The calibration coefficients were calculated using MSC Nastran
FE analysis. The composite laminates were modelled using
HEX20 type 3D elements with orthotropic properties. The lam-
inatewas represented by 32 elements through the thickness, 4 per
ply. It would be beneficial to increase the number of elements
through the thickness of each ply, but the increase in computa-
tional time cannot be justified at present. The measured diameter
of the hole was used in the FE modelling. Eigenstrains were
applied to plies of a particular orientation by assigning to these
plies a coefficient of thermal expansion of unity and to all other
plies a thermal expansion coefficient of zero and then subjecting
the entire laminate to a through-thickness temperature distribu-
tion corresponding to a particular order of the power series. Since
no external loads were applied, the boundary conditions were

simply those required to prevent rigid body motion. The longi-
tudinal and transverse strain released at every drilling increment
resulting from every eigenstrain was calculated at each strain
gauge location on the top surface. These strains were used to
populate the longitudinal and transverse matrices of calibration

coefficients, C and Ĉ respectively. The longitudinal strain was
determined as the difference in average nodal displacement, in
the gauge length direction, along the lines defining the inner and
outer edges of each gauge grid, divided by the length of the grid.
The transverse strain at each gauge was calculated similarly but
referenced to the transverse direction. The laminate is not sym-
metric in the plane and must therefore be modelled in its entirety.
The mesh around the hole including the strain gauge grid loca-
tions (highlighted) is presented in Fig. 4. The grid locations and
sizes are included to more accurately determine the matrix of
calibration coefficients. Drilling of the hole was simulated by
incrementally removing elements to increase the depth of the
hole. A section through the mesh is presented in Fig. 5.
Elements defining each ply were assigned material properties
in accordance with their ply orientation.
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The application of the various eigenstrain distributions in
the FE model yielded strain distributions around the hole for
each incremental depth. For illustrative purposes, the strain
variation in the x direction due to a 2nd order eigenstrain in
the x direction applied to the 0° plies at a quarter thickness
hole depth is presented in Fig. 6.

The vertical dimensions of E, C and Ĉ must agree to allow
the use of equation (10). The 16 depth increments of the FE

model had to be used, therefore, to find the coefficients of C
and Ĉ for the 60 measured depth increments. The strain re-
lease vs. depth relationships obtained from the FE calculations
follow smooth variations, with discontinuities at the interfaces
between different ply orientations. A separate spline was fitted
to the calculated strain release data within each ply orientation
to allow an increase in the number of calculated strain read-
ings per ply from 4 up to 15 through interpolation. This was
done for the calculated strain release data at the x, y and 45°
gauge locations arising from all eigenstrain stress distribu-
tions, i.e. i × j × p × n curves were generated. This allowed
the calculated strain data to be determined for 60 depth incre-
ments rather than 16, thereby ensuring that calibration coeffi-
cients could be determined for the same depth increments as
for the experimentally measured strains. This procedure is
presented in Fig. 7 for the calculated longitudinal strain release
in the x direction resulting from a 2nd order eigenstrain in the x
direction, applied to the 0° ply orientation.

Although it is entirely possible to use a separate series order
for each component of the eigenstrain in each ply orientation,
for the sake of simplicity and illustration, the same order series
was used for all three components of the eigenstrain within a
particular ply orientation. Therefore, for the current laminate
and for series orders ranging from 0th order to 4th order in
each ply orientation, there are a total of 125 possible combi-
nations of series expansion orders. To enable concise discus-
sion, the abbreviation (n0, n45, n−45) is used where each value
of n refers to the maximum order of the series expansion and
the subscript refers to the ply orientation. This allows (1, 2, 3)
to refer to the combination of 1st, 2nd and 3rd order series
expansion in the 0°, +45° and −45° plies, respectively.
Combinations of higher order series have the ability to better
fit the experimental strain data as can be seen in Fig. 8 for the
45° strain gauge, where (1, 1, 1) and (4, 4, 4) order combina-
tions are fitted to the experimental strain data, respectively.
Combinations of higher order series can be more sensitive to
measurement errors, however, which can lead to instability
and greater uncertainty in the residual stresses. A thorough
understanding of how uncertainty propagates through the
analysis is therefore required.

Propagation of Uncertainties

The uncertainty in the residual stress distributions cannot be
found directly using the law of propagation of uncertainty
because the relationship between the measured strains and
the stress is unknown and so the partial derivative terms can-
not be found in a straightforward manner. The uncertainty in
the stress distribution is instead estimated through the use of
the Monte Carlo Method as per JCGM 101:2008 [49]. The
input parameters into these calculations are provided in
Table 2. Ten thousand trials were simulated for each combi-
nation of series orders.

Fig. 6 Strain variation in the x direction at a quarter thickness hole depth
showing also the strain gauge grid locations
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Uncertainties in this work can be divided into those that
affect the strain matrix, E, and those that affect the calibration
and stress matrices, C and S, respectively.

Uncertainties in the strain matrix are discussed first.
Uncertainty propagation in the indicated strain measure-
ments, εm, is calculated using the law of propagation of
uncertainty as per JCGM 100:2008 [55]. Uncertainty in
the measurement of the strains arose through inaccuracies
in instrumentation such as strain gauges and data acquisi-
tion and from uncertainty in the average temperature during
the test. The inherent noise uncertainty in the strain gauge
and data acquisition system was quantified by recording
strain data over a 30 min period and calculating a standard
deviation from the large data set.

Within each Monte Carlo trial, the experimental strains are
first adjusted for the effects of uncertainty in indicatedmeasured
strain. Since all experimental strain measurements share the
same instrumentation they are considered fully correlated and
so they are all varied using the same random variable. Each
strain measurement is adjusted for inherent noise independent-
ly. The depths of the strainmeasurements are all adjusted for the
uncertainty in zero depth and independently adjusted for the
uncertainty in each individual depth increment. At this stage,
a spline is fitted through the simulated strain distribution in each
measurement direction so that the strains at the depth incre-
ments inherent to the C and S matrices can be determined and

referenced to the zero depth of that trial. Finally, the uncertainty
arising from the inability of the particular combination of series
orders under consideration to exactly match the strain data is
included. This uncertainty is calculated as the standard devia-
tion between the experimentally measured strains and the least-
squares fit within each ply orientation.

The calibration and stress matrices are affected by uncertain-
ty in the material properties and in the ply orientations.
Uncertainty in each experimentally measured material property
is calculated using the law of propagation of uncertainty as per
JCGM100:2008 [55]. Uncertainty in thesemeasurements arose
through inaccuracies in instrumentation such as strain gauges,
data acquisition and micrometers and from uncertainty in the
average temperature during materials testing. Because the ef-
fects of misalignment are not linearly related to the angular
misalignment, uncertainty due to misalignment of the plies
within the material test coupons, misalignment of the strain
gauges on the coupons andmisalignment of the coupons within
the testing machine is considered within the Monte Carlo sim-
ulation. Within each Monte Carlo trial, the material properties
are first individually adjusted for the effects of measurement
uncertainty. The effects on the material properties of all the
possible sources of misalignment during materials testing are
then incorporated. Finally, misalignment in the orientation of
each plywithin the hole-drilling specimen, andmisalignment of
the hole-drilling strain gauge rosette are included.

Table 2 Input parameters and their assigned probability density functions

xi Description p(xi) Type Features

E1 Longitudinal modulus Normal B 38,154 MPa, 1.986%

E2 Transverse modulus Normal B 10,747 MPa, 2.223%

G12 Shear modulus Normal B 3712 MPa, 2.582%

312 Poisson’s ratio Normal B 0.3113, 2.078%

323 Poisson’s ratio Normal B 0.4124, 5%

hk Depths Rectangular B 13 μm, 0.5 μm

h0 Zero depth Rectangular B 0 μm, 13 μm

εm Indicated experimental strain Normal B Fig. 3, 1.547%

εnoise Experimental noise Normal A Fig. 3, 0.613 μm/m

Ktx Transverse sensitivity for gauge 1 Normal B 2.2%, 0.1%

Kt45° Transverse sensitivity for gauge 2 Normal B 2.6%, 0.1%

Kty Transverse sensitivity for gauge 3 Normal B 2.2%, 0.1%

30 Poisson’s ratio of the material on which gauge factor was measured Normal B 0.285, 3%

θSGt Misalignment of strain gauge during tensile testing Normal B 0, 1°

θcoupon Fibre misalignment of tensile testing coupons Normal B 0, 0.5°

θgrips Misalignment of specimen in grips of tensile testing machine Normal B 0, 1°

θSGh Misalignment of strain gauge during hole-drilling Normal B 0, 1°

θ0° ply Misalignment of 0° plies of hole-drilling specimen Normal B 0, 1°

θ+45° ply Misalignment of +45° plies of hole-drilling specimen Normal B 0, 0.5°

θ−45° ply Misalignment of −45° plies of hole-drilling specimen Normal B 0, 0.5°

FE Finite element calculations Normal B 0, 2%
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When including the uncertainties in material properties and
the uncertainties in the orientation of individual plies within the
hole-drilling specimen into theMonte Carlo simulation, it is not
computationally feasible to perform a new finite element anal-
ysis for each trial. A more computationally efficient approach is
therefore required. The changes in every term in the calibration
and stress matrices are consequently determined for a 1%
change in each material property, and a 1° change in each ply
orientation. Due to the complex nature of the problem, each
term of these matrices varies uniquely for each of these chang-
es. Because of the use of a linear model, however, the variation
in each of these terms can be scaled according to the uncertainty
in each changed material property. In the case of angular mis-
alignment in the hole-drilling specimen, the variation is scaled
according to the square of the angular misalignment between
each ply and the strain gauge rosette. For small angles, the
effects of angular misalignment translate into quadratic varia-
tions in elastic constants and hence quadratic variations in the
compliance and stiffness matrices. The two calibration matrices
and the stress matrix within each Monte Carlo trial are then
estimated according to equations (15) to (17).

C j ¼ C þ ∑
5

i¼1
r j xið Þu xið ÞC xið Þ þ ∑

8

i¼6
r j xið Þu2 xið ÞC xið Þ ð15Þ

C ̂ j ¼ C ̂þ ∑
5

i¼1
r j xið Þu xið ÞC ̂ xið Þ þ ∑

8

i¼6
r j xið Þu2 xið ÞC ̂ xið Þ ð16Þ

S j ¼ S þ ∑
5

i¼1
r j xið Þu xið ÞS xið Þ þ ∑

8

i¼6
r j xið Þu2 xið ÞS xið Þ ð17Þ

where:
r(xi) corresponds to normally distributed random numbers

with standard deviations of ±1,
u(x1–5) correspond to uncertainties in E1, E2, G12, 312 and

323, respectively, including all material testing misalignment
effects,

u(x6–8) correspond to uncertainties in the orientation of the
0°, +45° and −45° plies of the hole-drilling specimen, includ-
ing the misalignment of the hole-drilling rosette,

C x1−5ð Þ, Ĉ x1−5ð Þ and S(x1 − 5) are the changes to the C, Ĉ
and Smatrices, respectively, as a result of a 1% increase in E1,
E2, G12, 312 and 323, respectively,

C x6−8ð Þ, Ĉ x6−8ð Þ and S(x6 − 8) are the changes to the C, Ĉ
and S matrices, respectively, as a result of a 1° increase in ply
orientation in each of the 0°, +45° and −45° plies, respectively,

C, Ĉ and S are the original longitudinal and transverse
calibration and stress matrices, respectively, and

C j, Ĉ j and Sj are the longitudinal and transverse calibration
and stress matrices, respectively, for Monte Carlo trial j.

It is important to note that the material properties are inde-
pendent of each other and are therefore varied independently.
A variation in a particular material property has simultaneous

effects on the calibration and stress matrices and so they are
varied by the same normal distribution. The same applies to
variations in each ply orientation. While it must be acknowl-
edged that this approach does not take higher order effects into
account, the first order effects on the stress are of a similar
magnitude to the variation in material properties. Since these
are small, the higher order effects are not believed to be sig-
nificant enough to justify the additional computational cost of
including them.

The calculation of the two calibration matrices, C and Ĉ,
depends entirely on the FE method. Since FE models cannot
completely represent all the deformations that are possible in
reality, some uncertainty exists in the knowledge of these ma-
trices. The individual terms within the calibration matrices are
considered to be fully correlated and so they are all varied
using the same random variable [47]. The stress matrix is
similarly modified.

Finally, the calibration matrix is adjusted to compensate for
uncertainty in the transverse sensitivity of each gauge.
Equation (13) which includes the transverse sensitivity coef-
ficient of each gauge in that particular Monte Carlo trial, is
used at this stage.

Since the hole eccentricity was measured to be close to zero,
any uncertainties due to this parameter are judged to be small in
comparison with the uncertainties that are considered. For the
same reason, the effects of hole diameter variation are also
ignored because the FE model is based on the measured hole
diameter. Uncertainties due to the fillet radius are also ignored.

Once the strain matrix, E, calibration matrix, C, and the
stress matrix, S, are determined for each trial, the stress vari-
ation is determined using equations (10) and (12). The uncer-
tainties in the stress distributions are determined by evaluating
the standard deviation in the 10,000 trials used in each Monte
Carlo simulation at the nominal depth of each experimental
datum.

Order Selection

While the experimental, computational and uncertainty prop-
agation methods used in this work are well defined and allow
the residual stress distribution and its uncertainty to be deter-
mined, the issue remains as to which combination of series
orders provides the best approximation of residual stress from
the experimental data. All combinations of series orders have
the ability to solve the system of matrices and describe the
experimental strain distributions to some degree. The ap-
proach used in this work is to select the combination of series
order with the lowest RMS uncertainty from those combina-
tions that have converged. The size of the uncertainty bounds
and the convergence of every combination of series orders
must therefore be investigated to quantitatively find the true,
or most probable, residual stress distribution.
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From the combinations that have converged, the (2, 2, 0)
combination has the lowest RMS uncertainty and is conse-
quently selected as the best solution for this laminate. Some
combinations have lower uncertainty, but have not fully con-
verged and so are not selected. Other combinations while fully
converged, show the first signs of instability which leads to
greater uncertainty, and so they too are not selected. It is im-
portant to emphasise that the order combination (2, 2, 0) refers
to the order of eigenstrain applied to each ply orientation and
not simply to the order of the residual stress distribution in
each ply orientation. They are different because each and ev-
ery eigenstrain function has some effect on the residual stress
distributions in every ply orientation.

It is interesting to observe that in the case of the (2, 2, 0)
combination, the amplitude coefficients of the 1st and 2nd
order eigenstrains in the 0° and +45° plies are only 0.063
and 0.001% of the 0th order coefficient, respectively. The
stress distribution of the (0, 0, 0) combination is quite different
from that of the (2, 2, 0) combination, however, indicating that
the higher order terms have a significant impact on the final
stress result even with very small amplitude coefficients. The
potential for instability in the results with several higher order
terms is thus clear.

The tendency of higher order series combinations to be-
come unstable makes them sensitive to changes in strains in
the Monte Carlo simulations. This results in greater uncertain-
ty bounds if the higher order functions are dominant within the
order combination as is shown graphically in Figs. 9, 10, and
11 for the 20 most converged fits. The area between the un-
certainty bounds of each fit is shaded in light grey and then
superimposed. The darkest area corresponds to convergence
where the uncertainty bounds of a number of combinations of
orders agree. The light grey regions illustrate the divergence in
uncertainty for order combinations where higher order func-
tions are more dominant. This divergence continues to grow
as the relative amplitude coefficients of the higher order terms
increase. It is worth mentioning at this point, therefore, that the
technique described in this work might not work well when a

number of plies of the same orientation are stacked together
into a thick block. In this case, the stress variation across the
block might vary in a higher order fashion which would re-
quire a correspondingly high order series to match it.
Instability in the resulting computational problem could pre-
vent a valid solution from being obtained.

Results and Discussion

The least-squares fit and associated uncertainties (including
that from the curve fit) of the (2, 2, 0) combination of series
orders to the strain measurements obtained from the x, y and
45° gauges is shown in Fig. 12. The stress distributions and
associated uncertainties obtained using the (2, 2, 0) combina-
tion of series orders are shown in Fig. 13. The uncertainties in
these two figures correspond to ±2 standard deviations.
Table 3 shows the RMS uncertainty in stress in the 0°, +45°
and −45° plies, for each uncertainty source and also the com-
bined uncertainty, u(Z).

As expected, the combined uncertainty, u(Z), in all three
stress components tends to increase from the 0° ply through
the +45° ply and on to the −45° ply, or as the depth increases.
This reflects the decreasing sensitivity of the relaxation strains
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on the upper surface to internal stresses at increasing depths. It
is also evident that the most important contributors to the
uncertainty in the stress results are the zero depth, misalign-
ment of the hole-drilling strain gauge rosette, the curve fit and
the material properties E2, 312 and 323. The large uncertainties
in stress associated with 323 are ascribed to the large uncer-
tainties in this parameter resulting from its estimation using
micromechanics.

It is apparent from Fig. 13 that the residual stress distribu-
tions in the x and y directions have similar form: the residual
stress in the 0° ply is fairly constant in tension, while the stress
in the +45° and −45° plies decreases through the thickness of
each ply. The residual shear stress in the 0° ply is close to zero
while the distributions in the +45° and −45° plies are approxi-
mately equal and opposite. A discontinuity in stress at the in-
terfaces between plies of different orientations is also evident
for all stress components, which is required. The uncertainty in
stress increases near the ply interfaces which is a consequence
of using a separate curve fit within each ply orientation. The
fitted curves are less constrained near their ends and as a result
tend to diverge from the mean, which increases the uncertainty

in these regions. Instability near the endpoints of the fitted do-
main, using Legendre polynomials with the slitting method, has
also been reported by Shokrieh et al. [41].

While it is difficult to predict the direction and variation of
the x and y components of the residual stresses in this lami-
nate, it is known that the shear stress component of the 0° ply
should have zero residual stress and that the +45 and −45°
plies should have opposing stresses of equal magnitude so that
they are in equilibrium. Although these conditions are not
perfectly satisfied, they come close to it, and equilibrium is
achieved when the uncertainty in the +45° and −45° plies is
considered. When the uncertainties in the x and y components
are taken into consideration, they remain unbalanced by an
average of about 0.6 MPa and 4.5 MPa, respectively.

The laminate is symmetrical, and so it is expected that
symmetry should exist in the residual stress distribution
through the thickness of the laminate. This would imply that
all three stress components should have zero slope at the mid-
plane. This is clearly not the case, and we believe that the
source of this unexpected behaviour can be traced to the depth
of the hole being too shallow to allow the actual stress distri-
butions in this region to emerge. While the −45° ply is con-
tinuous on the deeper side of the mid-plane, the strain data do
not extend beyond this point. This means that the current
stress distributions are simply those of the best possible fit
using the available data. If the hole depth had been extended
to provide additional data on the far side of the mid-plane, it is
possible that these data would have changed the stress distri-
butions in the −45° ply to allow zero slopes at the mid-plane.
This might also have led to better convergence in the −45° ply
than is currently observed in Figs. 9, 10, and 11. It therefore
becomes apparent that the experiment should not have been
terminated at the mid-plane, and drilling should have contin-
ued through the thickness of the −45° ply so that the best
estimate of the behaviour at the mid-plane could have been
obtained. This might also explain the lack of equilibrium in
the x and y components as this method does not enforce equi-
librium in one half of the thickness only and allows for asym-
metric stress distributions to be determined. Because the meth-
od is based on eigenstrain, it does, however, enforce equilib-
rium in the plate as a whole.

A residual stress analysis must compare the measured
stresses with allowable values. Transformation of the mea-
sured stresses into the material principal coordinate system
reveals that the axial stresses and in-plane shear stresses are
small in comparison with the strengths of two similar mate-
rials documented by Soden et al. [56]. The transverse stresses
on the upper surfaces of all plies is, however, approaching the
lower of the two transverse strengths reported by these re-
searchers. While the strength of the laminate in this investiga-
tion is not known, it is clear that the mechanical load required
to cause transverse tensile failure is significantly lower than
might otherwise be expected.
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Since the transverse stresses are high in comparison to the
transverse strength, and since the accuracy of the hole-drilling
method is clearly affected by localized transverse cracking at
the hole, the effects of stress concentration must be assessed.
The transverse stresses on the inner surface of the hole were
consequently investigated using the finite element models
employed throughout this work. The maximum stresses are,
once again, located at the upper surface of each ply, with those
in the 0° ply being critical. The peak stress in the 0° ply reaches
nearly 58 MPa, which is about 65% higher than the lower
transverse strength of 35 MPa reported by Soden et al. [56].

While transverse fracture in the internal plies might be
inhibited by the transverse fibres of adjacent plies, as reported
by Flaggs and Kural [57], such support does not exist on the
upper surface of the 0° ply. It therefore seems probable that
some transverse cracking occurred on the inner surface of the
hole. The possibility of transverse cracking has also been re-
ported by Akbari et al. [40]. We must therefore accept that the
accuracy of the measured residual stresses results could have
been affected by transverse failure. This is a very significant
result which needs further investigation.We suspect that as hole
drilling in composite laminates becomes more frequent, trans-
verse failure may turn out to be as important a consideration in
composites as plasticity effects are in metallic structures.

Conclusions

A new method for relating experimental strains from
incremental hole-drilling to discontinuous stress distribu-
tions has been introduced and demonstrated. It is suit-
able for use on composite laminates, or any other ma-
terial where discontinuous stress states could exist. The
method is based on the approximation of the residual
stress distribution by power series expansion of separate
eigenstrain functions in each ply orientation. The un-
known amplitude coefficients in each series are deter-
mined by least-squares error minimisation. The method
is readily implemented and allows the uncertainty
bounds of all three in-plane stress components to be
robustly calculated. While the technique is not limited
in its use, and allows the analysis of laminates with any
number of plies orientated in any direction, instability
may become a problem when several plies of the same
orientation are stacked together. The transverse stresses
in the [02/+45/−45]s GFRP laminate under investigation
were determined to be high enough that transverse
cracking at the inner surface of the hole may have im-
pacted on the accuracy of the measured residual
stresses.

Table 3 Breakdown of RMS uncertainty in stress arising from each uncertainty source, xi

xi Contribution to u(σx) [MPa] Contribution to u(σy) [MPa] Contribution to u(τxy) [MPa]

0° ply +45° ply −45° ply 0° ply +45° ply −45° ply 0° ply +45° ply −45° ply

E1 0.136 0.370 0.161 0.059 0.064 0.288 0.198 0.213 0.553

E2 0.045 0.238 0.941 0.299 0.573 1.901 0.198 1.300 3.130

G12 0.251 0.208 0.314 0.481 0.350 0.269 0.476 1.058 0.518

312 0.043 0.141 0.085 0.116 0.312 0.266 0.284 0.219 1.244

323 0.058 1.716 3.678 0.211 1.233 0.619 0.090 1.411 4.167

hk 0.015 0.045 0.052 0.040 0.067 0.048 0.010 0.058 0.072

h0 0.125 1.003 0.479 0.384 1.662 0.786 0.143 2.301 2.105

εm 0.039 0.017 0.017 0.109 0.037 0.051 0.011 0.110 0.099

εnoise 0.074 0.216 0.435 0.052 0.138 0.284 0.062 0.156 0.286

Ktp 0.017 0.010 0.016 0.004 0.004 0.006 0.013 0.007 0.010

30 0.001 0.002 0.002 0.004 0.002 0.002 0.004 0.006 0.005

θSGt 0.019 0.085 0.043 0.021 0.051 0.036 0.023 0.042 0.144

θcoupon 0.005 0.022 0.011 0.005 0.013 0.009 0.006 0.010 0.036

θgrips 0.019 0.085 0.043 0.020 0.051 0.036 0.023 0.040 0.143

θSGh 0.149 0.203 0.507 0.269 0.312 1.875 0.724 0.810 2.150

θ0° ply 0.021 0.032 0.205 0.057 0.138 0.527 0.110 0.192 0.355

θ+45° ply 0.015 0.019 0.050 0.063 0.114 0.200 0.063 0.180 0.061

θ-45° ply 0.010 0.016 0.169 0.011 0.027 0.336 0.046 0.024 0.286

FE 0.071 0.032 0.031 0.199 0.067 0.092 0.021 0.200 0.180

Curve fit 0.094 0.495 0.878 0.129 0.523 0.851 0.165 0.713 1.128

u(Z) 0.437 2.171 4.294 0.872 2.528 3.621 1.099 3.888 7.542
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