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Abstract Digital Image Correlation (DIC) is a well-known
experimental technique. It works by constructing a (surjec-
tive) mapping of pixel intensity from reference to target
image, where the mapping parameters are identified using a
Least Squares approach. Because it makes use of the lumi-
nance component of the image, Digital Image Correlation
is usually implemented by assuming monochrome cameras.
In this work, we will discuss its implementation when color
cameras are used, focusing on pitfalls and potential advan-
tages of this solution. Since most cameras implement color
acquisition using a Color Filter Array (CFA), much of the
article will focus on this technology. However, we will not
limit ourselves to this aspect and will show that Three-CCD
cameras can provide significant advantages over both CFA
and monochrome cameras.

Keywords Digital image correlation · Color filter array ·
Bayer pattern · Color cameras · Demosaicing algorithm

Introduction

Digital Image Correlation (DIC) is a full-field experimen-
tal technique widely used to estimate the displacements
(strains) of target objects [1–3]. It works by correlating
two images, acquired before and after the event of interest,
under the assumption that the image intensity of each point

� A. Baldi
antonio.baldi@dimcm.unica.it

1 Dipartimento di Ingegneria Meccanica, Chimica e dei
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does not depend on motion. Although this assumption is
theoretically quite difficult to satisfy exactly—it requires a
homogeneous and isotropic illumination [4]—the standard
experimental conditions are near enough to these require-
ments to allow the technique to work. To obtain field data,
the image is partitioned into smaller parts (subsets) and a
local mapping from the reference to the target image is
assumed, i.e. f (xi, yi) = g(xi + u, yi + v), where

u = p0 + p1ξ + p2η +
[
p3ξ

2 + p4ξη + p5η
2
]

v = q0 + q1ξ + q2η +
[
q3η

2 + q4ξη + q5ξ
2
]

(1)

whereas ξ and η are the local coordinates parallel to the x

and y axis (ξ = x − x0, η = y − y0) and (x0, y0) is the
origin of the local reference system.

The pi and qi parameters control the mapping functions
(equation (1)) and are usually computed by minimizing over
the area of the current subset a suitable error function [5],
e.g.

CZNCC =
∑

f̄i ḡi√∑
f̄ 2

i

∑
ḡ2

i

(2)

or

CPSSDab =
∑

(afi + b − gi)
2 (3)

where fi and gi are respectively the intensity of pixel i in the
reference and target images, f̄i = fi − f̄ , ḡi = gi − ḡ and f̄

and ḡ are the mean values of f and g over the corresponding
subsets. The coefficients a and b appearing in the CPSSDab

error criterion account for offset and scale change of the
target system intensity.

To obtain a solution—the set of pi and qi minimizing the
error functional—either f (x, y) or g(x, y, u, v) is expanded
in Taylor’s series truncated to the first order, then a solu-
tion system is computed by setting to zero the derivatives
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Fig. 1 True-color cameras can
be produced using either a
Phillips prism to separate the
three color components (left), or
a multi-layer sensor (right),
where each layer is sensitive to a
different subrange of the color
spectrum. No interpolation is
performed in either case, so by
assuming the same size of the
sensor and the same pixel
dimensions, three times the
number of uncorrelated data is
available
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of the error function with respect to the control parameters
pi , qi (and eventually a and b). Although the resulting sys-
tem appears to be linear, its solution does not correspond to
the sought set of parameters because the numerical value of
the computed derivatives depends on the point of evaluation,
i.e. it depends on the solution. Thus, the above-described
procedure has to be iterated up to convergence.

The solution algorithm sketched above implies that a
unique intensity pattern exists for each location, thus the
surface of the specimen has to be textured either naturally
or artificially (by spraying random speckles on the surface);
moreover, the algorithm requires comparison of the value of
the intensity at location g(xi + u, yi + v) with f (xi, yi) by
means of equation (3) (or equation (2)) for each step of the
iteration and for all points i belonging to the current sub-
set; thus, considering that both u, v ∈ R, N interpolations
are required for each step, where N is the number of pixels
belonging to the current subset.

Intensity interpolation is a critical point in DIC and sev-
eral works have been devoted to this point [6–10]. Indeed,
the theoretically exact interpolating function is the sinc,
defined as sinc(x) = sin(πx)/(πx), because its Fourier
transform is unitary up to the Nyquist frequency and exactly
zero for frequencies above it. However, the sinc has an
infinite support and the convergence of the series is very
slow, thus making its use impractical.1 The standard solu-
tion to this problem is polynomial interpolation, but its use
introduces a systematic error in the DIC-estimated displace-
ments: even when no noise is present, the fractional part
of the displacements shows a sinusoidal-like error whose

1Truncation or windowing of the theoretical function allows genera-
tion of a more workable interpolant. However, both operations imply
an energy leakage in the frequency plane and the theoretical properties
of the sinc are completely lost.

amplitude depends on the type of polynomial. The error is
obviously null for integer displacements (no interpolation
is required at these locations) and, by symmetry, at dx =
0.5 pixel.

The solution algorithm sketched above naturally fits gray
color images. However, monochrome cameras are mainly
used for scientific applications. On the contrary, owing to
the wide diffusion of digital cameras, a large selection of
consumer digital cameras is available. Thanks to the huge
market (when compared to the scientific area), the num-
ber of pixels and the dynamic range of these cameras are
significantly better than same-price scientific instruments;
moreover, a larger set of optics is usually available, thereby
allowing much more flexibility. Thus, it makes sense to try
to use them. But, apart from a few notable exceptions—
e.g. the Leica M Monochrom—all consumer cameras are
equipped with a color sensor.

The first color picture was taken in 1861 by Thomas Sut-
ton, following an idea suggested by Maxwell in 1855 [11]:
using a rotating disk painted with different ratios of red,
green and blue, Maxwell had shown that all colors can be
obtained as a combination of three components; thus, Sutton
performed three monochrome acquisitions, each using a dif-
ferent color filter; the color image was obtained by superim-
posing their projections. The technique was quite rough and
Maxwell commented on the inadequacy of the result, never-
theless, apart from the technical improvements, we are still
using the same approach. Current color cameras work either
in full-color or interpolating mode. The former (known as
true-color or three-CCD cameras) acquire all color compo-
nents for each pixel (Fig. 1), whereas the latter (known as
Color Filter Array or Bayer cameras) acquire only one of
them (Fig. 2). True color cameras divide the spectrum into
three components using either a specially designed prism
[12, 13] and three CCDs or a specialized sensor where each
pixel consists of three layers, each sensitive to a different
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Fig. 2 A CFA (Color Filter Array) color camera acquires a single
color component for each pixel. To this end, a color filter is installed
in front of each pixel of the CCD. The missing color components are
extrapolated using data from neighbor pixels

wavelength range.2 Both approaches are difficult to imple-
ment, because of alignment issues in the former or the
non-standard CCD architecture in the latter, thus only a few
camera models adopt these techniques.

Most color cameras adopt the CFA (Color Filter Array)
approach. They work under the assumption that the color
fields are continuous and mostly smooth; thus, instead of
acquiring all three color components at each location, it suf-
fices to sample them on a regular grid. At each pixel location
a single color component is acquired, whereas the missing
ones are estimated by interpolating data from neighbor pix-
els. The implementation of this idea is relatively simple: it
requires only the installation of a matrix of color filters in
front of the CCD. Filters are organized in a regular pattern,
known as the Bayer pattern [14], which ensures that reliable
color data are available at each location (Fig. 3).

The advantages are significant: a single sensor suffices
to acquire a color image, the electronics is simpler and the
required transfer rate of the data bus is lower. Finally, there
is no space limitation for the lens.3 On the contrary, the
acquired data cannot be used “as is” and a post-processing
step (known as the demosaicing process) is required to
reconstruct the three continuous color planes starting from
the raw data.

Each pixel of a color image stores a set of color compo-
nents (usually the three additive primary colors [15], Red,

2In the following, we will call both types of cameras three-CCD cam-
eras because both configurations require three sensors (a layer can be
viewed as a separate CCD).
3The color-separating prism has to be installed between the lens and
the CCDs. This constitutes a serious limit for both the optics and the
sensor if standard lenses are to be used.
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Fig. 3 ABayer pattern consists of four pixels organized as a 2×2 cell.
Each cell contains two green, one red and one blue pixel. The figure
shows the four possible pixel orderings, named by the initial of the
color of the filter (top-bottom, left-right). Cells repeat themselves both
vertically and horizontally, so that for each color there is at most only
one missing pixel in the vertical, horizontal and diagonal directions

Green and Blue (RGB), but sometimes Cyan, Magenta, Yel-
low and Black (CMYK) or luminance and two chrominance
components (YCbCr )). Focusing on the RGB encoding,
a color image can be viewed as a stack of monochrome
images (color planes), each related to a specific wavelength
range. To process them using DIC, only a few options are
possible:

• use only a single plane, discarding all the remaining
data;

• compute the luminance from the color components and
use it as a “standard” monochrome image;

• extend the error functional to process all the data.

The first option is very simple to implement because it
requires only a simple preprocessing of the images, but does
not use the available data efficiently: indeed, if a three-CCD
camera is used for acquisition, we are discarding 2

3 of its
information content; on the contrary, if the image is acquired
using a CFA camera, the data of all color planes are incom-
plete and an interpolation has to be performed (more on this
in the following sections).

The second option is only marginally better: it reduces
noise to some extent on three-CCD cameras, but still does
not use data efficiently; on the contrary, if a CFA camera is
used for the acquisition, two of the three color components
involved in the computation of the luminance are not sta-
tistically independent but result from an interpolation, thus
giving unsatisfactory results.

If we bear in mind that a color image consists of a stack of
three images, the latter option is relatively straightforward to
implement; it suffices to compute the error functional plane
by plane, incrementally summing the contribution of each



318 Exp Mech (2018) 58:315–333

of them to the total error [16, 17]. Using this approach, the
CPSSDab functional becomes

CPSSDab =
∑(

af R
i + b − gR

i

)2
∑(

f R
i

)2 +
∑ (

af G
i + b − gG

i

)2
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+
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i
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)2

=
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k

∑
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(
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i

)2
∑

i

(
f k

i

)2 (4)

where k extends over all the color planes and we inserted
an (optional) normalizing factor. Note that although the
modifications to the code are marginal, an efficient use of
equation (4) may require using colored speckles: indeed, if
a black and white object is imaged using a color camera, the
red, green and blue planes store the same information. Be-
cause the data are correlated, no improvement has to be
expected from the use of a larger number of samples;
employment of equation (4) simply results in a waste of
processing time.

This work is organized as follows: because we need to
know the expected result to estimate errors, the next section
is devoted to the description of a speckle image genera-
tor and focuses on the emulation of the behavior of CFA
and three-CCD cameras. The following section will concen-
trate on the analysis of the performance of DIC when color
images are used, starting from the true RGB picture to move
to CFA images. Much of this section will be devoted to the
analysis of various demosaicing options and will show that
it is possible to obtain results significantly worse than, or
similar to, a monochrome camera, depending on the algo-
rithm. Later, we will show some experimental results of a
commercial CFA camera (a Nikon D700). The last section
summarizes the work and sketches some conclusions.

Generating Synthetic Color Images

To compare the accuracy of the various approaches to color-
DIC, the expected results have to be known. Thus, we opted for
starting our analysis by using a numerical image generator.

Synthesizing speckle images is not a simple task because
of the aforementioned effect of interpolation on DIC-
estimated displacements. This subject has been discussed
extensively in the technical literature and three different
approaches have been proposed: interpolation [6, 18, 19],
super-sampling [8] and known texture functions [20–23].

Our implementation follows the third approach [9]: the
speckle field is described as the sum of several bell-shaped
functions sprayed over the surface of the image:

b(r) =
{

s
[
1 − (r/ρ)2

]3
r ≤ ρ

0 elsewhere

where r is the radius from the center of the bell, s is the scale
factor and ρ the radius at which the function nullifies. All
of them are randomly generated, but known. Integration is
performed numerically by super-sampling each pixel (i.e.
instead of estimating the inverse mapping, we subdivide the
surface of each pixel into sub-areas and cumulate their con-
tributions to the intensity of the mapped pixels in the target
image).

The tool sketched above generates monochromatic
images, but it can easily be adapted to RGB image genera-
tion: it suffices to generate three different speckle fields (to
have uncorrelated data between the various channels) tak-
ing care to deform all of them using the same displacement
function. The three images thus obtained can easily be com-
bined (e.g. using the public domain software imagej) and
become the color channels of a RGB image (see Fig. 4).

It is worth noting that the spectral sensitivity of a
CCD across the visible region is not uniform: it is usually

Fig. 4 Color speckle. Left:
synthetic image; right: real
image. Note that the speckle size
has been significantly enlarged
in the numerically generated
image to facilitate visualization.
Due to the overlapping of the
speckle fields, mixed colors
appear. In the inset of the real
image is a magnified view of the
speckle field
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maximum in the green region, somewhat lower in the blue
range and significantly smaller in the red area. As an exam-
ple, the scale factors suggested by dcraw4 for a Nikon D700
camera are 2.06, 0.93 and 1.11 (for the red, green and blue
components respectively). This means that to obtain a day-
light white the red and blue signals have to be multiplied
by 2.21 and 1.19 respectively, with respect to the green one.
Keeping in mind that a CCD uses a single Digital-Analogue
Converter for all pixels, this implies that the illumination-
independent component of noise in the red channel is more
than twice as large as in the green one. Moreover, the above
coefficients account only for the camera; actually the spec-
tral content of the image impinging the sensor also depends
on the spectrum of the light source. Thus, the real values
of the scaling factors are always uncertain. During image
generation we assumed a unitary scale factor for the green
component and 0.55 and 0.8 respectively for the red to green
and the blue to green ratios.

Using Color Images with DIC

Digital Image Correlation can be combined with color
images in several ways [24–26]. Various processing
approaches are possible depending on the combination of
two options:

• the sample can be painted either in the “standard” way,
i.e. using black speckles on a white background or
using three independent speckle fields (red/green/blue,
as shown in Fig. 4);

• the camera can be either a three-CCD (or similar) or a
CFA one;

Moreover, given an image acquired with a CFA-camera,
there are several different ways to recover continuous fields.

In any case, to assess the performance of the various
solutions we need a test case. Because all the data sets avail-
able in the DIC Challenge website [27] are monochrome,
we opted to use our in-house-developed synthetic image
generator and a simple parabolic displacement function:
u(x, y) = αx2 where α moves from 0 to 100 · 10−6

in five steps (from first to last image), the image size is
1320 × 1170 pixel (rows×columns) and the origin of the
displacement field is located at (30, 30).

The proposed displacement field ensures linearly
increasing strains (εxx = 2αx), thus, max(εxx) = 0.2m

m
for x = 1000), so the identification should be progressively
more difficult with growing x.

4dcraw is an open-source computer program able to read numerous
raw image formats. The stated objective of the author of the code is
to be able to decode any raw image from any digital camera on any
computer running any operating system.

Monochrome Cameras

Monochrome DIC is the obvious reference in assessing
the performance of the various algorithms. To this end,
we used the green component of the RGB speckle images
as monochrome data. We analyzed an area of 1240 ×
1000 pixels (bottom left corner: (30,30), top right corner:
(1030,1270), i.e. from x = 0 to x = 1000 in the displacement
space) using a subset-based code. The active area was sam-
pled on a regular grid using a step of 2 and 31 pixels in the
x and y directions respectively. The relatively large step in
the y direction ensures that measurements within the same
column are uncorrelated, thus allowing a proper statistical
treatment, whereas the large oversampling in the x direction
is for display purposes only. Figure 5 top shows the errors
�u between DIC-estimated and theoretical displacements as
a function of the x coordinate of the center of the subset. The
plotted values correspond to the averaged errors along each
column, whereas each curve is related to a different “load-
ing” step (i.e. to an increased value of the α parameter). The
location of the first twenty points where the theoretical dis-
placement becomes an integer is shown for each curve (i.e.
we solved for x the equation αx2 = i, with i = 1, . . . , 20
and we put a mark on the related curve). Looking at the
figure, it is easy to recognize the effect of shape-function-
under-matching bias [28] (the offset from zero). In the
same way, the interpolation-induced bias is easily identifi-
able. Note that owing to the parabolic behavior, the distance
between successive points becomes progressively smaller.
The amplitude of the oscillation thus decreases and eventu-
ally disappears, depending on the number of periods inside
a subset (see also Appendix).

Figure 5 bottom shows the standard deviation of the
horizontal displacements of each column of the grid of sub-
sets related to the first “loading” step (α = 20 · 10−6).
The sequence of bell-like oscillations is easily correlated
to the polynomial bias (standard deviation shows a mini-
mum whenever the displacement assumes an integer value,
see top tics). Because the displacement error is mainly
controlled by the order of the shape functions used for
the local description of the displacement field as well as
by the polynomial bias, we expect no significant variation
in the different tests; on the contrary, the standard devi-
ation changes significantly: Fig. 5 bottom constitutes the
reference value for all the successive analyzes.

Three-CCD Cameras

Three-CCD cameras acquire three times the number of
independent data with respect to the same-size (rows by
columns) monochrome cameras. It is thus obvious to expect
significantly better results [29], provided that a consistent
experimental procedure is adopted.
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Fig. 5 DIC error with respect to
imposed displacement.
Monochrome images. Top:
displacement errors; the three
graphs are related to
α = 20 · 10−6, 60 · 10−6 and
100 · 10−6. Each curve shows,
apart from displacement error,
the theoretical error (see
Appendix) and, as solid dots, the
location of the first 20 integer
displacement points (i.e. the x

where displacement becomes 1,
2, 3, . . . , 20). Bottom: standard
deviation of displacements
(α = 20 · 10−6). Note that the
horizontal range has been
truncated at x = 600
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The use of a monochromatic speckle field eliminates all
the advantages of using a color camera because the camera
acquires essentially the same data on each channel.

Figure 6 shows the standard deviation of displacements
resulting from the DIC analysis of a black and white speckle
field imaged with a three-CCD camera (See Algorithm 1
for a detailed description of the generation procedure).
Different processing approaches were considered, but no
significant variation of results was observed, apart from

small differences related to the noise content of the chan-
nels. Thus, using only the red component of the image (the
noisiest) gives the largest standard deviation; the blue chan-
nel is the second channel in terms of noise and consequently
it shows the second mean value of standard deviation. The
green channel gives almost the same performance as a
monochrome camera (gain is unitary). Finally, the use of a
color DIC code to process all the components of the image
provides no advantage (results are actually a bit worse than
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Fig. 6 Standard deviation of
displacements. Three-CCD
camera, black and white speckle
field. Values reported between
< and > are the mean value of
standard deviation of
displacements; in particular,
<mono> refers to a
monochrome camera; <R> uses
only the red channel of a color
camera; <G> ditto, green
channel; <B> ditto, blue
channel; <RGB> refers to full
RGB processing
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a monochrome camera because of the noisier red and blue
channels), and requires almost three times the processing
power of a monochrome analysis.

Algorithm 1 Generation of color components c of a
monochromatic speckle field (three-CCD camera)

1 generate a monochromatic reference speckle field r;
2 foreach color channel i do
3 generate a noise field n ;
4 scale the noise field by the sensitivity factor of

channel , i.e. n ;
5 c r ;
6 clamp(c );
7 end

On the contrary, Fig. 7 shows the results of the analysis
using a RGB speckle field. As in the previous case, dis-
placement errors are almost the same as in the monochrome
case (Fig. 7 top) but the mean value of standard deviation of
displacements moves from 197 · 10−5 to 123 · 10−5 (Fig. 7
bottom) , i.e. almost exactly the expected (theoretical)
improvement (197/

√
3 = 113).

CFA Cameras

The output of low cost CFA cameras is usually a jpeg
image, but it cannot be used for DIC analysis because of
the low-pass filtering used by jpeg encoding and because

of the (usually unknown) demosaicing algorithm. Indeed,
several demosaicing algorithms have been proposed [30,
31], but none of them is suitable for DIC because their
objective is the improvement of the visual apparency of the
reconstructed image, mainly focusing on the treatment of
aliasing effects near the border of objects and on the accu-
racy of color reconstruction. Although they differ under
many aspects, a common framework is easily recognizable:
all of them perform some form of interpolation, working
either in the image or frequency space, usually followed
by post-processing steps (usually nonlinear). Moreover, it
is common practice to process the chrome and luminance
components separately (not necessarily using the same algo-
rithm). This significantly affects the results of DIC analysis,
which appear substantially distorted.

For this reason, the standard processing pipeline of CFA
images cannot be used; however, mid and high-level cam-
era models give direct access to the acquired data, normally
using a proprietary file format,5 but there are several com-
mercial and public domain programs able to extract the
relevant information for successive post processing.

It is to be noted that a CFA camera acquires one input for
each pixel, thus, from a statistical viewpoint, it is impossible

5Almost all of them use a TIFF framework with proprietary fields.
File extension changes, depending on the camera maker, e.g. .CRW
(Canon), .3FR (Hasselblad), .NEF (Nikon), .ORF (Olympus), .X3F
(Sigma).
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Fig. 7 Three-CCD cameras,
color speckle (α = 20 · 10−6).
Top: displacement errors with
respect to imposed
displacement. Bottom: Standard
deviation of displacements
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to obtain results better than those of a monochrome camera.
In the following, various processing options will be ana-
lyzed and compared, with the explicit objective of approach-
ing the performance of monochrome DIC as closely as
possible. Thus, only monochrome speckle fields will be
taken into account.

Bare CFA image

At first glance, a raw CFA image of a monochrome speckle
field looks quite “normal”. However, on magnifying the
image, the Bayer pattern clearly becomes visible (Fig. 8).
One could object that this is not a problem, because adding
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Fig. 8 A black and white speckle field acquired using a CFA camera.
In the inset, a magnification of the highlighted rectangle (the top left
corner). Note the chessboard pattern due to the Color Filter Array

a secondary speckle field should not significantly modify
the system; but this is not the case: the Color Filter Array
does not move with the imaged speckle field, thus, if a pixel,
initially under a red filter, moves under a green one, its
(apparent) intensity will be approximatively doubled. This
means that the evaluation of the error function (e.g. equa-
tion (3)) for a rigid body translation of an odd, integer,
number of pixels will not be 0, but a very large number,
because no pixel matches the expected value. To have a null
error, displacement has to be even.

To support this statement, Fig. 9 top shows the displace-
ment errors observed in the DIC output when processing a
set of Raw images. Apart from the amplitude of the bias
(scaled by a factor of 100 with respect to the monochrome
case) the period of oscillation becomes two pixels, as shown
by the marks flagging the location corresponding to integer
displacements.6

Figure 9 bottom, related to the standard deviation of
displacements, confirms the two-pixel period. Note that
although a significant increment of the peak standard devi-
ation is observed, the scale factor is smaller than that
observed for displacements.

CFA: demosaicing (interpolation)

Recently, some authors proposed to interpolate the color
channels to reconstruct continuous color fields [32]. Since
CFA cameras acquire a single signal per pixel, the inter-
polated values are then used to estimate luminance as the

6It is to be noted that two bias mechanisms contribute to the total error:
the above-described CFA-induced bias, with a 2 pixels period, and the
“standard” polynomial bias, as is apparent from Fig. 9 top e.g. the
200–400 pixel range.

weighted mean of the color channels (more on this later).
The standard approach uses a bilinear interpolation, but,
looking at Fig. 10-left it is apparent that a simpler approach
is possible. Taking into account the red channel, it is obvious
that the red component at pixel E can be computed as the
averaged value of pixels A and I . The same can be done in
the horizontal direction (i.e. rB = (rA + rC)/2, where rk is
the red component at point k); finally, the somewhat more
complex point F requires computation of the mean of the
four corner pixels (rF = (rA + rC + rI + rK)/4).

The same procedure can be used for the blue channel,
whereas interpolation of the green component requires only
computation of the pixel at the center of the cross B–J E–G
(i.e. gF = (gB + gE + gG + gJ )/4).

The “minimalistic” approach sketched above cannot be
generalized. To use higher order polynomials, a somewhat
different procedure is required (Fig. 10-right): taking into
account that interpolation algorithms use the value at the
center of the pixel, the true dimension of the active area does
not matter and for each channel we can assume that pixels
are twice as big (still considering the red channel, we are
assuming that pixels are not the solid red squares but the
dashed ones); thus, point a is located at (0.5,0.5), point b

at (0.5,1) and point c at (0,0.5). Moving the reference sys-
tem to the successive quadruple, three more points can be
computed and so on.

From a practical viewpoint, the proposed algorithm sim-
ply requires sampling each channel every two pixels both
in the vertical and horizontal directions (thus generating
four data matrices half rows by half columns in size); the
interpolation can then be performed using the same library
functions used by the DIC code for each data plane.

Some points require attention:

• interpolation is performed on a wider spatial support
(twice as large): we thus expect the polynomial bias to
have a period of two pixels instead of one;

• processing the green channel is somewhat different
from that of the red or blue: comparing the sketch
related to the red channel in Fig. 10-right with the
general pattern shown on its left, it is apparent that com-
puting interpolation at point a is not required because
there is already a green pixel at that location (if we
consider the quadrupleB,D, J andL, point a coincides
with pixel G);

• there are two sets of green pixels, the latter shifted
one pixel right and one pixel down with respect to
the former. As an example, we can consider either the
square BDJL (and successive) or the square EGMO

(and successive). Members of one set never appear in
computations related to the other so that, the number of
data points involved in the computation of each chan-
nel is alway the same, i.e. the unbiased computation of
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Fig. 9 Displacement error with
respect to imposed displacement
(top) and standard deviation of
displacements (bottom). Raw
CFA image with no
post-processing (α = 20 · 10−6).
The solid dots flag the location
of integer displacement. Note
the period of the bias
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luminance requires the use of the same weight for all
four components;

• because of the two green sets, either interpolation at b or
c is unnecessary: assuming that both sets use the same
schema, the missing point is computed by the other
one.

Figure 11 top shows the displacement errors related
to various interpolating / approximating functions. Results
of monochromatic analysis are also shown as reference.
Observing the image, we have confirmation of the points
discussed above, but some unexpected facts also appear.The
period of the bias is doubled as expected, but the amplitude

Fig. 11 Interpolated CFA
image. Top: displacement errors,
bottom: standard deviation of
displacements. Key: b4: bilinear
interpolation, L4: cubic
Lagrange interpolation, cAB4:
cubic b-spline approximant;
qAB6: quintic b-spline
approximant
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Fig. 12 Standard deviation of
displacements. Binned CFA
image. The various curves
correspond to different
processing algorithms. All
results refer to macro-pixels, i.e.
2 × 2 cells. The horizontal line
is the mean value of standard
deviation for monochromatic
images
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of the errors follow a path that is the reverse of the expected.
It is well known that the best interpolating functions for
DIC are the bi-cubic and bi-quintic b-spline approximants
(respectively cAB4 and qAB6). Thus, we used them to
interpolate the CFA images, together with the bi-cubic
Lagrange polynomial, the bilinear interpolation and the
minimalistic approach. We expected very good performance
from the former and progressively worse performance from
the others (note that the DIC code alway uses the cAB4

interpolant during computation). Actually, the results are
completely reversed: the use of the minimalistic interpola-
tion for CFA demosaicing induces smaller amplitude errors
in DIC computation than does the Lagrange interpolation,
which by itself is better than cubic and quintic b-spline
approximants.

The standard deviation of displacements (Fig. 11 bottom)
confirms these findings: the period of the bell-like curves is
two pixels and peak values are significantly larger than the
monochromatic-related one. Even though differences are
not so large, the minimalistic approach still gives the smaller
standard deviation while the worst function is the qAB6.

CFA: binning

An alternative approach to demosaicing is image binning.7

The idea is quite simple: whatever the color ordering, a
Bayer cell (a 2 × 2 group of pixels) contains two green,

7F.Hild. Personal communication.

one red and one blue pixel. Thus, the mean of a cell does
not depend on the relative sensitivity of the CCD to color
components.

From this viewpoint, a Bayer cell is a (large) color sensor,
thus, four post-processing paths are possible: the speckle
can be either monochromatic or colored; moreover, it is
possible either to compute the mean of the “color” com-
ponents (the luminance) or to process the various color
planes using color-DIC (i.e. the color error functional (equa-
tion (4))). Note that differently from three-CCD cameras,
where all acquired data refer to the same point, in this case
the sampling points are different so the color components
are not the same even when a black and white speckle field
is used.8

Figure 12 shows results (standard deviation of displace-
ments) of four DIC analyzes performed using the described
approaches. To have a fair comparison, i.e. to involve in
the computation the same number of data points as in the
monochromatic case, a smaller subset size was used (half
width by half height). Moreover, considering the binning
operation, we doubled the mean and standard deviation
of speckle size during image generation. Using the aver-
age of the color components is much faster and gives a

8The resulting images have four color components: red, green, blue
and green. Depending on the imaging software, the fourth color com-
ponent may be completely ignored, used as the alpha channel (the
transparency), or the software may refuse to visualize the image. In
any case, the error functional (equation (4)) is not limited in any way
to three colors.
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significantly smaller standard deviation with respect to the
use of color-DIC. Note that using a monochromatic or a
colored speckle field does not affect results when using the
extended formulation (4).

Finally, it is to be noted that the analysis of results
has to be performed with care. Reported values refer to
the macro-pixels (2 × 2 pixel clusters) so that, all the

displacement-related values were doubled when performing
the comparison.

The egg of Columbus: intensity equalization

In the previous sections we showed that a CFA image can-
not be used as is; however, neither interpolation nor image

Fig. 13 CFA: intensity
equalization. Top: displacement
errors; bottom: standard
deviation of displacements (note
the reduced range of the x axis).
Results are almost exactly the
same as with a monochrome
camera
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Fig. 14 Experimental setup.
The printed speckle image was
glued on an aluminum alloy
plate. The latter was installed on
the horizontal translating axis of
the CNC using a high-precision
vice. The width of the printed
area was 384 mm,
corresponding to 680 pixels
when imaged, thus, phisical size
of pixel was 565 μm. In the
inset: a magnified view of the
raw image (top left corner of the
specimen). Note the chessboard
pattern due to the CFA

binning appears to solve the problem. Nevertheless, a sim-
ple solution exists: let us assume that a black and white
speckle field exists on the surface of interest. When the field
is imaged using a CFA camera, the averaged value of each
channel should be the same, not considering the spectral
sensitivity, because the random field is uniformly sampled.
Actually, the computed values will differ because of the
(generally unknown) sensitivity factors (which depend on
camera hardware (potentially known) and on illumination
(unknown)).

However, as we know they must be the same, we have
only to

1. compute the average r̄ , ḡ and b̄ of the CFA image
(obviously sampling only pixels acquiring the color of
interest);

2. scale the red and blue channels respectively by ḡ/r̄ and
ḡ/b̄ (we used the green component as reference because
there are twice as many green pixels as there are red or
blue ones in the image).

With this simple operation, the chessboard pattern of
CFA images (Fig. 8) completely disappears. Note that
we performed no interpolation, thus we did not correlate
neighbor pixels nor did we filter out signal components.
Figure 13 confirms our statement: both the displacement
errors and the standard deviation of displacement are almost
the same as in the monochromatic case. Obviously, an exact
matching is not possible because the noise content of the red
and blue pixels is higher than the corresponding ones in a
monochromatic image.

Experimental Validation

To validate the above findings, we performed a simple
experimental campaign. We printed one of the speckle
images on an A3 paper sheet and glued it on a 15 mm
thick aluminum alloy plate. The plate was installed on
the horizontal translating stage of a five-axis, numerically
controlled milling machine.9 Aiming to visualize DIC
errors, we imaged the specimen using a 50 mm fixed lens:10

the camera, a Nikon D700, was installed about 3 m from
the plate. Owing to the experimental configuration, a large
fraction of the active area11 of the sensor was lost; however,
the area imaged in one pixel resulted 564 μm × 564 μm in
size, thus making it easy to perform sub-pixel shifts. Indeed,
the horizontal axis of the CNC is equipped with a Heiden-
hain linear encoder; whose stated resolution is 1 μm, thus
ensuring small positioning errors during image acquisition.

We acquired 62 images, each (apart from the first and
second) translated 0.057 mm from the previous one. The
camera was set in raw mode and the images were saved
as lossless-compressed 14 bit .NEF files. To avoid camera
motion due to button pushing and to reduce the influ-
ence of vibrations following image acquisition, we used
the time-lapse feature of the camera, with a 5 s interval
between acquisitions. The full set of images was succes-
sively converted to 16 bit TIFF format using dcraw in full

9Deckel Maho DMU 60 P hi-dyn.
10Nikkor AF-S 50 mm f/1.8G.
114256 × 2832 pixel.
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Fig. 15 Experimental images.
Top: displacement errors with
respect to nominal values using
various demosaicing
approaches. Bottom: Standard
deviation of u displacements
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document mode—no white balance, no gamma compensa-
tion, no interpolation—and cropped to preserve the area of
interest only.12 The resulting images were relatively small

12Cropping raw images requires some care because the width and
height of the cropped area have to be even; in the same way, the x

and y coordinates of the origin of the active rectangle should be even,
otherwise the ordering of the color filters changes.

(680 × 506 pixel), looked quite dark (due to the omis-
sion of the gamma correction step) and they obviously
showed the characteristic chessboard pattern (Fig. 14: D700
uses RG-GB ordering) thus, they cannot be used directly,
unless large errors are considered acceptable (experimental
behavior is exactly the same as in the simulation shown in
“Bare CFA image”, including the characteristic CFA bias).
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Table 1 Summary of
processing options and results Camera Speckle Preprocessing DIC Result Notes

3CCD BW luminance mono ok underused

BW – color ok slow (3 × t)

RGB luminance mono ok underused

RGB – color best (3 × t), best accuracy

CFA RGB interp. + lum. mono bad

interpolation color bad slow (3 × t)

binning + lum. mono bad use BW speckle

binning color bad (3 × t), use BW speckle

CFA BW – mono worse raw: 10× err.

interp. + lum. mono ok mediocre

min. + lum. mono ok robust, fast

binning + lum. mono ok best binning

binning color bad slow, 2nd binning

equalized mono ok best CFA

Reference configuration for both execution time and accuracy is the monochrome analysis

Starting from the above-described set of raw images,
we generated eight different sets of DIC-friendly images,
related respectively to minimalistic interpolation, bilin-
ear interpolation, cubic Lagrange interpolation, cubic B-
Spline interpolation, cubic B-Spline approximation, quin-
tic B-Spline approximation, image binning and image
equalization.

Figure 15 shows the u displacement errors (top) and
the standard deviation of u displacements (bottom) result-
ing from the comparison of DIC-estimated displacements
with respect to the expected values for all the image sets.
The results substantially confirm what was observed in
the simulations: cubic or higher-order interpolation kernels
are detrimental both in terms of displacement errors and
standard deviation of displacements.

In the interpolation sub-class, the best algorithm is the
minimalistic one, probably because of the smaller spa-
tial span; image binning is competitive in terms of mean
displacement error, but shows a substantially larger stan-
dard deviation of displacements with respect to the best
algorithms. Image equalization gives the best results: its
displacement errors are not significantly better than the
minimalistic or binning methods (Fig. 15 top) but its stan-
dard deviation is by far the lower one (Fig. 15 bottom). To
be noted is that these results were obtained even though the
intensity equalization was not perfect, as clearly flagged by
the two-pixel period of the bias.

One more point needs to be observed: using numerically
generated images, bilinear interpolation (code b4) appears
to be better than cubic and quintic kernels (Fig. 11). This is
not confirmed by the experimental results (Fig. 15), where
the b4 kernel gives the worst performace.

Discussion and Conclusions

In this work, the use of color cameras for DIC is discussed in
this work. The combination of three-CCD or CFA cameras,
the preprocessing step and the selection of DIC engine allow
several processing options, summarized in Table 1. The
same table also provides some hints on usage and expected
performance based on both numerical and experimental
results.

Starting from CFA cameras, it is shown that their use
requires some care: indeed, employing either the raw cam-
era data or “standard” image processing (i.e. the software
supplied with the camera) gives unreliable results. In partic-
ular, the former solution induces a peculiar oscillating bias,
with a two-pixel period and very large amplitude.

Various approaches were tested to solve this problem. In
particular, a general scheme allowing for use of a standard
interpolating function was developed. Different interpolat-
ing/approximating kernels were tested; results were some-
what unexpected since polynomial functions, well known
for their reliability and accuracy in the DIC field (e.g. bicu-
bic and biquintic B-Spline approximant), do not provide
significant advantages. As a general pattern, lower order
functions appear to perform better than higher order ones;
between the same degree functions, interpolant polynomi-
als overcome approximant ones. The controlling parameter
appears to be the locality of the function: indeed, the min-
imalistic (linear) interpolant discussed in the article was
the top performing algorithm and involved as few pixels as
possible in the computations, whereas the standard bilin-
ear function (b4) gave poorer results. The pattern sketched
above results from the analysis of synthetic images, but is
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substantially confirmed by the experimental test we per-
formed. The only notable exception was the aforementioned
b4 polynomial, whose performance worsened significantly
(worse than the cubic B-Spline interpolant, cB4).

An alternative to interpolation is image binning. Because
the color filters are organized as a repeating 2× 2 structure,
each Bayer cell contains the same sensors and possesses
identical sensitivity both to the luminance and chrominance
components. Thus, a 2 × 2 block of pixels can be viewed
as a four-color13 macro-sensor (we call them macro-pixels),
allowing for either color or monochrome processing. Our
tests show that computing the mean of each quadruple (i.e.
using the result of standard image binning of the raw data)
is faster and more accurate than processing the color com-
ponents separately. DIC errors and standard deviations of
displacements are comparable to what can be obtained using
a monochrome camera, but displacements are (obviously)
halved. Thus, when doubled, both displacement errors and
standard deviation worsen significantly; in particular, the
latter becomes similar to interpolation.

A significant step forward can be obtained using image
equalization: under the assumption that we are sampling a
random field uniformly, the mean intensity of the various
color components should be the same. This is obviously
not the case because of the different sensitivity of the CCD
to the spectral components. However, this suggests a sim-
ple processing algorithm: by scaling the red and blue pixels
respectively by the green-to-red and green-to-blue ratios
the image becomes “almost” monochromatic (apart from
a somewhat higher noise component in the red and blue
pixels). Results of simulations confirm the above hypothe-
sis and both displacement error and standard deviation of
displacements behave as monochromatic images (i.e., they
show a one-pixel period). Experimental findings are not so
successful, because the period of the bias is two pixels, but
both displacement errors and standard deviation are by far
the best of the tested algorithms.

Moving to three-CCD cameras (or similar), in the previ-
ous sections it was shown that their use is not problematic
and can even be advantageous: indeed, in the worst case
(black and white speckle combined with color-DIC pro-
cessing) results are the same as with monochrome cameras,
while they can be significantly better if a fully color-enabled
processing pipeline is used (i.e. RGB speckle combined
with RGB processing). However, they are not “consumer”
cameras and most of their advantages can be obtained using
a larger-sensor (i.e. with three times the number of pixels or
more) lower-cost CFA camera.

13The second green pixel is sometimes replaced by a gray pixel (i.e.
there is no color filter in front of it) and is used as a “luminance” meter.

A final warning on intensity equalization: the proposed
procedure may produce incorrect results in the case of over-
exposed acquisition: due to their higher sensitivity, the green
pixels saturate long before the red and blue ones. Thus ḡ

will be limited by saturation whereas r̄ and b̄ will not. The
resulting correction will obviously be erroneous.

Acknowledgements The author wishes to thank Mr. Gianluca
Marongiu and Mr. Daniele Lai for their support during data
acquisition.

Appendix: Theoretical Model of DIC
Displacement Error

Linear shape functions are unable to describe the parabolic
displacement function used in this work. Thus we expect
an undermatching error. Considering that the displacement
field is monodimensional, it is relatively simple to compute
the best linear interpolant: the least squares error can be
written as

ε =
∫ ξ+s

ξ−s

(u − N)2dx =
∫ ξ+s

ξ−s

[αx2 − (a + bx)]2dx (5)

where u = αx2 is the assumed displacement function, N =
a+bx is the interpolating function used by DIC for the local
approximation, ξ is the center of the subset and s is half its
size. Computing the integral, equation (5) becomes,

ε = a2 + b2
(

s2

3
+ ξ2

)
− 2bαξ(s2 + ξ2)

+1

5
α2(s4 + 10s2ξ2 + 5ξ4)

−2

3
a

[
α

(
s2 + 3ξ2

)
− 3bξ

]
(6)

Minimizing equation (6) with respect to the parameters a

and b, we obtain two equations:

∂ε

∂a
= 0 → 3 [a + ξ (b − αξ)] = s2α

∂ε

∂b
= 0 → b(s2 + 3ξ2) = 3ξ

[
α(s2 + ξ2) − a

]
(7)

Solving equation (7) for a and b, we obtain the parame-
ters of the DIC shape function:

a = 1

3
(s2α − 3αξ2) b = 2αξ

i.e. b is ∂u/∂x at ξ and a is the inverse of the displacement
plus a constant offset (αs2/3). Thus, the DIC result will be
biased; to give an example, when α = 20 · 10−6 (60 · 10−6,
100 · 10−6) and s = 13 pixel, the expected offset at ξ = 0 is
a = 0.0011 pixel (0.0034, 0.0056) , i.e. exactly the values
observed in Fig. 5.

Apart from the undermatching error, DIC is also affected
by polynomial bias, i.e. a sinusoidal-like term, which is null
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for integer displacement and maximum for fractional dis-
placements equal to 1

4 and 3
4 . Assuming the error can be

described by a sinusoidal signal, bp = γ sin [2πu(x)] with
γ the amplitude of the oscillation,14 its contribution η to
DIC results can be estimated by integrating bp over the
subset length

η= 1

2s

∫ ξ+s

ξ−s

bpdx = γ
S

[
2
√

α(ξ + s)
]−S

[
2
√

α(ξ − s)
]

4s
√

α

(8)

where S(x) is the Fresnel integral defined as

S(x) =
∫ x

0
sin

(
πt2

2

)
dt

Summarizing, the expected result of DIC code at ξ is

uth = a + bξ + η = 1

3
(s2α − 3αξ2) + 2αξ2

+γ
S

[
2
√

α(ξ + s)
] − S

[
2
√

α(ξ − s)
]

4s
√

α

thus, the expected error is

eth = αs2

3
+ η = αs2

3

+γ
S

[
2
√

α(ξ + s)
] − S

[
2
√

α(ξ − s)
]

4s
√

α

which exactly describes the observed DIC behavior, pro-
viding the subset size is significantly smaller than the
polynomial bias period.
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