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Abstract This work explores the effect of the ill-posed
problem on uncertainty quantification for motion estimation
using digital image correlation (DIC) (Sutton et al. 2009).
We develop a correction factor for standard uncertainty esti-
mates based on the cosine of the angle between the true
motion and the image gradients, in an integral sense over
a subregion of the image. This correction factor accounts
for variability in the DIC solution previously unaccounted
for when considering only image noise, interpolation bias,
contrast, and the software settings such as subset size and
spacing.
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Introduction

Using optical flow to estimate motion from images (as is
done in DIC) leads to an ill-posed inverse problem. The ill-
posed problem arises as a result of trying to recover a vector
motion field from a scalar image intensity field. The nature
of this deficiency has been extensively studied in references
[2–7] and many methods have been developed to circum-
vent this issue (for example introducing regularization as
proposed by Horn and Schunck [8]). While introducing
regularization assuages many of the numerical issues symp-
tomatic of the ill-posed problem, it does not fully address
the resulting accuracy degradation. Regularization provides
for a unique motion estimate, but regularization does not
guarantee that this unique solution is the true motion. In fact,
for traditional, subset-based DIC formulations, a savvy ana-
lyst needs to balance the regularization provided by increas-
ing the subset size while avoiding the loss of accuracy due
to smoothing.

While the nature of the ill-posed problem, related to opti-
cal flow and DIC, has been extensively studied, relatively
few works have investigated the effect of the ill-posed prob-
lem on the accuracy of the solution in a systematic manner.
In this work, we demonstrate that the accuracy of a DIC
motion estimate is directly linked to directionality in the
speckle pattern hearkening to the familiar axiom of optical
flow, that motion can only be estimated in the direction of
image gradients. In this work, we contribute a quantitative
assessment of the impact of this axiom and show that all
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speckle patterns, regardless of how isotropic or anisotropic
in orientation serve as a filter that admits only certain com-
ponents of the true motion. Herein, we provide a concise
means by which an analyst can estimate the accuracy of a
DIC solution based on properties of the speckle pattern and
the direction of the estimated motion.

Objective

The goal of this work is to provide an a posteriori error
estimate for DIC based on the following two propositions:

Proposition 1 The error between a DIC motion estimate,
û(x), and the true motion, u(x), is composed of an observ-
able component (error which leads to a change in the
residual that represents the model fit error) and an orthog-
onal component (error that results in no change in the
residual).

Proposition 2 The total error is inversely proportional to
the angle between the true motion and the image gradient
(i.e. the speckle pattern).

If these propositions are correct, one can estimate the
error in a DIC solution based purely upon the image data
and the computed motion. This implies that our task in this
work is to develop a residual-based estimate of the observ-
able error as well as an estimate of the angle between the
motion and the image gradients. These are the two necessary
ingredients of the proposed error estimate.

This work also explains an additional source of varia-
tion in the DIC solution, which often exceeds the expected
variation due to image noise, interpolation bias error, and
approximation error. Our hypothesis is that this additional
source of variation is linked to the relationship between the
motion vector and the speckle pattern. We demonstrate this
via formal analysis as well as numerical studies.

Investigation of quantitative error assessment in DIC has
been studied in a number of works. In [9–11], and [12], the
authors use statistical error analysis to determine the effect
of common sources of error, such as interpolation bias and
image noise on the resulting uncertainty in the motion esti-
mate. In reference [13], the authors explore the effects of
choices related to the subset size, speckle size, and gray
level interpolation, among others on the resulting displace-
ment field. The specific influence of the shape functions
and interpolants in pattern matching is delineated in [14]
and [15]. The authors of [16] show that the error in a DIC
motion estimate is closely tied to the speckle size and dis-
tribution. An extension of the analysis in the works above
towards material parameter identification is carried out in
[17]. The effects of camera system resolution are explored
in [18]. Lastly, a benchmark problem is used to capitulate

the ultimate error regime in [19]. What has not been investi-
gated in prior studies is the effect of the ill-posed problem on
uncertainty, which is the primary contribution of this work.

Preliminaries

Table 5, in the Appendix, defines all of the symbols used in
this work. Consider the Lebesgue space of functions, L2, on
a domain, �, with inner product, 〈a, b〉 = ∫

�
a · b dx, and

associated norm

||a||2
L2(�)

= ||a||2 = 〈a, a〉 . (1)

We define the norm of a nonzero vector, a, in the direction
of a unit vector, b/|b|, as

||a||2b =
〈
(a · b)b

|b|2 ,
(a · b)b

|b|2
〉

=
∫

�

(
a · b
|b|

)2

dx . (2)

We also define the cosine and sine of the angle between
two non-zero vectors, in an integral sense, in terms of the
following ratio1

cos θ(a, b) = ||a||b
||a|| = || (a · b)b/|b|2 ||

||a|| ,

sin θ(a, b) = cos θ(a, Jb) , (3)

where J is [ 0 -1; -1 0 ] and |Jb| = |b|. The cosine and
sine of the angle, as defined, have the following identities:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 ≤ cos θ(a, b) ≤ 1
cos2θ(a, b) + sin2θ(a, b) = 1

cos θ(a, b) = cos θ(b, a)
cos (θ(a, b) + θ(c,d)) = cos θ(a,b) cos θ(c,d)

−sin θ(a,b) sin θ(c,d)

.

(4)

An a Posteriori Error Estimate

Motion Estimation using DIC

The objective of DIC is to recover a motion, v(x, t), from
observations of an image intensity field, φ(x, t), that bal-
ances a transport model (i.e. optical flow [8]):
{ dφ(x,t)

dt = ∂φ(x,t)
∂t

+ v(x, t)· ∇φ(x, t) = 0 over� ⊂R
2 ,

φ(x,0) = φ0(x) x ∈ �,
(5)

where φ0(x) is the image intensity field at time, t = 0 and
� is the image domain, or a subset of the image. Assuming

1Note, there are subtle differences between our definition of the cosine
of the angle here and that used in the classical definition. Our modifi-
cation is based on needing to represent only the acute angle between
the two vectors. As we discuss in a subsequent section, if the motion
points in the direction opposite the image gradient no loss of generality
occurs.
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Poor accuracy

Good accuracy

Fig. 1 (left) Relationship between the true motion, u, the DIC solution, û, and the total error, u − û, in terms of the angles between them. (right)
An illustration of two cases comparing the direction of motion with the direction of the image gradients. In the poor accuracy case, the cosine
of the angle between the motion and the image gradient is small leading to a dramatic decrease in accuracy attributed to the ill-posed problem.
Any point in the image for which the red motion vector is of zero length or the red and white arrows are orthogonal makes no contribution to the
residual of the least squares problem (i.e. the error for this point is undetectable)

that the motion is independent of time (v(x, t)t ≈ u(x, t)),
a solution to the transport model is

φ(x, t) − φ0(x − u(x, t)) = 0 , (6)

where u(x, t) is the displacement field. A Taylor series
expansion of (6) leads to

φ(x, t) − φ0(x) + u(x, t) · ∇φ0(x) + ν = 0 , (7)

where ν represents the higher-order terms of the Taylor
series expansion. DIC formulations seek to find the motion,
u∗, that minimizes some form of the correlation criteria
given by (6)2. For example, in a least-squares sense, u∗ is
defined as follows

u∗ = argmin
u

1

2

∫

�

(φ − φ0 + u · ∇φ0)
2 dx . (8)

Remark 1 Only the component of the true motion, u, in the
direction of ∇φ0 is observable in the transport model (7)
(i.e. leads to a change in φ(x, t) − φ0(x)). Consequently, it
is not possible to recover the true motion completely using
DIC alone (unless it aligns precisely with ∇φ0).

Remark 2 Any motion vector, ũ, orthogonal to ∇φ0, can be
added to u∗ resulting in a vector that is also a minimizer of
(8).

These remarks summarize the ill-posed nature of the
inverse problem underlying DIC. In regards to characteriz-
ing the accuracy of DIC, they imply that in addition to quan-
tifying the error of the observable component of the motion,

2In the DIC literature, this function is often written as G(x +
u, t) − F(x) where G and F are the deformed and reference images,
respectively. There are many normalized varieties of this equation
such as the sum-squared-differences, zero-normalized-sum-squared-
differences, etc.

one must also determine the relationship between the true
motion and the image gradient, i.e. the angle between them.
When the cosine of this angle (defined below) is near zero,
even if the error in the observable component is negligible,
the accuracy with regards to the true motion can still be poor.
This is illustrated on the right side of Fig. 1.

The least squares problem in (8) leads to the following set
of normal equations which are solved to obtain the motion
estimate.3
∫

�

(∇φ0 ⊗ ∇φ0) u dx = −
∫

�

∇φ0(φ − φ0)dx . (9)

A Levenberg-Marquardt regularization [20] of the normal
equations above can be written
∫

�

(∇φ0 ⊗ ∇φ0) u+α2
r u dx =−

∫

�

∇φ0(φ − φ0)dx , (10)

where αr is the regularization parameter. In most of the
numerical examples in this work, the unregularized form of
the normal equations, (9), is used, since as we discuss later,
the subset-based discretization already introduces implicit
regularization by means of parameterizing the motion over
a subset. We use the Levenberg-Marquardt regularized form
for one example to demonstrate that introducing explicit
regularization, as in Eq. (10), does not circumvent the loss
of accuracy due to the ill-posed problem.

Decomposition of the Error

The vectors in Fig. 1 illustrate the relationship between the
true motion, u(x), the DIC solution, û(x), and the total error

3We have intentionally presented the DIC problem in abstract form
because the analysis that follows applies to both local and global for-
mulations. A local, subset-based approach is used in the numerical
examples to simplify the presentation. One can expect similar results
for a global formulation, although this is not investigated here.
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u(x) − û(x). We make the assumption that angle between
the true motion and the DIC solution is always acute, which
implies that our speckle pattern has adequate contrast for
pattern matching, the images contain a reasonable amount
of image noise, and that the interpolant used is at least third-
order accurate (not bilinear).

Using trigonometric identities, one can prove the last
identity in Eq. (4), i.e.

cos θ(u − û, ∇φ0) = cos
(
θ(u − û, u) + θ(u, ∇φ0)

)

= cos θ(u − û, u) cos θ(u, ∇φ0)

−sin θ(u − û, u) sin θ(u, ∇φ0) . (11)

Noting that the sine and cosine values are bound between
0.0 and 1.0, we have

cos θ(u − û, ∇φ0) ≤ cos θ(u − û, u) cos θ(u, ∇φ0) , (12)

and similarly

cos θ(u − û, ∇φ0) ≤ cos θ(u, ∇φ0) . (13)

Equation (13) leads to an estimate of the total error, ||u −
û||, in terms of the observable error, ||u − û||∇φ0 , given in
Eq. (2), and the angle between the true motion and the image
gradients,

(14)

The expression above provides an analytical corollary to
Propositions 1 and 2.What remains is to develop an estimate
for the observable error and the cosine of the angle.

A Residual-based Estimate of the Observable
Component of the Total Error

Consider the residuals, r and r̂ , given by

r = φ(x, t) − φ0(x − u) ≈ φ(x, t) − φ0(x) + u · ∇φ0 ,(15)

and

r̂ = φ(x, t) − φ0(x − û) ≈ φ(x, t) − φ0(x) + û · ∇φ0 ,(16)

Subtracting Eq. (16) from (15) leads to the following
approximation

(û − u) · ∇φ0 ≈ r̂ − r , (17)

The observable component of the error can then be esti-
mated as

(18)

Estimating the Cosine of the Angle

The same trigonometric analysis that led to (11) leads to a
similar expression for the cosine of the angle between the
true motion and the image gradient:

cos θ(u, ∇φ0) = cos
(
θ(u, û) + θ(û, ∇φ0)

)

= cos θ(u, û) cos θ(û, ∇φ0)

−sin θ(u, û) sin θ(û, ∇φ0)

≤ cos θ(u, û) cos θ(û, ∇φ0)

≤ cos θ(û, ∇φ0) . (19)

We therefore make the approximation

(20)

for which a sufficient condition is that not only is the angle
between the computed solution and the true motion acute,
but also “small”.4 Combining Eqs. (14) and (20) leads to an
error estimate based on the residual from the optical flow
equations and the angle between the computed motion and
the image gradients,

(21)

Note that the total error is always greater than the observ-
able error that manifests in the residual of the least squares
problem. The cosine of the angle can therefore be consid-
ered a correction to a standard error estimator that accounts
for the ill-posed nature of the DIC problem.

A numerical illustration of the effect of the ill-posed
problem on the error in a DIC motion estimate

To demonstrate that the total error in the estimated motion
has an observable component and an orthogonal component
(that does not influence the residual), we compute these
quantities for a problem with a known solution imposed
synthetically on an image set. We also use this numerical
example to emphasize the importance of including the cor-
rection factor based on the cosine of the angle between the
motion and the image gradients. The imposed motion is of
the form:

umms = {0.5α + 0.5α sinβx cosβy, 0.5α − 0.5α cosβx sinβy}, (22)
where α is the amplitude of the motion and β is the fre-
quency parameter. For this example, α = 1.0 and β =
π/50, which leads to a motion with a period of 100 pixels.
Given a reference image, a corresponding deformed image
was constructed by interpolating the reference image at the

4Empirical evidence suggests that this angle is small. Were it not, DIC
could not be used so successfully in so many application areas.
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Fig. 2 A 75×75 pixel sample of the speckle pattern used in the spatially
varying imposed motion example

mapped pixel locations according to the imposed motion.
For every pixel, i, in the deformed image, φ(xi ) = φ0(xi −
umms,i). A bi-quintic polynomial interpolant was used for
the image manufacturing. Although the image manufactur-
ing process introduces error (for example in the interpola-
tion of intensity values) these errors can be fully quantified
in the residual, r . The resulting effect of these errors on
the total error is therefore known. A sample of the speckle
pattern used in this example is shown in Fig. 2. For this
example, no image noise was added to the deformed image.
The software settings for this example are given in Table 1.
The residual tolerance, in Table 1, was set greater than
machine precision (1.0E-14) to avoid unnecessary iterations
after the solution has essentially converged.

Since the actual motion vector is not known, the efficacy
of the proposed approach lies in being able to use the angle
between the estimated motion and the image gradients as a
surrogate. Figure 3 shows a comparison between the esti-
mated cosine of the angle and the exact cosine of the angle,
revealing that the approximation in (20) holds, in this case.
The data for this figure and the next were collected from a
vertical line in the image at x = 250. Figure 4 shows the
exact total error, ||u− û||, compared to the error observable
in the residual of the transport model (computed using the
right hand side of the approximation in Eq. (18)). Figure 4
also shows the corrected error estimate computed by multi-
plying the observable error by the inverse of the cosine of
the angle as in (21). Note that the residual-based estimate,

Table 1 Software settings for method of manufactured solutions
example

Image size 500 × 500

Subset size 9 (pixels)

Step size 5 (pixels)

Noise filtering None

Interpolant Bi-quintic polynomial

Solver residual tolerance 1.0E-8

Correlation criteria ZNCC

Shape function Affine

Fig. 3 Comparison of cos θ(u, ∇φ0) and cos θ(û, ∇φ0), which deter-
mine the error magnification factor. This figure shows that the approx-
imation in (20) is valid, e.g that the estimated motion can be used as a
surrogate for the true motion in terms of evaluating the angle between
the motion and the image intensity gradients. The data in this figure
was collected along a vertical line in the image at x = 250

without the correction, underpredicts the error by roughly
20% indicating that the effect of the ill-posed problem plays
a significant role in the error.

Quantitative Error Assessment

The analysis above is useful for demonstrating the addi-
tional source of error related to the ill-posed problem in
DIC. It also requires that the imposed motion be known so
that the residual, r , can be computed. In this section, we
develop an estimate for the uncertainty in a DIC measure-
ment when the imposed motion is not known (i.e. we model
the residual-based term using statistical analysis). We also
use more familiar metrics such as the absolute or relative
error rather than the L2(�)-norm.

Consider the maximum norm of a function, f (x), in
a bounded and measurable set, defined as ||f (x)||L∞ ≡
inf {C ≥ 0 : f (x) ≤ C for almost every x}. A similar
expression to (21) can again be developed using geometric
arguments,

||u − û||L∞ ≈ 1

cos θ(û, ∇φ0)
||u − û||L∞,∇φ0 . (23)

Rather than use the residual of the transport model as in
Section 2, to estimate the second term on the right hand side
of the expression above, we follow the approach in Wang, et
al. [10], in which the motion variance is treated as a linear
function of the image intensity and inversely proportional to
the norm of the image gradients in the reference subset,

Var(u−û) =
[
Var(ux−ûx, ux −ûx) Var(ux−ûx, uy−ûy)

Var(uy −ûy, ux −ûx) Var(uy−ûy, uy−ûy)

]

= 2η2� , (24)
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Fig. 4 Comparison of the exact
total error, ||u − û||, the
component of the error
observable in the residual of the
transport model (computed using
the right hand side of (18)), and
the corrected error estimate
(computed using Eq. (21) with
||u − û||∇φ0 computed using the
right hand side of (18)). This
figure shows that accounting for
the orientation of the speckle
pattern in relation to the motion
provides for a much more
accurate error estimate. The data
in this figure was collected
along a vertical line in the image
at x = 250

where � = (
∫
�

∇φ0 ⊗ ∇φ0 dx)−1, and η is the standard
deviation of the image noise. In the numerical examples
below, we use the method in [21] to compute η. To get an
upper bound on the variance, we employ the max norm of a
matrix, ||A||max = max

ij
|Aij |.

σ = Var(ui − ûi ) ≤ 2η2||�||max . (25)

Substituting (25) into (23) we have a corrected estimate
of the displacement uncertainty, σ̃ , that accounts for the
variation induced by the ill-posed problem.

(26)

In words, we have developed a correction term, based on the
cosine of the angle, for the uncertainty estimate in [10] that
in addition to image noise, and contrast, includes the effect
of the ill-posed problem.5 In the numerical examples below
we show why including the correction factor is important.

Numerical Examples

In this section, we use a number of numerical examples to
illustrate the analysis outlined above. The first example uses
an unrealistically biased speckle pattern to demonstrate the
role of the angle between the motion and image gradients
in terms of uncertainty. In the second example, the same
effect is demonstrated for a more realistic speckle pattern
and a motion that is spatially varying, rather than a pixel
shift. We then analyze one of the DIC Challenge data sets to

5We do not explicitly include the interpolation bias in the estimator
above because the resulting error is small in comparison to the effects
of noise and motion orientation.

show that the analysis holds for an independently generated
image set. This example also shows that the correction term
accurately predicts the increase in uncertainty as the subset
size approaches zero. In some of the examples, a small
subset size is used because this amplifies the effect of the
ill-posed problem, making the correlation between the angle
and uncertainty more visible. In the last example, we show
that the analysis above applies to an experimental set of
images and provide some quantification of the importance
of the ill-posed effect on DIC in practice. All of the exam-
ples were computed using the Digital Image Correlation
Engine (DICe) code, an open source DIC code available at
https://github.com/dicengine/dice. The sub-
routines that compute the error and correction factor are
located in the DICe ObjectiveZNSSD.cpp file, in the
Objective ZNSSD::computeUncertaintyFields()
method. Anyone wishing to repeat these examples or apply
the same analysis to another problem of interest can freely
download the software, install it and re-run these examples.

Implementation Details

The discrete DIC algorithm used for each of the examples is
subset-based and includes the following details. The corre-
lation criteria used is the zero-normalized-cross-correlation
(ZNCC) criteria, CZNCC

CZNCC =
∑

i

(
(Gi − Ḡ)

∑
j (Gj − Ḡ)2

− (Fi − F̄ )
∑

j (Fj − F̄ )2

)

, (27)

where Fi = φ0(xi ) is the reference image intensity value
at pixel i, Gi = φ(xi , tn) is the deformed image inten-
sity value at pixel i, F̄ and Ḡ are the average intensity
values over the subset for the reference and deformed
images, respectively. The image gradients in x are computed
using a row filter with coefficients 1/12[1, −8, 0, 8, −1].
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Fig. 5 A 75×75 pixel sample of the speckle pattern used for the
directionality numerical example

Image gradients in y are computed using a column filter
with the same coefficients. The interpolation scheme used
is that of Keys [22]. A gradient-based optimization strat-
egy is employed to determined the mapping parameters of
the motion similar to the Lucas-Kanade algorithm [23]. A
piecewise-linear, affine shape function is used with degrees
of freedom for translation, rotation and normal stretch. The
use of a subset-based method, with the motion parameter-
ized over subregions of the image domain, leads to an inher-
ently regularized formulation where the regularization is
linked to the size of the subset. To investigate the effects of
regularization, for one example, the Levenberg-Marquardt
regularized form, Eq. (10), is used which includes explicit
regularization in addition to the regularization provided by
the subset. For the sake of simplicity, all of the numerical
examples are two-dimensional. Stereo correlation was not
considered.

Correlation between Variability in the DIC Solution
and the Cosine of the Angle

To demonstrate a clear connection between the cosine of the
angle, cos θ(û, ∇φ0), and the magnitude of the error, in this
case in the x-direction, |ux − ûx |, we conduct a synthetic
pixel shift experiment using a speckle pattern with a clear
directional bias.6 The reference pattern, shown in Fig. 5, is
rotated by increments of 10 degrees to create a sequence of
reference patterns with a particular directional orientation.
These reference images are then translated by one pixel in x-
direction to create a deformed image for each case. We shift
the images by a full pixel to avoid introducing interpolation
bias errors. Finally, image white noise of magnitude 1% of
255, counts is added to the deformed images. The software
settings used for this example are given in Table 2.

The data in Fig. 6 was generated by taking the aver-
age value, over all 40,000 subsets, of the angle between the

6This directional pattern is far from acceptable for use in real DIC
applications. We use it here simply to highlight the connection between
directionality and error in the DIC solution.

Table 2 Software settings for the directionality numerical example

Image size 250×250

Subset size 15 (pixels)

Step size 1 (pixels)

Noise filtering None

Interpolant Bi-quintic polynomial

Solver residual tolerance 1.0E-8

Correlation criteria ZNCC

Shape function Affine

motion and the image intensity gradients and the absolute
error. This figure shows a clear anticorrelation between the
magnitude of the error and the cosine of the angle. As the
direction of the motion becomes closer in orientation to the
gradients in the speckle pattern (in an integral sense over
the subset) the error decreases nearly linearly. This correla-
tion cannot be drawn, however, from the plot on the right
hand side of Fig. 6, which shows the error compared to the
sum of square of subset intensity gradients (SSSIG) criteria
[24, 25]. For a given SSSIG value, the resulting error can
span a large range of values. This suggests that while the
SSSIG criteria does indicate the amount of gradient content
in a subset, which impacts the error, it does not capture the
directionality of the motion. The left plot in Fig. 6 shows
that capturing the directionality is critically important for
estimating the error. The right plot suggests that the SSSIG
criteria cannot be used for such purposes.

The proposed error estimate highlights an additional source
of error related to the orientation of the image gradients that
applies to all speckle patterns, not just ones with anisotropy
such as this one. An anisotropic pattern was used for this
example because it clearly demonstrates the connection
between the direction of motion, the direction of the image
gradients, and the resulting uncertainty. In the examples that
follow, the patterns are similar to those used in practice, with
random sizes and orientations of speckles. The results from
these patterns also support the same conclusion.

Directionality for a Spatially Varying Displacement

As opposed to the previous example that used an uncon-
ventional speckle pattern to demonstrate the effect of the
directionality of the pattern and the motion, in this example
we use a pattern similar to that used in practice to empha-
size the same point. In this example, we impose the same
spatially varying motion given in (22) to the speckle pat-
tern shown in Fig. 2, but rotate and translate the reference
pattern at random increments prior to deformation, to pro-
duce a set of reference images with a similar pattern, but
a random orientation with respect to the spatially varying
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Angle,

These two dots represent two pattern
orientations with the same SSSIG value.
However, the error for one is much
higher than the other.

Fig. 6 Accuracy results from ten speckle patterns at different predominant pattern angles. Each black dot represents the average of all subsets for
one of the ten pattern orientations. (left) The average error in the displacement solution vs. the cosine of the angle between the imposed motion
and the image gradients in the speckle pattern, showing a clear anticorrelation. (right) The average error in the displacement solution plotted
vs. SSSIG criteria. Note that a wide range of errors are obtained for a given SSSIG value, suggesting that one cannot use the SSSIG criteria to
quantitatively predict the error

motion. The software settings used are given in Table 3.
Figure 7 shows 100 realizations of the computed displace-
ment along a vertical line at x = 250. The black line in the
figure shows the exact solution. The dashed blue lines show
the predicted uncertainty using σ̃ . In general, the predicted
uncertainty captures the variability in the recovered solution
due to the directionality of the speckle pattern in relation to
the imposed motion.

DIC Challenge set 14

In this example, we compare the estimated uncertainty as pre-
dicted by σ and the corrected uncertainty, σ̃ , that includes
the effect of the ill-posed problem. To compute σ̃ , we use
the right hand side of the approximation in (26). The refer-
ence and deformed images for this example come from the

Table 3 Software settings for directionality with spatially varying
displacement example

Image size 500×500

Subset size 9 (pixels)

Step size 5 (pixels)

Noise filtering None

Interpolant Bi-quintic polynomial

Solver residual tolerance 1.0E-8

Correlation criteria ZNCC

Shape function Affine

DIC Challenge 14 data set, level 5 [26]. The software set-
tings are given in Table 4 and a sample of the speckle pattern
is shown in Fig. 8. The exact solution for this data set is
known and is given by

ux =
{
0 if x ≤100
0.1 sin(β14(x−100)2) otherwise

, uy =0.0 , (28)

where β14 = 1.66E − 5. Figure 9 shows that the varia-
tion in the displacement error is more accurately predicted
by σ̃ rather than than σ which underpredicts the variation.
Figure 10 shows that the same trend occurs when the subset
size is reduced from 35 to 11 pixels. Figure 11 shows the
average displacement error in the x-direction along a verti-
cal line at x = 1870 for various subset sizes ranging from 3
to 51 pixels. The corrected uncertainty captures the dramatic
increase in the error as the subset size approaches zero. Note
that the error in the motion estimation approaches an asymp-
tote for a subset size above 20 pixels and then begins to rise
again after 50 pixels. For extremely large subset sizes, the
DIC solution becomes over-smoothed leading to increased
errors. The range between 20 pixels and 50 pixels repre-
sents subset sizes for which all directions of motion are
represented in the subset’s image gradients to some extent.
One might erroneously conclude from this that the error is
minimized for a threshold subset size, but in fact the error
could be reduced for any subset size if the image gradients
align with the direction of motion. Increasing the subset size
to include more directions in the image gradients, on aver-
age decreases the portion aligned with any one particular
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Fig. 7 100 realizations of the
displacement profile for the
spatially varying displacement
example with a similar speckle
pattern at random orientations.
The data for this plot was take
from a vertical line in the image
at x = 250. (black line) exact
solution, (grey lines) realizations
of the displacement, uy , (dashed
blue lines) uncertainty bounds
predicted by σ̃

direction of motion. This suggests that rather than adjust the
subset size to ensure coverage of a wide variety of direc-
tions, one could make use of advances in pattern application
to design a pattern that has image gradients in the direction
of the anticipated motion (for example, as predicted by finite
element analysis).

Regularization Figure 12 demonstrates what happens to
both the accuracy of the solution and the numerical stability (as
measured by the condition number) as the amount of explicit
regularization, provided by the regularization term α2

r u in
Eq. (10), is increased. The data for this figure was collected
by running the DIC Challenge 14 L5 data set with increasing
values of αr and comparing the resulting displacement to the
known solution. Figure 12 clearly demonstrates that intro-
ducing regularization produces a linear system that is more
stable (i.e. less sensitive to the input data as evidenced by a
smaller condition number), but does not increase the accu-
racy of the formulation (the error in the solution remains
constant). This subtle point motivates the importance of
characterizing the error induced by the ill-posed problem
even in the context of regularized formulations.

Table 4 Software settings for the DIC Challenge 14, level 5 numerical
example

Image size 2048×588
Subset size 35 and 11 (pixels)
Step size 5 (pixels)
Noise filtering None
Interpolant Bi-quintic polynomial
Solver residual tolerance 1.0E-8
Correlation criteria ZNCC
Shape function Affine

Experimental Images of a D-shaped Tensile Specimen

In the last example, we apply the uncertainty estimation
methodology proposed above to an actual experiment, for
which the displacement solution is not known. In this
experiment, a stainless steel plate has been speckled and
loaded in uniaxial tension. We analyze one time step in the
load path to evaluate the efficacy of the proposed metric.7

Although the displacement solution is not known, given
the loading and orientation of the sample we expect that
the displacement in the pulling direction, x, should be rel-
atively constant through the height of the sample (in the
y-direction) throughout the initial stages of loading, prior
to yielding. This is verified in the results for this example
problem. Figure 13 shows a close-up of the speckle pattern
applied to the plate. Figure 14 shows the overall specimen
geometry.

The uncertainty estimates σ and σ̃ are shown in Fig. 15.
Notice that the corrected uncertainty increases the expected
variability roughly 20 to 25% throughout the sample. This
suggests that the ill-posed problem substantially impacts
uncertainty and is not otherwise accounted for in the tradi-
tional uncertainty metric. This result is verified in Fig. 16
which shows the displacement variability along the line A-A
in Fig. 14 for which the displacement should be nominally
constant. The proposed uncertainty estimate more accu-
rately captures the variability in the displacement solution.

7The specific details of the loading rate, specimen geometry, material
type, and sample preparation are not of interest in this example and are
therefore intentionally omitted.
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Fig. 8 A 75×75 pixel sample of the speckle pattern taken from the
DIC Challenge 14 data set

Fig. 9 A comparison of the
computed absolute error in ux ,
the predicted uncertainty
estimated by σ and the corrected
uncertainty σ̃ , which includes
the effect of the ill-posed
problem. In these results, a
subset size of 35 pixels was
used. Each dot represents a
subset along a horizontal line in
the image at y = 200

Fig. 10 A comparison of the computed absolute error in ux , the predicted uncertainty estimated by σ and the corrected uncertainty σ̃ , which
includes the effect of the ill-posed problem. In these results, a subset size of 11 pixels was used. Each dot represents the error for a subset along a
horizontal line in the image at y = 200
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Fig. 11 A comparison of the average computed absolute error in ux

and σ̃ , along a vertical line at x = 1870, for various subset sizes. Each
dot represents the average value of all subsets along the vertical line
for a given subset size

Fig. 12 Solution accuracy (left y-axis) and numerical stability (right
y-axis) plotted vs. the amount of explicit regularization introduced via
the parameter αr in Eq. (10). The regularization parameter has been
normalized by the area of the subset squared. In these results, a sub-
set size of 21 pixels was used. Each marker represents the average of
all subsets along a horizontal line in the image at y = 200. Notice
that as the regularization increases, the condition number decreases as
expected, but the accuracy remains constant

Fig. 13 A 75×75 pixel sample of the speckle pattern taken from the
D-shaped tensile specimen

A

A

Fig. 14 Reference image for the D-shaped tensile specimen showing
two lines over which data is collected for other figures for this example

Fig. 15 A comparison of the traditional displacement uncertainty,
σ , (top) vs. the corrected uncertainty, σ̃ , (bottom) which takes into
account the effects of the ill-posed problem
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Fig. 16 x-displacement data
plotted along the vertical line
A-A in Fig. 14 compared to the
uncertainty estimated by the
traditional means, σ , and the
proposed uncertainty metric, σ̃ .
This plot shows that, even for
experimental images, the
proposed uncertainty metric
captures the variability in the
solution more accurately

Conclusions

This work presented a new perspective on quantitative
error assessment in DIC that incorporates the effect of the
ill-posed problem by means of a correction factor. This cor-
rection factor, based on the cosine of the angle between
the true motion and the gradients in the speckle pattern,
accounts for variability in the DIC solution that is not con-
nected to interpolation bias, image noise, or contrast. Using
numerical examples, we demonstrated that the error can be
decomposed into an observable component and an orthog-
onal component that produces no change in the residual of
the transport model. We also demonstrated that the cosine of
the angle between the computed displacement and the gra-
dient of the image intensity serves as a useful surrogate for
the angle related to the true motion. Using this approxima-
tion, an error estimate was derived based only on computed
quantities, not requiring the exact solution. Ultimately, we
have demonstrated that a DICmotion estimate is closely tied
to the speckle pattern and that each speckle pattern recov-
ers only a particular component of the true motion. This
emphasizes the need for further development of optimized
speckle patterns that align with the predicted motion as well
as including additional sources of information that can be
used to augment the DIC motion estimate. This work lays
the foundation for such pursuits.

Appendix

All symbols used in this work are defined in Table 5.

Table 5 Definition of all symbols used in this work

x position vector for a point in the image

u(x) true motion vector

L2 Lebesgue space of functions

〈a, b〉 inner product of vectors a and b

||a||2 L2 norm of vector a

φ(x, t) image intensity field
d·
dt time total derivative

v(x, t) transport velocity

t time

∇φ(x) image intensity gradient vector

θ angle between vectors

r optical flow residual for true motion

α example problem coefficient

f (x) function

η image noise standard deviation

σ displacement uncertainty

Fi refrence image intensity at pixel i

αr regularization coefficient

� image domain

û(x) estimated motion vector

J operator that produces an orthogonal vector

|a| magnitude of vector a

||a||2b L2 norm of vector a in the direction of b
∂·
∂t

time partial derivative

u∗ minimizer of DIC objective functional

ν higher order Taylor expansion terms

ũ motion vector orthogonal to ∇φ0

umms manufactured solution motion vector
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Table 5 (continued)

r̂ optical flow residual for estimated motion

β example problem coefficient

C constant

� tensor containing the image gradients

σ̃ corrected displacement uncertainty

Gi deformed image intensity at pixel i
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7. Weickert J, Schnörr C (2001) A theoretical framework for con-
vex regularizers in pde-based computation of image motion. Int J
Comput Vis 45:245–264

8. Horn BK, Schunck BG (1981) Determining optical flow. In: 1981
technical symposium east, international society for optics and
photonics, pp 319–331

9. Ke XD, Schreier HW, Sutton MA, Wang YQ (2011) Error assess-
ment in stereo-based deformation measurements, Part II: exper-
imental validation of uncertainty and bias estimates. Exp Mech
51:423–441

10. Wang YQ, Sutton MA, Bruck HA, Schreier HW (2009) Quan-
titative error assessment in pattern matching: effects of intensity
pattern noise, interpolation, strain and image contrast on motion
measurements. Strain 45:160–178

11. Wang ZY, Li HQ, Tong JW, Ruan J (2007) Statistical analysis of
the effect of intensity pattern noise on the displacement measure-
ment precision of digital image correlation usingself-correlated
images. Exp Mech 47:701–707

12. Wang Y, Lava P, Reu P, Debruyne D (2016) Theoretical analysis
on the measurement errors of local 2D DIC: part I temporal and
spatial uncertainty quantification of displacement measurements.
Strain 52:110–128

13. Bornert M, Brmand F, Doumalin P, Dupr JC, Fazzini M, Grdiac
M, Hild F, Mistou S, Molimard J, Orteu JJ, Robert L, Surrel,
Y, Vacher P, Wattrisse B (2009) Assessment of digital image
correlation measurement errors: methodology and results. Exp
Mech 49:353–370

14. Schreier HW, Sutton MA (2002) Systematic erros in digital image
correlation due to undermatched subset shape functions. Exp
Mech 43:303–311

15. Schreier HW, Braasch JR, Sutton MA (2000) Systematic erros
in digital image correlation caused by intensity interpolation. Opt
Eng 39:2915–2921

16. Lecompt D, Smits A, Bossuyt S, Sol H, Vantomme J, Hemelrijck
DV, Habraken AM (2006) Quality assessment of speckle patterns
for digital image correlation. Opt Lasers Eng 44:1132–1145

17. Rossi M, Lava P, Pierron F, Debruyne D, Sasso M (2015) Effect
of DIC spatial resolution, noise and interpolation bias error on
identification results with VFM. Strain 51:206–222

18. Reu PL, Sweatt W, Miller T, Fleming D (2015) Camera system
resolution and its influence on digital image correlation. ExpMech
55:9–25

19. Amiot F, Bornert M, Doumalin P, Dupre JC, Fazzini M, Orteu
JJ, Poilane C, Robert L, Rotinat R, Toussaint E, Wattrisse B,
Wienin JS (2013) Assessment of digital image correlation mea-
surement accuracy in the ultimate error regime: main results of a
collaborative benchmark. Strain 49:483–496

20. Madsen K, Nielsen HB, Tingleff O (2004) Methods for non-linear
least squares problems. Informatics and Mathematical Modelling,
Technical University of Denmark, pp 1–58

21. Immerkaer J (1996) Fast noise variance estimation. Comput Vis
Image Underst 64:300–302

22. Keys R (1981) Cubic convolution interpolation for digital image
processing. IEEE Trans Acoust Speech Signal Process 29:1153–
1160

23. Lucas BD, Kanade T et al (1981) An iterative image registration
technique with an application to stereo vision. IJCAI 81:674–679

24. Bomarito GF, Hochhalter JD, Ruggles TJ, Cannon AH (2017)
Increasing accuracy and precision of digital image correlation
through pattern optimization. Opt Lasers Eng 91:73–85

25. Pan B, Lu Z, Xie H (2010) Mean intensity gradient: an effective
global parameter for quality assessment of the speckle patterns
used in digitial image correlation. Opt Lasers Eng 48:469–477

26. Reu P, Wattrisse B, Wang W, Robert L, Bruck H, Daly S,
Rodriguez-Vera R, Bugarin F (2014) Society for Experimental
mechanics: digital image correlation (DIC) challenge Web page.
http://www.sem.org/dic-challenge/

621Exp Mech (2021) 61:609–621

http://www.sem.org/dic-challenge/

	The Effect of the Ill-posed Problem on Quantitative Error Assessment in Digital Image Correlation
	Abstract
	Introduction
	Objective
	Preliminaries

	An a Posteriori Error Estimate
	Motion Estimation using DIC
	Decomposition of the Error
	A Residual-based Estimate of the Observable Component of the Total Error
	Estimating the Cosine of the Angle
	A numerical illustration of the effect of the ill-posed problem on the error in a DIC motion estimate


	Quantitative Error Assessment
	Numerical Examples
	Implementation Details
	Correlation between Variability in the DIC Solution and the Cosine of the Angle
	Directionality for a Spatially Varying Displacement
	DIC Challenge set 14
	Regularization

	Experimental Images of a D-shaped Tensile Specimen

	Conclusions
	Appendix  
	References


