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Abstract
The extracellular matrix provides macroscale structural support to tissues as well as microscale mechanical cues, like
stiffness, to the resident cells. As those cues modulate gene expression, proliferation, differentiation, and motility,
quantifying the stiffness that cells sense is crucial to understanding cell behavior. Whereas the macroscopic modulus of a
collagen network can be measured in uniform extension or shear, quantifying the local stiffness sensed by a cell remains
a challenge due to the inhomogeneous and nonlinear nature of the fiber network at the scale of the cell. To address this
challenge, we designed an experimental method to measure the modulus of a network of collagen fibers at this scale. We
used spherical particles of an active hydrogel (poly N-isopropylacrylamide) that contract when heated, thereby applying
local forces to the collagen matrix and mimicking the contractile forces of a cell. After measuring the particles’ bulk modulus
and contraction in networks of collagen fibers, we applied a nonlinear model for fibrous materials to compute the modulus
of the local region surrounding each particle. We found the modulus at this length scale to be highly heterogeneous, with
modulus varying by a factor of 3. In addition, at different values of applied strain, we observed both strain stiffening and
strain softening, indicating nonlinearity of the collagen network. Thus, this experimental method quantifies local mechanical
properties in a fibrous network at the scale of a cell, while also accounting for inherent nonlinearity.
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Introduction

Cells sense mechanical signals, the most familiar being the
stiffness of the surrounding extracellular matrix [1]. The
ability of cells to sense the matrix stiffness regulates various
cellular activities, such as migration [2–6], differentiation
[7], proliferation [5, 8] and gene expression [9]. Quantifying
stiffness sensed by a cell is therefore crucial for studies in
mechanobiology. For a homogeneous material, measuring
stiffness is a straightforward procedure, but the extracellular
environment of real tissues is not a homogeneous continuum
but rather a highly heterogeneous network of fibers. As
cells apply forces to the matrix at length scales of tens of
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microns, they sense the stiffness not of the bulk material, but
rather of local groups of fibers. Therefore, understanding
how cells sense stiffness of real biological tissue requires
experimental methods that quantify the modulus of a fibrous
matrix at the scale of the cell.

On the scale of a cell, fibrous materials behave mechani-
cally as a network of beams that stretch, bend, and buckle.
The resulting relationship between stress and strain is non-
linear, showing stiffening in shear or extension and soften-
ing in compression [10–16]. To accurately quantify stiffness
sensed by a cell, an experiment would have to account
for this nonlinearity. Several nonlinear constitutive mod-
els exist for fibrous materials [17–20], but they have not
yet been validated for general loading conditions. Loadings
applied to fibrous materials have generally been uniform
extension/compression, simple shear, or combinations of
extension/compression and shear [10, 11, 14, 15, 21–27].
These experiments have provided critical insights into how
the deformations of the fibers bring about macroscopic phe-
nomena like strain stiffening. Yet there remains a need to
probe the matrix mechanics at length scales matching the
cell size of tens of microns. Nanoindentation with a spher-
ical probe could measure the modulus at this scale, but
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nanoindentation quantifies modulus only on the surface of
a material—it cannot determine material properties inside
the fiber network, as would be sensed by a cell. Moreover,
nanoindentation typically assumes the material to be linear.
Some studies are beginning to consider nonlinear hypere-
lastic models in analyzing nanoindentation data [28], but
none has yet used a nonlinear model specifically designed
for fiber networks, which are strongly nonlinear and weaken
under compression [15, 16, 26]. An alternative to nanoin-
dentation is active microrheology, such as by optical tweez-
ers [29–32], which offers the advantage of quantifying
stiffness at local points within the fibrous network. A disad-
vantage is that displacements achieved by optical tweezers
are less than 0.5 μm, which is an order of magnitude
smaller than cell-induced displacements observed by some
experiments [13, 33–36]. The relatively small displacements
produced by optical tweezers impede efforts to quantify the
nonlinear mechanics that may be produced by a contracting
cell.

Further complicating all of these efforts is that fibrous
materials exhibit a coupling between volume changing
and shape changing deformations [22]. As the coupling
depends on fiber length, alignment, and stiffness, it remains
difficult to predict whether or how the coupling will
affect the response to general loading conditions [37].
Thus, it remains difficult to predict whether the nonlinear
mechanical response to one type of loading—such as
uniform shear due to a rheometer or a point-like force due
to optical tweezers—matches the response to a different
type of loading—such as the distributed forces due to cell
contraction. We therefore argue that the most reliable way to
quantify nonlinear mechanics sensed by a cell would be with
loading conditions that closely mimic the self-equilibrating
forces of cell contraction.

Here we propose a new experimental method that quan-
tifies the modulus of a fibrous matrix using contractile
forces at the scale of the cell. We mimic cell contrac-
tion by using spherical particles made of an active hydro-
gel, poly(N-isopropylacrylamide) (PNIPAAm), that, when
heated, undergo a phase transition causing them to contract.
After quantifying the modulus of the PNIPAAm particles,
we embed them in collagen networks and measure their
contraction. We compute the modulus of the fibrous net-
work surrounding each particle by using a nonlinear model
designed for fibrous materials, which weaken in compres-
sion [19]. The results show a large amount of heterogeneity
in modulus at the length scale of a cell, with modulus vary-
ing by a factor of up to 3. We also observed strain stiffening
occurring in short and medium fiber networks at contractile
strains of 0.1–0.2 and strain softening in networks hav-
ing longer fibers at contractile strains of 0.2–0.3, indicating
that our experimental method can reveal nonlinearity at this
length scale.

Theoretical Analysis

Here we give equations that relate contraction of the
PNIPAAm particle to the modulus of the surrounding
matrix. We use the superscripts P and M to represent
the particle and matrix, respectively. We begin with linear
analysis, and we then extend the analysis to the case of a
nonlinear matrix.

Linear Analysis

As the PNIPAAm particles are spherical inclusions under-
going a uniform volumetric strain, the strain can be related
to modulus using Eshelby’s solution for a linear elastic
medium [38]. The key results from Eshelby are that the
strains inside the particle are uniform, and the displace-
ments in the linear elastic matrix outside the particle decay
as r−2. As the problem is spherically symmetric, the only
nonzero component of the displacement is the radial one,
which we refer to as u. Radial position is denoted by r , and
the particle’s radius is a.

To relate contraction of the particle to modulus of the
surrounding matrix, we use the boundary conditions of
matching radial displacement and traction at the interface
between particle and matrix,

uP (r = a) = uM(r = a) and σP (r = a) = σM(r = a),

(1)

where σ is the radial component of the stress tensor. We
begin by analyzing the particle. As shown by Eshelby,
strains and stresses in the particle are constant. As the
particle is linearly elastic and under a state of isotropic
tensile stress, the radial stress in the particle is σP =
3KP εm, where εm is the mechanical strain and KP is the
bulk modulus of the particle. In addition to mechanical
strain, there is a thermal strain εT . By superposition, the
total strain ε is equal to εm + εT . Hence, the radial stresses
are

σP = 3KP
(
ε − εT

)
. (2)

For stresses and strains to be uniform inside the particle, the
radial displacement uP must be of the form uP = Cr , where
C is a constant. The displacement at r = a is therefore
given by the product of particle’s radial strain ε and its initial
radius a. Thus, C = ε and

uP = εr . (3)

In the matrix outside the inclusion, displacements scale as
u ∼ r−2 and are therefore given by

uM = Ar−2. (4)
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Radial and angular normal strains are thus εM
r = −2Ar−3

and εM
θ = Ar−3. Applying Hooke’s law gives the normal

radial stresses,

σM = −4AμMr−3, (5)

where μM is the shear modulus of the matrix. Applying the
boundary conditions (Eq. 1) and solving for μM gives

μM = 3KP

4

(
εT

ε
− 1

)
. (6)

It will be useful to write this in terms of Young’s modulus of
the matrix EM and the function f1(ν) = 2/(1 + ν), where
ν is Poisson’s ratio of the matrix. The shear and Young’s
moduli are related by μM = EMf1(ν)/4, which gives:

EM = 3KP

f1(ν)

(
εT

ε
− 1

)
. (7)

Nonlinear Analysis

As fibrous materials such as collagen networks are non-
linear, the simple linear analysis is insufficient to quan-
tify the modulus. The most dramatic nonlinearity for
these materials is that the modulus is smaller in compression
than in tension. This phenomenon, referred to as com-
pression weakening, has been observed directly in uniaxial
tension/compression experiments on networks of fibrin and
collagen [15]. Other experiments have shown that displace-
ments propagate over a longer range than predicted by linear
elasticity, which can be explained by compression weak-
ening [13, 16, 37]. We therefore consider the nonlinear
compression-weakening model of Rosakis et al. [19], which
gives the solution for a contracting spherical particle within
a compression weakening 3D matrix. The model shows that
displacements in the matrix scale as u ∼ r−n, with n less
than the linear elastic value of 2, in agreement with previous
experiments [13, 16, 39] and models [13, 37], which also
observed n < 2.

The model presented by Rosakis et al. [19] begins with
linear elasticity and makes one modification to account
for compression weakening by including a factor ρ, which
represents the ratio of stiffness in compression to tension.
For a linear material, ρ = 1, and for a material with
no stiffness in compression ρ = 0. Thus, the model has
three constants, two elastic moduli and the compression
weakening factor ρ. We find it most useful to use Young’s
modulus EM and Poisson’s ratio ν for the elastic constants
of the matrix; equations are presented here after converting
the elastic constants used by Rosakis et al. to EM and ν. Eq.
4.7 of Rosakis et al. gives the radial normal stresses due to
a contracting particle in a compression weakening material.

For an infinite matrix, the normal stress at the interface
between the particle and matrix can be written as

σM(r = a) = EMεf (ν, ρ), (8)

where ε is the radial strain of the particle, EM is Young’s
modulus of the matrix, and the dimensionless function
f (ν, ρ) is given by

f (ν, ρ) = 1

2

(νρ − 1)
√

9νρ−8ρ−1
νρ−1 + 5νρ − 1

2ν2ρ + νρ − 1
. (9)

The particle is linear and elastic with radial stresses given
by Eq. 2. Combining this with Eq. 8 gives

EM = 3KP

f (ν, ρ)

(
εT

ε
− 1

)
, (10)

which has the same form as the linear solution, Eq. 7.
Assuming limits on ν and ρ are 0 ≤ ν ≤ 0.5 and

0 ≤ ρ ≤ 1, function f ranges from 1 to 2, as shown in
Fig. 1. Note that when ρ = 1, the nonlinear f (ν, ρ)matches
the linear f1(ν), i.e., f (ν, 1) = f1(ν). Thus, the nonlinear
solution of Rosakis et al. converges to the linear Eshelby
solution in the linear limit of ρ = 1.

As f (ν, ρ) ranges from 1 to 2, Eq. 10 allows the Young’s
modulus to be computed to within a factor of 2 with no
knowledge of ν or ρ. We can gain some information about
ν and ρ from further analysis of the displacement field.
We have previously shown that in fibrous materials, radial
displacements fit to u = Ar−n with n less than the linear
elastic solution of 2 [13, 16, 39]. The model of Rosakis et al.
also predicts n < 2; see Eq. 4.4 of Rosakis et al. (Note that
n in our notation is equal to −ξ− in the notation of Rosakis
et al.) According to Rosakis et al., the power n ranges from
1 to 2 and depends only on ν and ρ; a plot is shown in Fig. 2.
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Fig. 1 Dimensionless function f (ν, ρ) defined in Eq. 9, where ν is
Poisson’s ratio and ρ is the dimensionless compression weakening
factor. Contour lines show values of f = 1.1, 1.2, ... , 1.9
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Fig. 2 Plot of power n as a function of matrix Poisson’s ratio ν and
compression weakening factor ρ. Contour lines show n = 1.01 and 1.1

In experiments with PNIPAAm particles in collagen, we
have typically observed n ≈ 1 [16, 39]. This should give us
information about possible values of ν and ρ. From Fig. 2,
we see that n < 2 implies ρ < 1, but n is relatively insensi-
tive to ρ. For example, n ranges from 1 to 1.1 for ρ ranging
from 0 to 0.8. Though no experiment has directly
measured ρ, one experiment measured the modulus of
a collagen network in both compression and tension
observing the modulus in compression to be 0.004 times
the modulus in tension, implying ρ = 0.004, and
f (ν, 1) ≈ 1, which applies for all values of ν (Fig. 1).
Other experiments will need to be performed to verify
this measurement. More information could be gained
from independent measurement of the Poisson’s ratio of
collagen. Unfortunately, experiments currently disagree
as to the Poisson’s ratio—experimental studies have
reported Poisson’s ratio ranging from 0.1 to 0.3 for small
deformation in nominally isotropic networks [40, 41]. As
the Poisson’s ratio is unknown and further experiments are
needed to confirm the value of the compression weakening
factor ρ for collagen, we will report our results as the
product EMf (ν, ρ). As f (ν, ρ) ranges from 1 to 2, this
may cause errors of up to a factor of 2, but if we assume
that ν and ρ are each constants, then relative comparisons of
EMf (ν, ρ) measured by different contracting particles will
be exact.

Relationship Between Particle Strain andMatrix
Strain

Equations 6 and 10 use the total radial strain ε and thermal
strain εT of each PNIPAAm particle. We represent these
using the engineering strain, i.e., by dividing the radial
displacement by the initial radius. As all particles contract,

we will report the magnitude of strain, referring to it as
“contractile radial strain.”

The radial displacement and radius of the particle can be
used to determine the strains within the matrix surrounding
the particle. As there is spherical symmetry, the normal
radial and angular strains in the matrix is given by εM

r =
du/dr and εM

θ = u/r , where u is the radial displacement.
Thus, the maximum angular strains occur at r = a, are equal
to the strain of the PNIPAAm particle ε, and are contractile.
The radial strain can be computed from the fact that radial
displacements scale as u ∼ r−n [13, 16, 39]. Letting the
particle radius be a and the displacement at r = a be
−ua (with the negative sign indicating inwards), the radial
displacements in the matrix are u = −ua(r/a)−n. The
radial strain is then εM

r = (nua/a)(r/a)−n−1. Its maximum
is at r = a, giving a value of εM

r (r = a) = nua/a. For
collagen, we have previously observed n = 1 [16, 39],
indicating that the maximum radial strain in the matrix is
ua/a, which is the same magnitude as the maximum angular
strains, but is expanding (tensile) rather than contractile.
The maximum magnitudes of strain within the surrounding
matrix are therefore equal to the contractile radial strain of
each PNIPAAm particle.

Materials andMethods

To compute the local modulus of the collagen matrix, we
applied Eq. 10, which required that we first quantify εT ,
the particles’ thermal contraction in no matrix, and KP , the
particles’ bulk modulus, as shown in Fig. 3. Determining
KP required separate calibration experiments, which we
performed in linear elastic polyacrylamide, allowing us to
apply Eq. 6 using a known value of the shear modulus of the
polyacrylamide. Full details of our methods are described
below.

Generating PNIPAAm Particles

Particles of PNIPAAm were created by adapting a previ-
ously described oil/water emulsion protocol [16]. Kerosene
with 3.5% Span 80 (Tokyo Chemical Industries) was de-
gassed for 1 hour under vacuum and used as the solvent
for the reaction. The solvent was maintained under nitro-
gen for 10 minutes before stirring at 450 rpm on stir plate at
22 ◦C for an additional 5 minutes. An aqueous solution was
then prepared by combining 0.25 g N-isopropylacrylamide
(Sigma 415324), 1.6 ml of 2% bis-acrylamide (Bio-Rad),
0.05 g ammonium persulfate (Bio-Rad), 1.5 ml of 1×
tris-buffered saline, and enough deionized water to bring
the final volume to 10 ml. These concentrations of N-
isopropylacrylamide and bis-acrylamide were far lower than
previous studies [16], and they yielded soft PNIPAAm
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Fig. 3 Diagram of the
experimental procedure

particles having modulus similar to that of the collagen
networks to be studied. Stiffer or softer particles can be
generated by increasing or decreasing the amounts of N-
isopropylacrylamide or bis-acrylamide. TEMED (Bio-Rad,
0.36% final concentration) was added and mixed with the
aqueous solution immediately before adding the aqueous
solution to the solvent. The emulsion was then stirred at
450 rpm at 22 ◦C, under a nitrogen environment for 1 hour
or until polymerized particles formed. The resulting par-
ticles were allowed to settle overnight and washed twice
with hexane. The particles were subsequently washed with
isopropyl alcohol, ethanol, deionized water, and finally 1×
PBS. Between each wash the particles were allowed to settle
for at least 1 hour. The solution of particles was then filtered
using a cell strainer to remove particles with diameter less
than 40 μm. The final solution was comprised of particles
(average diameter ≈ 100 μm) and 1× PBS.

CollagenMatrix

The PNIPAAm particles were embedded into matrices of
rat tail collagen I (Corning) as previously described [16,
42]. The collagen comes in solution in acetic acid; collagen
fibers polymerize upon neutralizing the pH which we do

using HEPES buffer. The solution of acetic acid and HEPES
buffer affects the contraction of the PNIPAAm particles,
which we address in the next section. Polymerization
occurred at 22 ◦C for 85 minutes (which produced networks
having long fibers), or 26 ◦C or 30 ◦C for 50 minutes
(which produced networks having medium and short fibers,
respectively). We measured the average fiber length for
each type of collagen network from network pore area by
segmenting high resolution images of each networks as
previously described in [39]. Networks having long fibers
had fiber lengths of 27.8 ± 5.7 μm (mean ± standard
deviation), while medium and short fibers were 16.9 ± 2.8
and 10.4 ± 1.2 μm, respectively.

Representative images of particles embedded in fiber
networks are shown in Fig. 4. We found that precise temper-
ature control was necessary to give us control of the fiber
length, so the temperature was controlled using a thermo-
electric hot plate (CP-061HT, TE Technology) with TC-720
temperature controller (TE Technology) having tempera-
ture resolution of approximately 0.1 ◦C. Each collagen gel
had a final collagen concentration of 3 mg/ml and a thick-
ness of ≈ 150 μm. After polymerization, 1 ml of PBS was
added to each dish to prevent dehydration of the collagen
networks.

Fig. 4 Collagen networks (3
mg/ml) polymerized at 22 ◦C,
26 ◦C and 30 ◦C having long,
medium, and short fibers,
respectively

50 µm 22°C 26°C 30°C50 µm 50 µm
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Thermal Contraction of PNIPAAm Particles

To quantify thermal contraction of PNIPAAm particles in
no matrix, they were imaged at different temperatures while
in a salt solution. Specifically, 1 ml of particles solution was
added to a mixture of 1 ml 0.02 M acetic acid and 1 ml of
1× HEPES buffer. This salt solution was made based on our
observation that it affected the contraction of the PNIPAAm
particles. As this solution matches that of collagen matrices,
it was used for all experiments to ensure that the particles’
thermal strain εT would match that in collagen.

PolyacrylamideMatrix

PNIPAAm particles were polymerized within a polyacry-
lamide matrix to calibrate their moduli. The polyacrylamide
gel consisted of two layers. The bottom layer had a thick-
ness of 170 μm while the upper one was 300 μm. These
layers were created following the same recipe, except that
PNIPAAm particles were included in only the upper layer.
The two-layer polyacrylamide gels were created after we
noticed that the particles located close to the glass bottom of
the dish contracted less than the particles located at a greater
distance from the glass bottom. In all of our experiments, we
observed multiple layers of polyacrylamide to adhere well
to one another. The bottom polyacrylamide layer was com-
prised of 29 mg/ml acrylamide, 0.29 mg/ml bis-acrylamide,
0.57 mg/ml APS (Bio-Rad), 0.5 μm red fluorescent par-
ticles (0.76 mg/ml final concentration, Life Technologies
F8812) and 1.9 μl/ml TEMED (Bio-Rad) all in deionized
water. The bottom layer was added to a glass-bottom dish
(Cellvis) and allowed to polymerize for 45 minutes with a
glass coverslip on top. Once polymerized, the glass cover-
slip was removed and the upper layer was added onto the
bottom. The upper polyacrylamide layer was made with the
same volumes and concentrations except that 0.68 ml/ml
of particle solution was also added. The upper layer was
allowed to polymerize for 45 mins with a glass coverslip on
top. After polymerization, the glass coverslip was removed.
We then added a salt solution to each dish to match that of
collagen matrices, keeping the ratio (1:1:1) of particles solu-
tion (already existing in the 2-layer polyacrylamide gel),
0.02 M acetic acid and HEPES buffer constant.

Temperature Control

To control the temperature during imaging, all experiments
used an H301 incubator (Okolab) mounted on the micro-
scope stage and controlled with a UNO controller (Okolab).
The temperature was measured separately with a digital
thermometer (Fisherbrand Traceable) having a probe that
was placed inside a dish of water within the incubator. The

thermometer had accuracy of 0.1 ◦C, which was greater than
that of the incubator. As the thermometer’s probe was in the
same conditions as the PNIPAAm particles, it gave a more
accurate measurement of temperature of the PNIPAAm par-
ticles, which was necessary for these experiments. In all
experiments, an initial image was collected at a reference
temperature of 26 ◦C; subsequent images were captured
at 30, 32, 34, 35, 36, and 38 ◦C. After each temperature
change, particles contracted within a few minutes, though
the thermal incubator required 30–45 minutes to equili-
brate. We showed previously that the particles recover to
their initial size upon decreasing the temperature back to the
reference temperature [16].

Microscopy and Image Analysis

Images of PNIPAAm particles in no matrix were collected
using a Nikon Ti-E microscope and a 20× 0.75 numerical
aperture (NA) air objective in phase contrast mode. Images
of PNIPAAm particles in polyacrylamide and collagen
matrices were collected using an Andor Spinning Disk
confocal microscope (Yokogawa CSU-X1) with a Nikon Ti-
E base and a 20× 0.75 NA air objective. For each location,
a z-stack was obtained with increments of 0.5 μm. Images
were analyzed by using ImageJ to measure the radius of
each particle at each temperature.

Shear Modulus of Polyacrylamide

Calibration of the moduli of the PNIPAAm particles occured
by observing their contraction in homogeneous polyacry-
lamide gels and applying Eq. 6. This required measuring
the modulus of the polyacrylamide, which we did using a
rheometer (Kinexus ultra+, Malvern Panalytical). To allow
the rheometer to grip the gels, we polymerized polyacry-
lamide (using the recipe described previously) between two
glass coverslips treated with 0.2% acetic acid and 0.3% 3-
(Trimethoxysilyl)propyl methacrylate. Cyanoacrylate glue
was used to adhere the coverslips to the rheometer. All gels
were disks with a diameter of 18 mm, and a height between
2.25 mm and 2.55 mm. The rheometer’s 20-mm diameter
flat plate geometry was used. Shear strains were induced
by twisting each sample about its axis. The maximum shear
strain applied to each gel was less than or equal to 40%,
which stayed within the linear range. The angular velocity
was kept below 0.0114 rad/s (corresponding to a maxi-
mum strain rate of 4% per second) to ensure the loading
was quasi-static. The angular acceleration was kept below
0.0038 rad/s2 to ensure that inertial loads would be negli-
gible. Shear modulus was calculated by fitting a line to the
data of torque versus angle (Fig. 5) and applying the stan-
dard equation for torsion of a uniform cylinder. The mean
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Fig. 5 Shear modulus of polyacrylamide. a Torque plotted versus
angle of twist for one polyacrylamide specimen. From the linear fit and
the specimen’s dimensions, the shear modulus was computed. b Shear
modulus measured for 24 different polyacrylamide gels

value of shear modulus was found to be 9.6 Pa, in agreement
with a previous report [43].

Statistical Analysis

Applying Eq. 10 to measure the local modulus of collagen
required that we measure (i) the particles’ contraction in
no matrix and (ii) the particles’ bulk modulus. To measure
the bulk modulus, we performed separate calibration expe-
riments with the particles in linear elastic polyacrylamide.
The calibration experiments used Eq. 6 and required that we
measure (iii) the modulus of the polyacrylamide and (iv) the
particles’ contraction in the polyacrylamide. Experimental
uncertainties resulted from variability in the data acquired
from each of these four measurements. We quantified the
uncertainties by computing 95% confidence intervals using
bootstrap analysis. To compute confidence intervals on the
bulk modulus of the PNIPAAm particles, we used data sets
i, iii, and iv with Eq. 6; for confidence intervals on the
modulus of collagen, we use data sets i and ii with Eq. 10.

To perform the bootstrap, we began by sampling the data
randomly with replacement N times. For a typical bootstrap
analysis, N is the number of measured data points, but here
each of our measurements (i–iv) have a different number
of data points. Therefore, we set N to be the average of
the smallest and largest number of data points. We applied
Eq. 6 (for the particles’ bulk modulus) or Eq. 10 (for
the modulus of collagen), which gave N different values
of modulus. We then computed the mean over N , giving
one bootstrap estimate for the mean of the modulus. This
procedure was repeated 104 times, giving 104 estimates of
the modulus. The 95% confidence interval was computed
by taking the 2.5 and 97.5 percentiles of those 104 data
points. Additionally, a mean over those 104 data points was
computed to estimate the mean modulus.

Results

To determine the matrix modulus using Eq. 10, we first
measured the particles’ thermal contraction εT and bulk
modulus KP . Thermal contraction was measured in no
matrix as described in the methods. To determine the bulk
modulus KP we measured the contraction of particles
embedded in a linear elastic polyacrylamide matrix and
applied Eq. 6. Accurate measurement of the bulk modulus
KP using this equation requires the shear modulus of
the surrounding polyacrylamide matrix μM to be of the
same order of magnitude as KP , both of which must have
modulus on the same order of magnitude as the collagen
networks to be tested later. This requires the quantity
3(εT /ε − 1)/4 to be of order 1. We therefore calibrated the
polyacrylamide to have a modulus similar to the collagen,
and then calibrated the particles to have a modulus of
a similar order of magnitude. After several iterations,
we produced a recipe for PNIPAAm that generated
particles which contracted approximately half as much in
polyacrylamide as compared to their thermal contraction
(Fig. 6). Thus, the ratio εT /ε is approximately 2, which
implies that the PNIPAAm particles and polyacrylamide
matrix have elastic moduli on the same order of magnitude.
As shown in Fig. 6, heterogeneity in contraction from one
particle to the next is modest, indicating that errors due
particle heterogeneity are likely to be small.

Applying Eq. 6 then gives the particles’ bulk modulus
at different temperatures. Figure 7 shows the mean bulk
modulus and the 95% confidence interval computed by

30 32 34 35 36 38

Temperature (°C)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
on

tr
ac

til
e 

ra
di

al
 s

tr
ai

n no matrix

polyacrylamide matrix

Fig. 6 Contractile radial strain of PNIPAAm particles measured in
no matrix (magenta) or polyacrylamide matrix (green). Contraction
of PNIPAAm particles in no matrix gives the thermal contraction εT .
Each line represents the contraction of a different PNIPAAm particle.
The reference temperature used to calculate contractile radial strain is
26 ◦C. The labels on the horizontal axis represent the temperatures
tested in the experiments

Exp Mech (2019) 59:1323–1334 1329



30 32 34 35 36 38
0

2

4

6

8

10

12

14
B

ul
k 

m
od

ul
us

, 

Temperature 

Fig. 7 Mean bulk modulus of PNIPAAm particles plotted against
temperature. Vertical lines show 95% confidence intervals of the
means

bootstrap analysis for each temperature. We designed our
PNIPAAm particles to be extremely compliant, with a bulk
modulus on the order of 10 Pa. The bulk modulus takes
a minimum value at ≈ 34◦C, which is near to the phase
transition temperature for PNIPAAm. The reduction in bulk
modulus near the phase transition temperature is consistent
with other studies [44, 45], which observed the minimal
value of bulk modulus to occur at temperatures of 31–32 ◦C,
and provided an explanation based on a theoretical model
[44, 45]. Additionally, the shape of the curve in Fig. 7
matches previous studies: the bulk modulus declines by a
factor of ≈ 1.8 as temperature is increased to the phase
transition temperature and then increases by a factor of
≈ 2.7 as temperature is further increased. These relative
changes in bulk modulus closely match those reported
previously [44, 45]. Therefore, the measurement of bulk
modulus shown in Fig. 7 is robust.

With data on the particles’ thermal contraction εT

and bulk modulus KP , it is now possible to apply
Eq. 10 to measure the modulus of the nonlinear networks
of collagen. For this we measured the contraction of
PNIPAAm particles in three different collagen networks,
polymerized at 22 ◦C, 26 ◦C, or 30 ◦C. These different
polymerization temperatures produced collagen networks
having long, medium, and short fibers (Fig. 4). Contractile
strains for particles in the networks of different fiber length
are shown in Fig. 8. From this data, we calculated the
product of Young’s modulus E and function f (ν, ρ) at
different contractile radial strains (different temperatures).
The results showed heterogeneity in the values of Ef (ν, ρ)

across the particles for each of the three types of collagen
matrices (Fig. 9). In particular, networks made of long
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Fig. 8 Contractile radial strain of PNIPAAm particles measured in no
matrix (magenta) or collagen networks having short (red), medium
(blue), or long (black) fibers. Contraction of PNIPAAm particles in
no matrix gives the thermal contraction εT . Each line represents
the contraction of a different PNIPAAm particle. The reference
temperature used to calculate contractile radial strain is 26 ◦C. The
labels on the horizontal axis represent the temperatures tested in the
experiments

fibers had values of modulus Ef (ν, ρ) that varied by a
factor of 3 from one location to the next. Additionally,
networks having long fibers had a greater modulusEf (ν, ρ)

than those made of short fibers, even though the total
concentration of collagen (3 mg/ml) was no different. While
perhaps surprising, this trend has been observed previously
in experiments [46, 47] that applied torsion to macroscopic
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Fig. 9 Product of Young’s modulus E and function f (ν, ρ) measured
by particles in collagen networks having short (red), medium (blue), or
long (black) fibers. Each line represents a measurement by a different
PNIPAAm particle. The horizontal axis gives contractile strain of each
particle, which is equal to the magnitudes of normal strains within the
collagen network at each particle–network interface
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specimens, indicating that this trend occurs on both the
macroscale and the microscale. Results also showed a
decrease in the values of modulus Ef (ν, ρ) at contractile
strains of up to 0.1, followed by an increase for contractile
strains in the range of 0.1 to 0.2 for the majority of the
curves, indicating initial strain softening [12, 27] followed
by strain stiffening [10, 14, 15, 21, 22, 24, 26]. At larger
strains of 0.2–0.3, the modulus then decreased for most
collagen networks, possibly due to plastic deformation.

Our measurements could potentially be affected by the
finite thickness of the collagen gels and the presence
of glass boundaries at the top and bottom of each gel.
The stiff boundaries would produce an environment stiffer
than the collagen network, thereby reducing the particles’
contraction. To check whether the finite sample thickness
affected our measurements, we plotted the productEf (ν, ρ)

measured by particles in collagen networks against each
particle’s initial radius. As the largest particles would be
most affected by the boundaries, a positive correlation
between Ef (ν, ρ) and particle radius would indicate a
boundary effect. Figure 10 shows results for contractile
radial strain of ≈ 0.1. The plot shows significant scatter
in the data with no discernible trend. A statistical test for
correlation between Ef (ρ, ν) and particle radius gives p =
0.61, and the coefficient of determination (R2) for a linear
fit to the data is 0.0068, indicating no correlation between
measured modulus Ef (ν, ρ) and initial particle radius. The
values of p and R2 are similar for contractile strains up
to 0.4. For strains greater than this, a small correlation
(R2 ≈ 0.2, p ≈ 0.01) appears, indicating a potential effect
of the boundaries. If contractile strains of this magnitude
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Fig. 10 Product of Young’s modulusE and function f (ν, ρ)measured
by particles in collagen networks having short, medium, or long fibers
at the lowest level of contraction (30 ◦C), corresponding to contractile
radial strain of ≈ 0.1. The horizontal axis gives initial radius of each
particle

were required for future experiments, smaller particles or
a thicker collagen network could be used to avoid this
issue. Nevertheless, for contractile radial strains up to 0.4,
our measurements are unaffected by the finite collagen gel
thickness.

The experiments have numerous sources of uncertainty
(e.g., see items i–iv in the section labeled “Statistical
Analysis”), all of which combine together to produce
variability in the experimental data. To quantify how
these experimental uncertainties affect the measurement of
modulus Ef (ν, ρ), we computed 95% confidence intervals
of Ef (ν, ρ) for each particle using bootstrap analysis as
described in the Statistical Analysis section. Figure 11
shows the confidence intervals for each particle at the lowest
tested temperature, which corresponds to a contractile
strain of approximately 0.1. Confidence intervals for other
levels of contractile strain (i.e., measured at different
temperatures) appear similar to those in Fig. 11. For each
type of collagen network (i.e., having short, medium,
or long fibers) there exist confidence intervals that do
not overlap, indicating the moduli measured at different
locations are statistically different. Additionally, there are
non-overlapping confidence intervals between the different
types of collagen networks, indicating the moduli of the
different collagen networks are also statistically different.
These observations give statistical significance to the trends
observed in Fig. 9.

Perhaps the clearest trend revealed by these experiments
is the heterogeneity in modulus measured by the contracting
particles. To quantify the heterogeneity, we calculated the
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Fig. 11 Product of Young’s modulusE and function f (ν, ρ)measured
by particles in collagen networks having short (red), medium (blue),
or long (black) fibers at the lowest level of contraction (30 ◦C),
corresponding to contractile radial strain of ≈ 0.1 Each cross
represents a different PNIPAAm particle. Horizontal lines show
means; vertical lines show 95% confidence intervals of the means
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10th and 90th percentiles of measured modulus Ef (ρ, ν)

and took their ratio. This ratio gives the factor by which
the modulus varies within the same fiber network. At a
contractile strain of approximately 0.1, the ratio was 1.47
with a 95% confidence interval (CI) of (1.45, 1.50) for the
networks with short fibers, 2.43 with 95%CI (2.37, 2.50) for
medium fibers, and 2.88 with 95% CI (2.84, 2.92) for long
fibers. The local modulus therefore varies by a factor of up
to 3 for different positions within the same fiber network.

Discussion

We have developed an experimental method to measure the
modulus of a collagen network at the scale of a cell. Our
method uses particles (∼100 μm diameter) of PNIPAAm,
an active gel that contracts when heated. We first measured
the particles’ contraction in no matrix and polyarylamide
matrix at different temperatures, which enabled us to
compute their bulk modulus at these temperatures. We then
measured the particles’ contraction in fibrous networks of
collagen, and, using a nonlinear hyperelastic model [19], we
computed the modulus of the collagen network in the local
region surrounding each particle. This provided independent
measurements of the modulus at different positions within
each collagen network. Results showed that modulus at the
scale of these particles is highly heterogeneous, varying by
a factor of up to 3. This experimental method quantifies
local mechanical properties at the scale of a cell, while also
accounting for nonlinearity of the fibrous collagen network.

The hyperelastic model used here begins with linear
elasticity and adds one constant factor, ρ, which accounts
for compression weakening. In addition to weakening under
compression, fibers also align under tension. As a result,
fibrous networks stiffen with increasing tensile strain, a
phenomenon not accounted for in the hyperelastic model
used here. Other hyperelastic models have been designed
to simulate fiber alignment in fibrous materials [18, 20,
48], and, in principle, they could be applied to our data.
However, we recently showed using a theoretical model
that fiber reorientation and alignment due to a contracting
inclusion are modest [37]. Additionally, we showed in
experiments that displacements due to a contracting
sphere propagate over a longer range than predicted by
linear elasticity, even in directions perpendicular to fiber
alignment [16]. Together, these observations imply that
compression weakening—rather than fiber alignment—is
the dominant nonlinear mechanism for the loading applied
here. Therefore, our choice of a hyperelastic model that
simulates compression weakening is appropriate.

As we designed the experiment to control the contraction
of the PNIPAAm particles, we were able to measure the
local modulus at different levels of contractile radial strain

(Fig. 9). Single contracting cells contract at strains of
approximately 0.2-0.3 [49], a range which is tested in our
experiments. It is important to note that in our method
strain decays over distance from the contracting particle, so
the contractile radial strain represents a maximum value.
Many curves of modulus vs. strain initially decreased,
indicating strain softening at contractile strains of up to
0.1. This initial strain softening has been reported in other
studies as well [12, 27]. (Note that these studies and
others applied uniform extension or simple shear, which
produces a nominally constant strain throughout the fiber
network.) For contractile strains in the range of 0.1 to 0.2,
the curves then increased, indicating strain stiffening which
is consistent with other studies applying shear or uniform
extension, which also observed strain stiffening in this range
[10, 14, 15, 21, 22, 24, 26].

Collagen networks having longer fibers, and some with
short, exhibited a second regime of strain softening at a
contractile radial strain of 0.2–0.3. Though the cause of
strain softening is unclear, it is likely related to damage
under these high strains. Consistent with this, other studies
have observed permanent deformation [25, 39, 50], possibly
associated with breaking of connections between fibers,
which becomes more likely as the force supported by
each fiber increases [51]. Data collected here show that
the networks having the longest fibers have the greatest
modulus, implying that they also support the greatest
stress. Networks having longer fibers are also likely to
have fewer connections between fibers. Therefore, networks
having longer fibers likely have greater force supported by
each fiber-to-fiber connection, which in turn may cause
those connections to break more frequently at high strains,
thereby producing the strain softening observed.

For all collagen networks, the measured modulus was
heterogeneous over space. For collagen networks of 3
mg/ml, the local modulus varied by a factor of up to 3.
Other studies using microrheology have reported an even
larger range with values of stiffness varying by a factor of
10 [32, 52, 53]. The difference in heterogeneity between our
results and those obtained by microrheology probably arises
from the different length scales of the experimental meth-
ods. In our method we use particles having size of tens of
microns, whereas microrheology uses much smaller parti-
cles, having size of ∼ 1 μm. Such small particles would
connect to only a few fibers. Slight variations in the num-
ber of fibers near to each particle would therefore produce
large differences in the local stiffness detected by that parti-
cle. By contrast, the larger PNIPAAm particles used in this
study attach to many fibers and therefore smooth out some
heterogeneity due to randomness of the network. How a cell
senses this heterogeneity may depend on the mechanism by
which a cell senses the surrounding matrix. A single adhe-
sion complex at the tip of a cell protrusion may interact
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with the matrix at scales < 1 μm, but mechanotransduction
mechanisms are not restricted to the length scale of a focal
adhesion. Studies on cytoskeletal signaling proteins have
shown that integrin clustering and talin unfolding, which are
dependent on the local stiffness at the site of the focal adhe-
sion [54], also result in actin stress fibers that can propagate
forces along the length of a cell’s protrusion and even to the
nucleus [55]. Multiple mechanotransduction mechanisms
result. Tension of actin stress fibers in the cytosekeleton
allows for binding of numerous mechanosensitive proteins
[54], and tensile forces applied by the cytoskeleton to the
nucleus are a known mechanism for mechanotransduction
[56, 57]. Therefore, it is reasonable to conclude that an
important length scale for mechanotransduction is the dis-
tance connecting the adhesion complexes at the end of a
cell’s protrusions to the nucleus, typically tens of μm. As
our experimental method matches this length scale, it gives
a relevant measure of modulus for mechanotransduction by
the cytoskeleton and nucleus. At this scale, our data show
that heterogeneity in the modulus is lower than measured by
microrheology, but it is nevertheless significant.

The large heterogeneity in the modulus of fibrous
materials implies that cell response to matrix mechanics
is likely to be highly heterogeneous. This complicates our
understanding of cell sensing of matrix properties, but the
experimental method presented here could be a starting
point for sorting out these complications. Experiments
could be designed to test cell response to a distribution of
moduli that matches the data collected here, for example
by varying modulus by a factor of 3. By characterizing
cell response to different distributions of moduli, it may
be possible to relate specific cell behaviors to a range
of moduli rather than to a single value. In addition, our
experimental method could provide data needed to calibrate
theoretical models for matrix mechanics. Those models,
after validation by our experimental method, could then
quantify mechanical properties (and their heterogeneity) in
systems that are difficult to test experimentally, such as the
microenvironment of a tumor.
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