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Abstract As a carrier of deformation information, the speckle
pattern, or more exactly the random intensity distributions,
which could be naturally occurred or artificially fabricated
onto test samples’ surface, plays an indispensable role in dig-
ital image correlation (DIC). It is now well recognized that the
accuracy and precision in DIC measurements not only rely on
correlation algorithms, but also depend highly on the quality
of the speckle pattern. Considering the huge diversity in test
materials, spatial scales and experimental conditions, speckle
pattern fabrication could be a challenging issue facing DIC
practitioners. To obtain good speckle patterns suitable for
DIC measurements, some key issues of fabrication methods
and quality assessment of speckle patterns must be well ad-
dressed. To this end, this review systematically presents the
speckle pattern classification and fabrication techniques for
various samples and scales, as well as some typical quality
assessment metrics.

Keywords Digital image correlation . Speckle pattern .

Micro/Nano-scale . Deformationmeasurement

Introduction

Digital image correlation (DIC), first developed by a group of
researchers from the University of South Carolina in the 1980s
[1–5], has been continuously refined and widely used in dif-

ferent fields in the past three decades [6, 7]. Due to its incom-
parable advantages such as simple experimental setup, easy
implementation, strong robustness against ambient vibration
and light variation, and wide range of applicability with ad-
justable temporal and spatial resolutions, the DIC technique
has been widely accepted as a powerful and flexible tool for
shape, motion and deformation measurement for various ma-
terials and structures, at diverse temporal and spatial scales,
and in different experimental environments.

To illustrate the popularity of DIC techniques, Fig. 1 shows
the number of papers retrieved using Web of Science (Science
Citation Index Expanded) by inputting <Bdigital image
correlation^>, <Bstrain gage^ or Bstrain gauge^>, <Bmoiré
interferometry^ or Bmoire interferometry^ > and <Belectronic
speckle pattern interferometry^ > in Btopics^ respectively in
the past 16 years (from 2000 to 2015). It is found that DIC
techniques have undergone a burst in methodology research
and applications since 2005, which are embodied in the expo-
nentially increased number of publications. In fact, as a represen-
tative non-interferometric optical technique, DIC has become
more and more popular compared with its interferometric coun-
terparts. Moreover, its popularity in academic publications even
exceeds the widely used electrical measurement technique of
strain gauge since 2009. It can be said that the DIC method has
been andwill continue to be themost popular andmost important
metrology tool in the experimental mechanics community.

Generally speaking, the implementation of DIC techniques
for shape, motion and deformation measurements consists of
three steps. Namely:

(1). Speckle pattern fabrication. It ensures the test sample
surface has a carrier of deformation information.
However, if there is a varying intensity distribution with
sufficient contrast on the sample surface, this step can be
omitted;
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(2). Image acquisition. This records the surface images of
the test specimen at different states using a single camera
(2D–DIC) or two synchronized cameras (stereo-DIC);

(3). Image analysis. It compares the deformed images with
the reference image using a specific cross-correlation
algorithm for retrieving displacement and strain fields.

It can therefore be concluded that DIC measurements can-
not be realized without the speckle pattern. In other words, the
specimen surface must be covered with a speckle pattern (i.e.
the random gray intensity pattern), which acts as a carrier of
deformation information, to acquire reliable and accurate
matching in the subsequent correlation computation. In addi-
tion to its indispensability in DIC measurements, speckle pat-
terns also have an important influence on the accuracy and
precision in the displacements measurement of DIC. Many
researchers have demonstrated [8–21] that a speckle pattern
with more plentiful gradients generally leads to smaller bias
errors and reduced random errors.

In recent years, DIC techniques have not only seen signif-
icant advances in technical development [22–26], but also
undergone a burst in applications, ranging from regular metal
or polymeric materials to special composite or biological ma-
terials [27–31], from macroscopic scale to microscopic scale
[32–34], and from common laboratory conditions to extreme
environments [35–39]. Speckle patterns can be readily fabri-
cated for most regular experiments where the region of interest
has a size ranging from several millimeters to several meters.
However, considering the increasing diversity in test mate-
rials, spatial scales and experimental conditions, speckle

pattern fabrication and its quality assessment sometimes could
be a key challenging issue facing DIC practitioners.

The purpose of this review is to systematically overview
the speckle pattern classification, fabrication technique prin-
ciples and assessment methods, aiming to provide practical
guidelines for DIC users. Emphases are placed on the fabrica-
tion principles and application examples of speckle patterns in
three aspects: (1) with reduced size of micro/nano-scale; (2) at
extreme high-temperature environments; (3) involving the
field of biomechanics. Moreover, various evaluation metrics
of speckle pattern quality are summarized, compared and an-
alyzed. Suggestions for future work are discussed in the
conclusion.

What is a Good Speckle Pattern?

As a deformation information carrier, the speckle pattern
should have some distinct, unique, non-periodic, and stable
grayscale features to realize accurate DIC measurements.
Thus, Bwhat is a good speckle pattern?^ is undoubtedly a
basic but important question, which, in fact, has confused
the users of DIC for many years. This part will present several
qualitative characteristics (or general guidelines) and a quan-
titative metric that make a good speckle pattern. Note that the
qualitative characteristics are concluded by intuition, while the
quantitative metric is derived from solid theoretical error anal-
yses for DIC algorithms.

It should be noted that the speckle patterns created with
different methods or by different practitioners may lead to
distinctly different histogram distributions, image contrast or
other characteristics. To realize accurate DIC measurements, a
good speckle pattern should meet several requirements. The
speckle pattern on the test sample surface should have: (1)
High contrast: varying grayscale intensities and relatively
large intensity gradients; (2) Randomness: non-periodic and
non-repetitive pattern to facilitate full field displacement map-
ping; (3) Isotropy: no directionality in the pattern. There
should be no obvious directionality in the pattern [40], namely
the speckle and the gap between the speckles should be almost
the same size in different directions. Speckle granules with a
size of 3–5 pixels or slightly greater [41] are highly recom-
mended to avoid aliased effect. (4) Stability: a good speckle
pattern should tightly adhere to the sample surface and deform
with the sample surface together even under large translation
and deformation without evident changes in geometric and
grayscale characteristics. In a series of short papers written
by Phillip Reu [40–44], some key tips and details that help
to create a good speckle pattern were discussed from various
aspects, such as speckle size (pixels), contrast (grey levels)
paint and lighting, speckle edge sharpness (contrast gradient)
and speckle density (spatial distribution).

Fig. 1 Number of articles involving typical strain measurement
techniques during the past 16 years (from 2000 to 2015)
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In DIC, the use of the subpixel registration algorithm is
regarded as the key technique to improve displacement mea-
surement accuracy and precision. Although different types of
subpixel registration algorithms have been developed, the
classic forward additive Newton–Raphson (FA-NR) algo-
rithm [45–47] and the recently introduced advanced inverse
compositional Gauss–Newton (IC-GN) algorithm [48–51]
have been proved to be the two most widely used because of
their higher accuracy, wider applicability and better noise-
proof performance. Theoretical error analyses of FA-NR algo-
rithm and IC-GN algorithm performed by various researchers
now allow us to quantitatively predict the accuracy (bias error)
and precision (random error) in the displacements measured.
For brevity, Table 1 only lists the corresponding error formula
of the two subpixel registration algorithms, derived from the
use of the SSD correlation criterion, zero-order shape function
and linear intensity interpolation.

It can be seen that no matter by FA-NR or IC-GN, the
systematical error E(ue) and random error std(ue) are both in
inverse proportion to the SSSIG value of the subsets.
Theoretically speaking, the speckle pattern that has higher
value of SSSIG in the subsets indicates a good speckle pattern
[13]. However, one evident shortcoming of SSSIG is that it
cannot quantify the randomness of a speckle pattern. In other
words, a periodic pattern may have a larger SSSIG value but is
not appropriate for DIC analysis. The detailed information
about speckle pattern assessment will be presented in
Section 5.

Speckle Pattern Classifications

In reviewing the speckle pattern, it is necessary and significant
to present its classifications because speckle patterns differ
from case to case based on the diverse applications of DIC
in various conditions. Natural texture patterns and artificial
speckle patterns are generally available in the literature.

However, not much detailed information about the classifica-
tion of artificial speckle patterns has been presented so far. The
purpose of this part is to provide a more detailed classification
of speckle pattern.

Natural Texture Patterns

The speckle pattern serving as the information carrier is a key
issue in relation to the accuracy and effectiveness in using the
powerful tool of DIC. If the sample has good natural texture
distribution inherent in its surface, the texture can be used to
perform correlation calculation [52]. The deformation moni-
toring of soil, wood, rocks and other large-scale engineering
structures such as bridges can take advantage of the natural
texture (e.g., various structures inherent, traffic signs, etc.) for
pattern matching [53–55].

In this paper, the natural pattern is defined as the
materials′ inherent microstructure. The inclusions, grains
boundaries, additives, the second phase are all consid-
ered as natural patterns. One point should be noted that,
the experiment procedure of polishing, scratching or
etching are necessary in order to reveal the microstruc-
ture of the materials under optical microscopy (OM) or
scanning electron microscopy (SEM). This is different
from the patterning method of scratching and abrading
to make dots or lines on sample surfaces. Table 2 gives
a summary of the articles about natural patterns applied
in DIC at different image resolutions (The N.A. means
information not available). It can be seen sometimes
that the natural pattern can be applied for high temper-
ature deformation measurement at low magnification
[35, 64, 65]. However, most of the natural patterns are
used under SEM or high magnification optical system.
The reason is that the microstructure is more clearly
seen under high magnification in SEM, scanning probe
microscopes (SPM) or high magnification optical system
[58, 60–63, 67]. More robust algorithms are prone to be

Table 1 Bias error and random error of FA-NA algorithm and IC-GN algorithm

Subpixel registration algorithm Bias error Standard deviation

FA-NR algorithm

E ueð Þ≅∑
N

i¼1
∑
N

j¼1
−h xi; y j

� �
gx xi; y j
� �h i

þ 1−2τ xð ÞN 2σ2

∑
N

i¼1
∑
N

j¼1
gx xi ;y jð Þ½ �

2 std ueð Þ≅
ffiffi
2

p
σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
N

i¼1
∑
N

j¼1
gx xi ;y jð Þ½ �

r 2

IC-GN algorithm

E ueð Þ≅
∑
N

i¼1
∑
N

j¼1
−h xi;y jð Þ f x xi;y jð Þ½ �

∑
N

i¼1
∑
N

j¼1
f x xi;y jð Þ½ �

2
std ueð Þ≅

ffiffi
2

p
σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
N

i¼1
∑
N

j¼1
f x xi ;y jð Þ½ �

r 2

h(xi, yj)is the gray interpolation error at point(xi, yj), fx(xi, yj) the first-order derivative of the grayscale intensities of the reference image, gx(xi, yj) the first-
order derivative of grayscale intensities of the deformed image, τx subpixel displacement, N the subset size used for calculation,σ the magnitude of the

noise, and ∑
N

i¼1
∑
N

j¼1
f x xi; y j
� �h i

2 the sum of square of subset intensity gradient (SSSIG) [11]
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proposed in using natural patterns to improve accuracy
[56, 57, 59, 66] because natural textures are more dif-
ficult to do calculation due to the insufficient informa-
tion carriers or lower quality of texture patterns com-
pared with artificial patterns.

Although microstructures can be used as speckle patterns,
it is not easy to find an optimal pattern to warrant accurate DIC
matching with relative small subsets. In fact, most of the nat-
ural patterns are restricted at micro-scale measurements.
Especially, optical and SEM micrographs have been regularly
used together with DIC for deformation measurement at mi-
cro-scale. However, the procedure to reveal the microstructure
with sufficient image contrast is generally considered to be
tricky. Therefore most of the speckle patterns are fabricated
artificially, which will be analyzed in the next section.

Artificial Speckle Patterns

Different kinds of artificial speckle patterns exist due to
different fabrication methods. One often used artificial
method is spraying white or black paint by operating a
spray bottle or an airbrush to make white or black dots
on the sample surface [5, 6]. When the sprayed sample
surface is lighted by the illumination of white light [68],
or monochromatic light (e.g., blue light [35] or UV
light [37]), the random speckle pattern decorated images
can be obtained. Laser speckle patterns [69], produced
by illuminating the optically rough surface of the sam-
ple with a coherent light source (laser beam), have been

used as the carrier of surface deformation information.
However, a serious decorrelation effect may occur in
laser speckle patterns when the test object is subjected
to rigid body motion, excessive straining as well as out-
of-plane displacement [70]. That may be the primary
reason why laser speckle patterns are rarely used in
practical DIC applications.

In this review, the speckle patterns are divided into
constructive and destructive types, thus the effect of the
fabrication process on the integrity of the original spec-
imen can be clearly known. In the constructive type,
spraying and airbrushing are mainly used in macro-
scale of millimeters to meters [68, 71], and spin coat-
ing, compressed air technique, nano-film remodeling,
nanoparticle patterning, focused ion beam (FIB), lithog-
raphy are applied in micro-scale of micrometers to
nanometers [72–76]. In the destructive type, scratching,
abrading, chemical etching and FIB milling are mostly
utilized in micro-scale pattern fabrication [77, 78]. The
detailed information of the fabrication process is pre-
sented in the following section.

Fabrication of Speckle Patterns

Different speckle patterns may be accomplished by different
operators using the same techniques because the technological
parameters play a key role in each technique. In this part, the
principles of representative patterning techniques, and the key

Table 2 Review of publications involving natural patterns used in DIC

Specimen Speckle size
resolution
(μm)

Image
resolution
(μm/pixel)

Remarks References

Polymeric foams N.A N.A Robust DIC algorithm, heterogeneous deformation
during uniaxial compression

Wang et al. (2002) [56]

Polymer bonded
explosives (PBXs)

1 0.5 Optical microscope, sophisticated image cross-
correlation algorithm

Rae et al. (2004) [57]

NiTi film 0.01 0.01 Characterizing the nonlinearity of SPM images Jin et al. (2005) [58]

Al2O3 100 N.A. CCD camera, a robust correlation, coefficient of thermal
expansion (CTE)

Srinivasan et al.(2005) [59]

Aluminum, brass, and
stainless steel

1 1.3 Light microscopy, distortion removing
calibration, displacement/strain

Zhang et al. (2006) [60]

Nickel based LIGA 0.1 0.179 SEM, displacement and strain analysis Jin et al. (2008) [61]

Compacted graphite cast
irons (CGI)

100 1 Stereoscopic camera, microstructural strainfield Sjögren et al. (2011) [62]

Interstitial free (IF) steel 5 0.2 SEM, large local
deformation during in-situ tensile testing

Ghadbeigi et al.(2012) [63]

Cement bauxite 10 97 CCD camera, creep behavior at 1200 °C,
four-point bending creep test

Dusserre et al. (2013) [64]

SiC 1000 37.6 CCD camera, an effective grayscale-average technique
to minimize thermal disturbance, CTE

Su et al. (2015) [65]

Cancellous bones N.A N.A. Canon camera, formation during indentation test Xiong et al. (2015) [66]

WB36 steel 1 1 SEM, deformation under uniaxial tension Zhang et al. (2016) [67]
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parameters in each method are reviewed, meanwhile the ap-
plication examples are given and analyzed. Detailed informa-
tion of patterning techniques is summarized to provide a guide
in selecting an appropriate technique thereafter.

Airbrushing and Spraying

Macro-Scale Patterns

Airbrushing and spraying is the most common method in fab-
ricating macro-scale patterns. A spray bottle or an airbrush is
used. The nozzle diameter, the distance between the substrate
and the nozzle, air pressure and viscosity of the solution (as
shown in Fig. 2) are important, since they can influence the
speckle size distribution and the standard deviation of speckle
size distribution [79–81].Therefore a pre-experiment should
be done to determine the parameters.

At room temperature commercial white or black paints are
mostly applied as pattern materials [61, 81]. However, at high
temperatures, the pattern materials vary according to the mea-
sured specimen and temperature applied. Lyons et al. [71]
have used BN and Al2O3 based ceramic coatings to create a
random speckle pattern below 750 °C with a speckle pattern
size resolution of 100 μm at an image resolution of 25 μm/
pixel. Liu et al. [82] have used the same mixture of solution to
make speckle patterns applied at elevated temperature of
750 °C. Pan et al. [83] have sprayed a mixture of black
CoO2 with high temperature adhesive onto a sample surface
that could withstand temperature up to 1200 °C with a speckle
pattern size resolution of 100 μm at image resolution of
58 μm/pixel. Novak et al. [84] have used Al2O3 or ZrO2 high
temperature paints to fabricate speckle patterns applicable at
1500 °C with a speckle pattern size resolution of 100 μm at an
image resolution of 25–33μm/pixel. Pan et al. [85] havemade
speckle pattern by splashing high-temperature ceramics to the
specimen surface. The pattern stranded up to 1550 °C without

degradation. Table 3 shows the summary of spraying and
airbrushing methods used at elevated temperatures. It can be
seen that most of the speckle pattern materials are ceramic
oxides because ceramic oxides (Al2O3, ZrO2, SiO2, etc.) are
more stable and heat-resisting at elevated temperatures. Most
of the measurements are at macro-scale with image resolution
of dozens of micro-meters per pixel (field of view (FOV):
dozens of millimeters) [68, 71, 82–95]. The reason is that
DIC measurements at high temperatures are more difficult
and challenging at micro-scales due to the thermal disturbance
induced image noises [37].

Micro/Nano-Scale Patterns

Besides fabricating macro-scale patterns, airbrushing can also
create micro-scale patterns. Dong et al. [77] have used air-
brush with nozzle sizes of 0.8 mm and 0.18 mm to make
two kinds of Al2O3 patterns on Al2O3 substrate. The image
resolution of 1 μm/pixel was reached under microscopy. The
fine speckle pattern was proposed to be applied up to 1400 °C.
Berfield et al. [96] have fabricated a fine, diffused pattern
using airbrush with 0.18mmof nozzle diameter at a resolution
of 10μm/pixel. Niendorf et al. [97] have used pre-oxidation Si
particle as the speckle pattern to characterize the evolution of
local strain fields with cyclic deformation at room temperature
and 700 °C with an image resolution of 2 μm/pixel.

One big potentiality of DIC in biomechanics lies in its
suitability to investigate different kinds of materials, such as
soft and hard biological tissues, independently of their me-
chanical behaviors (brittle/ductile, isotropic/anisotropic, ho-
mogeneous/inhomogeneous), for small or large deformations.
By doing the pressure cycling test of mouse arteries, Sutton
et al. [29] have coated toner powder (3 to 10 μm particle size)
on the specimen surface to make the speckle pattern to quan-
tify changes in local biomechanical properties in a FOV of
50 μm × 250 μm. Thompson et al. [98] have studied inhomo-
geneity of the strain distribution of bone callus of sheep with
an image resolution of 7.7 μm/pixel in a FOV of
23.2 mm × 15.4 mm. The average particle diameter of 8 μm
of a photocopier toner mixed into the standard microscopy
glycerol gelatin solution was applied to the moist surface of
the specimens. A histology brush was used to make the speck-
le pattern. To measure the tensile properties of the bovine
artery, a peripheral coat of black enamel paint was directly
sprayed on the surface to generate a high-contrast speckle
pattern in a FOV of 25 mm × 100 mm during the uniaxial
tensile experiment [99]. The following Table 4 summarizes
examples involving spraying and airbrushing methods in
DIC applications in biomechanics.

Studying moisture objects such as biofilm, biotissue and
biomaterials under the microscope was one interesting field in
biomechanics. Conventional speckle paints and toners show
disadvantages such as specular reflections on the moist

Fig. 2 Schematic illustration of airbrushing method for speckle pattern
fabrication
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surface under traditional stereo microscopes with stereo-based
DIC. Due to the abundant fluorescent particle size ranging
from one nanometer to several microns and excellent biocom-
patibility with biomaterials, fluorescent particles have been
widely used under the fluorescent microscopy combined with
DIC. Hu et al. [112] have made a random fluorescence texture
pattern by applying a droplet of fluorescent liquid on the sam-
ple surface using an airbrush. The use of 3D imaging of the
fluorescent micro-particles eliminated the formation of bright
parts caused by specular reflections. The recently published
technique in improving DIC measurements was called cross
polarization which simply consists of placing a linear
polarizer between the light source and the specimen and a
second polarizer (of a perpendicular polarization axis to the
first one) between the specimen and the camera. Thus, the
orthogonal polarization between incident and reflected light
off the specimen surface selectively attenuated just the specu-
lar reflections, resulting in diffuse lighting to the camera. The
results showed that cross polarization eliminated saturated
pixels that degraded DIC measurements, and increased image
contrast, enabling higher spatial precision by using smaller
subsets. Also in this work,different speckle pattern sizes were
fabricated by an airbrush with 1:1 mixture of methanol and
black paint. To create four patterns of different speckle sizes,
different pressures were used on four 25 mm × 25 mm quad-
rants of white-painted areas of super elastic nickel-titanium
(NiTi) specimen under uniaxial tension [113].

Though speckle patterns fabricated by spraying and
airbrushing are inexpensive and easy-operating, the selection

of proper parameters such as raw material powder size, liquid
viscosity, spraying distance and air pressure needs to be deter-
mined in advance.

Spin Coating

More than fifty years ago, the pioneering analysis of spin
coating was performed by Emsile et al. [114] who have con-
sidered the spreading of a thin axisymmetric film of
Newtonian fluid on a planner substrate. Spin coating is cur-
rently the predominant technique employed to produce uni-
form thin films of photosensitive organic materials with thick-
ness of the order of micrometers and nanometers [115].
Combined with DIC, spin coating has been developed as a
popular method in manufacturing speckle patterns with mi-
crometers and nanometers. The typical stages in making
speckle patterns by spin coating are sketched in Fig.3. It con-
tains deposition, spin-up, spin-off, evaporation solvents and
finally the random pattern obtaining. The detailed information
can be found in Ref. [116, 117]. Wang et al. [117] have fabri-
cated speckle patterns by spinning a compound of epoxy resin
and graphite powder particles through a spin processor. The
effect of the proportion of the compound, the spinning rates
and the centrifugal solidifying time on the quality of speckle
patterns fabricated was studied. The feasibility and ac-
curacy of the fabrication method was proved by defor-
mation measurement of PET thin film and the interface
of an optical fiber device.

Table 4 Summary of airbrushing and spraying method in biomechanics applications

Specimen Patterning
method

Field of view
(mm × mm)

Imaging
resolution
(μ/pixel)

Remarks References

Bovine hoof horn Airbrushing 6.4 × 8.5 13.3 Tensile test Zhang et al. (2004) [99]

American lobster (Homarus americanus) Spraying 2 × 4 0.11 Tensile testing Sachs et al. 2006 [28]

Mouse tibia Airbrushing 16 × 12 12 Compression test Sutton et al. (2008) [29]

Porcine brain tissue Airbrushing 100 × 125 N.A. Translational acceleration test Lauret et al. (2009) [100]

Human vocal ligaments Airbrushing 6.8× 8.5 6.7 Tensile test axial strain Kelleher et al. (2010) [101]

Bovine posterior sclera Airbrushing 40 × 40 3.4 Inflation test Myers et al. (2010) [102]

Porcine liver Airbrushing 80 × 100 3.3 Indentation test Ahn et al. (2010) [103]

Cortical bone from bovine femoral shaft Airbrushing 8.7 × 8 17 Three-point bending test Yamaguchi et al. (2011) [104]

Human liver Spraying 25 × 25 36 Biaxial tension by inflation test Brunon et al. (2011) [105]

Acrylic resin mandibular withand
without implant

Airbrushing 37.5 × 50 35 Three-point bending test Tiossi et al. (2011) [106]

Swine brains Spraying N.A. N.A. Compression tests, relaxation
tests and cyclic tests

Libertiaux et al. (2011) [107]

Beaks of granivorous birds Airbrushing 14 × 17 6.8 Bending test Soons et al. (2012) [108]

Human skin Spraying 12.8 × 38.4 50 Tensile test Ottenio et al. 2014 [109]

Human vertebra Airbrushing 67× 100 39 Benchmark test Palanca et al. (2015) [110]

Aorta of porcine Airbrushing 18 × 22 3.49 Tensile tests Zhou et al. (2016) [111]
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The full-field measurement of in-plane deformations at
scales down to the nano-level has been achieved by fluores-
cent nanoparticles (c.a. 160 nm in diameter) spin-cast on the
top surface of polydimethylsiloxane (PDMS) samples in the
work of Berfield et al. [118] in 2006. The resolution was
134 nm/pixel under a compound fluorescent microscope in a
FOV of 171 μm × 137 μm. The fluorescent speckle pattern
created by the excitation of rhodamine dye infused silica
nanoparticles (140 to 180 nm in diameter) solution deposited
onto the polymer sample surface by spin coating has been
conducted by Berfield et al. [96]. The displacement accuracy
of 17 nm was accomplished via DIC measurement through
rigid body translation and uniaxial tensile testing. The fluores-
cence imaging can avoid unwanted specular reflections of
moist surface and heat induced by white light to change the
investigation environment. The in-plane strain development
within lead zirconate titanate (PZT) sol-gel thin films subject-
ed to thermal loading was measured using a fluorescence-
based DIC method by Berfield et al. [119]. Fluorescent silica
nanoparticles with a final diameter of about 140 nm was spin-
coated on the sample surface as the speckle pattern in a
200 μm × 200 μm area. Hamilton et al. [120] have studied
the mechanical behavior of epoxy-matrix microvascular net-
works loaded in tension using fluorescent digital image corre-
lation technique. The speckle pattern was made by spin-
coating fluorescent silica nanoparticles on the order of
300 nm. By spin-coating fluorescent nanoparticles on a car-
bon fiber composite specimen and an aluminum control spec-
imen, Wilhelmsen has studied the evolution of highly local-
ized displacements and strains of the specimens under trans-
verse tension [121].

Due to the maturity of research in literature, a low cost and
fast operating system, spin coating has a great potential in

speckle pattern manufacturing ranging from nanometers to
micrometers. However, large substrate cannot be spun at a
sufficiently high rate in order to allow the film to thin.

Compressed air Technique

Jonnalagadda et al. [75] firstly used the compressed air tech-
nique to make micro-scale speckle patterns. Figure 4 shows
the schematic of the compressed air technique. There is a
hollow cylindrical shaft with side inlets to introduce com-
pressed air at the bottom of the cylinder and micro-scale par-
ticles above the air inlet. The powder is blasted through three
filters to eliminate large agglomerated particles. The dies with
Pt specimens are placed at the top of the cylinder in an
inverted position to collect the particles forced by the com-
pressed air through the topmost filter. Micro-particles adhere
onto the freestanding specimens by Van der Waals forces and
static charges.The filtration fineness (the maximum size of
escaping particles) of filters I-III, filtering time and raw pow-
der size can be tuned to obtain the optimal pattern.

Using this method, Si pattern has been accomplished by
depositing 1 μm diameter Si particles on the polycrastalline
metal specimen surface with a resolution of 0.087 μm /pixel in
a FOVof 92 pixels × 92 pixels [122]. Karanjgaokar et al. [123]
have conducted a tensile experiment of Au films. Full-field
strainmeasurements were done using submicron sized speckle
patterns made by the compressed air technique at 110 °C. l μm
silicon particles have been patterned on the surface area of
zirconium grade 702 (Zircadyne) with a resolution of
1.2 μm/pixel by Padilla and his collaborators [124].
Recently, Casperson et al. [125] have investigated the fatigue
crack growth and crack closure of Hastelloy X up to 650 °C
with 1 to 5 μm silicon particles. Pataky et al. [126] studied the
heterogeneous strain fields of Haynes 230 using DIC. With
the 0.3 μm alumina powder, the speckle pattern was
accomplised by this method with a digital image resolutoin
of 0.175 μm/pix up to 800 °C.

Although the pattern consistency can be achieved without
worrying about having random large speckles, as seen with
spraying paint, and the large range of materials available to

Fig. 3 Typical stages of spin coating process

Fig. 4 Schematic of compressed air technique in fabricating speckle
patterns [75]
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deposit, the adherence of particles to the surface shoule be
considered with this method because the micro-particles ad-
here onto the freestanding specimens by Van der Waals forces
and static charges. Moreover, at a higher temperature (for
example above 1000 °C), the stability of the pattern on the
substrate surface has to be taken into acount and needs more
studies.

Nano-Film Remodeling

A promising pattern application method for producing the
desired high-density speckle patterns is vapor-assisted remod-
eling of deposited metal films. Luo et al. [127] have studied
the remodeling of ultrathin (<20 nm) gold films by exposure
to condensable vapors of volatile solvents systematically for
the first time. It was proposed that the metal film morphology
could be controlled by the choice of the initial film thickness,
exposure time, and substrate temperature. A theoretical model
for capillary condensation capturing the essential elements of
the vapor-assisted remodeling mechanism was adapted. The
schematic set-up is shown in Fig.5. The metal-coated slide is
mounted on a slide holder which also serves as a heater with
calibrated temperature control. The chemical vapor flows into
the flask from a front pressure valve and passes out of the flask
through a back pressure valve.

Using this method, Scrivens et al. [128] have successfully
fabricated patterns onto polymeric and metallic materials
ranging from 50 to 500 nm. The effect of exposure time,
coating thickness, temperature and chemical vapor type were
studied and analyzed. The gold pattern maintained adherence
to the polymer specimen throughout the straining process.
These results indicated that the embedded pattern in the poly-
mer substrate had the potential for use with digital image
correlation and imaging via an environment scanning electron
microscope (ESEM) or similar imaging system to make de-
formation measurements with sub-micron spatial resolution.
Li et al. [129] have applied a layer of gold on aluminum slides
with vapor-assisted remodeling. The feature size was

100 to 150 nm. The effectiveness of the speckle pattern was
verified by measuring the thermal strain of AL-2024-T3 using
SEM-DIC. Recently, Di Gioacchino et al. [130] have devel-
oped a new set-up to make gold patterns by vapor-assisted
remodeling. The nano-scale speckles were of size ranging
from 30 to 150 nm and of similar spacing in sub-regions
ranging between approximately 100 nm × 100 nm to
300 nm × 300 nm. The deformation fields at the scale of slip
bands of 304 L stainless steel during the tensile experiment
showed the potential of the vapor-assisted remodeling
technique.

The nano-film remodeling has the advantage of particle
morphology controlling and reproducing. However, it is time
consuming in two steps. The nano-film has to be coated on
sample surface as the first step. Moreover, different nao-film
coating methods can also have an effect on the formed speckle
pattern which has not been reported in detail.

Lithography

E-beam lithography technique (EBL) or UV lithography tech-
nique is mostly used to manufacture IC (Integrated Circuits)
chips and micro-scale devices [131, 132]. In DIC, combined
with high magnification imaging techniques (SEM, STEM,
AFM), lithography is used to generate micro/nano-scale ran-
dom patterns on the specimen surface to understand the effect
of microstructure (grain boundaries, second phases, defects,
etc.) on the macroscopical response of materials [133–135].
Figure 6 shows the schematic steps in obtaining speckle pat-
terns by e-beam lithography. After polishing and cleaning the
substrate surface, the resist of PMMA is spin-coated on the
substrate surface in Step one, then the resist is irradiated by
focused electron beam in the electron exposure step, and then
the irradiated portions of the resin are dissolved in Step three.
Metal or dielectric is deposited over the entire surface as
shown in Step four. Finally, the remainder of the resin is de-
veloped and thus the deposition is left as the speckle pattern.
More details can be found in Ref. [136, 137].

Fig. 5 Schematic set–up of metal film remodeling Fig. 6 Schematic diagram of the e-beam lithography steps (one-five)
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Li et al. [138] have fabricated random patterns ranging
from 150 nm to 500 nm on Al and Si specimens using ELT.
The LabView software was written to control the e-beam mo-
tion process to greatly reduce the time for etching a dual-layer
photo-resist coating. Tanaka et al. [139] have utilized e-beam
lithography to make random patterns for micro/nano-scale
measurements by backscattered electron imaging (BSEI) un-
der field emission SEM. Scrivens et al. [128] have made gold
and silver or other metal patterns with 2 to 20 μm by UV
photolithography through a large amount of laboratory prep-
aration. The adherence of the sputtered random pattern of
tantalum to the surface of AA 8009 aluminum alloy was ver-
ified by the fatigue test.

According to the heat resistant properties of the pattern
material, speckle patterns used at elevated temperatures are
also an interesting field under research. Walley et al. [72] have
deposited hafnium oxide on nickel-base superalloy Rene 104
to make a speckle pattern by e-beam lithography. The pattern
was between 0.45 and 0.7 μm incorporating a set of alpha-
numeric markers every 200 μm to help facilitate locating par-
ticular regions within the 0.01 cm2 analysis area after testing.
It proved that the pattern had good thermal stability and pro-
vided excellent contrast for image acquisition using secondary
electron imaging at an elevated temperature up to 700 °C.
Carter et al. [140] have conducted hafnium oxide on the sam-
ple of nickel-based superalloy of Rene-104 using ELT. In their
studies, how the patterning parameters (speckle density and
shape) affected the strain resolution of DIC using SEM imag-
ing was analyzed. The plastic deformation distribution at a
constant stress with heating up to 700 °C was assessed.

Although ETL is substrate independent, repeatable and
designable, the disadvantages of e-beam lithography are its
high cost and limited applicability to non-flat substrates due
to its sensitivity to working distance. In addition, it is time
assuming and expensive.

Focused ion Beam (FIB)

The focused ion beam (FIB) technique was mainly developed
during the late 1970s and the early1980s [141]. Recently, the
FIB milling and deposition have been developed combined
with SEM applied in DIC for deformation measurements at
micro-scale [142, 143]. The pattern generation principle with
FIB milling is shown in Fig. 7(a). Removal of sample mate-
rials is achieved using a high ion current beam. Sebastiani
et al. [144] have fabricated periodic holes as speckle patterns
for nano-scale measurements by FIB milling. By scanning the
beam over the substrate, an arbitrary shape can be etched, Li
et al. [145] have developed speckle patterns on the surface of
silicon wafer and amorphous silicon carbide by FIB milling.
Their study shows that in design of speckle patterns selecting
a best template and a proper magnification of FIB were

essential. The influencing factors including etching time and
ion beam current were also discussed.

Figure 7 (b) shows the schematic of FIB deposition. The
precursor gas flows on the surface of the sample with the help
of a gas jet, and it gets adsorbed on surface molecules. When
the ion beam hits the sample surface it decomposes the
adsorbed precursor gases. The volatile reaction products come
out from the surface and are removed through the high-
vacuum system, and the desired reaction products remain on
the sample surface as a thin film. Sabate et al. [146] have
acquired speckle patterns by the deposition of a 20 nm Pt layer
with FIB for nano-scale measurement. Winiarski et al. [147]
have compared patterning methods of YSZ nanoparticles, FIB
assisted Pt dots and FEB Pt dots in their paper. It is proposed
that the FIB assisted decoration technique has the advantage
of rapid processing time and tolerant processing conditions,
however, it has a concern with surface damage due to ion
implantation. Recently, Zhu et al. [148] have considered the
influencing parameters such as the quality of the speckle tem-
plate, total deposition time, ion beam current density, and
dwell time on the deposited speckle pattern. The residual
stress distribution on the laser shock peened metallic glass
surface was successfully measured to verify the effect of the
pattern

Although the FIB patterning method is repeatable, sub-
strate independent and speckle pattern location controllable,
it is expensive and sample surface damaging.

Scratching and Abrading

Besides the methods presented above involving adding mate-
rials to the sample surface to form speckles, taking materials
from the sample surface including scratching, abrading is also
used in fabricating speckle patterns.

Grant et al. [35] have abraded the surface of the alloy using
silicon carbide paper to obtain the speckle pattern with a
10 μm speckle size resolution at an image resolution of
2.5 μm/pixel to measure the Young’s modulus and CTE up
to 800 °C. Dong et al. [37] have measured the CTE of poly-
crystalline Al2O3 up to 1400 °C using scratches of 1 μm
speckle resolution as the speckle pattern with an image reso-
lution of 1 μm/pixel. Thompson et al. [149] have measured
the thermal expansion of a Rene N5 superalloy and
NiCoCrAlY bond coat alloy up to nearly 1100 °C. A piece
of 20 Pm diamond paper was utilized to produce a subtle
scratch pattern on the surfaces. Blaber et al. [150] have
sandblasted the sample surface with an average particle size
of 500μm and subsequently laser etchedwith an infrared laser
engraving to make speckle particles of about 50 μm on
PWA1484. The stability of the surface pattern was verified
through two load cycles of ∼20 min each at 1000 °C during
a single edge notched tension test.
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Scratching or abrading techniques are simple, inexpensive,
do not need patternmaterials and can make bothmacro/micro-
size patterns. Measurements can also be done at elevated tem-
peratures based on the sample materials. However, the surface
will be damaged and residual stress can be induced.Moreover,
it will be a waste of specimen once failure in scratching or
abrading occurs.

Other Techniques

In addition to the techniques presented above, among construc-
tive methods, the permanent marker, stamp, temporary tattoo,
India (calligraphy) ink, carbon printer toner and graphite powder,
microsphere fiduciarymarkers, etc. are also used formacroscopic
scale patterns and micro-scale pattern fabrication [151–165].
Helm et al. [154] have analyzed the multiple, growing cracks
of a slab of reinforced concrete with 2100 mm × 2100 mm sub-
jected to a uniformly distributed pressure load. The speckle pat-
terns used were small felt disks, similar to those used to cushion
the bottomof furniture legs. The dots in the local image areawere
approximately 10 mm in diameter which corresponded to a dot
diameter of approximately 8 pixels in the images. 3D bone
ligament-bone (BLB) and native medial collateral ligament
(MCL) samples under cyclic tension loading have been tested
via DIC using blue microsphere fiduciary markers with a 25 mm
diameter brushed on the surface as speckle pattern [155].
Avitabile et al. have measured the mode shape of an aluminum
structure with 609 mm × 914 mm in size via DIC with a black
permanentmarker creating the speckle pattern on flat white spray
paint coating the areas [156]. In order to prepare helmets for DIC
testing for back face deformation, ink tattoo has been utilized as
the speckle pattern [158]. By tracking the black India ink on the
cylindrical surface of the cartilage sample, the average nominal
strain was measured by Deneweth et al. [161]. Mahalingam et al.
[162] have had graphite powder blown onto the specimen of
anterior cruciate ligament (ACL) and BLB of adult Black
Suffolk sheep to create a surface pattern for uniaxial tension tests.

Combined with SEM, the grid method has been used for
speckle patterningmethod in the microscale deformation char-
acterization. Biery et al. [151] have measured strains at the
scale of the microstructure of gamma-TiAl alloys. The
polished samples were gridded by evaporating gold through

a 1500 line-per-inch nickel mesh as the speckle pattern. Biery
et al. [152] have measured the local straining in γ-titanium
aluminides using gridding by evaporating gold onto the sam-
ple surface through fine nickel grids of 1500 lines per inch.
For a higher resolution combined with SEM, the nano-scale
speckle pattern has been fabricated by Kammers et al. [160]
using an AuNP self-assembly technique. By adjusting techni-
cal parameters, the patterns with speckle sizes ranging from
tens of nanometers to hundreds of nanometers were created.

Brief Summary

Artificial techniques of spraying and airbrushing are inexpen-
sive and can be easily operated. For ordinary testing condi-
tions such as tensile, compressive experiments at room tem-
perature and elevated temperatures, this patterning technique
is recommended. Micro/nano-scale speckle patterning tech-
niques including spin coating, compressed air technique,
nano-film remodeling, FIB and lithography are mainly used
for the high magnification optical microscopes, SEM, AFM,
etc. Scratching/abrading is simple and easily operable, but is
surface damaging. Spin coating, compressed air technique and
nano-film remodeling are potential techniques due to their low
cost and high efficiency. FIB and lithography are usually ex-
pensive and time consuming. The detailed summary of the
patterning methods are shown in Table 5.

Speckle Pattern Assessment

Patterns fabricated using different techniques by different op-
erators may have different qualities. Quality assessment met-
rics have been proposed as a series of parameters in
literature. A common practice is to divide into the local
and global parameters. This section will summarize the
existing metrics for the assessment of the speckle pat-
tern quality.

Local Parameters

Local parameters aim to quantify the speckle pattern with
individual subsets and are expected to help with the optimal

Fig. 7 Schematic illustrations of
(a) FIB milling and (b) FIB
deposition
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selection of subset sizes. Various local parameters have been

proposed and their definitions are listed in Table 6, including

subset entropy presented by Sun et al. [10], mean subset fluc-

tuation by Hua et al. [14] and SSSIG by Pan et al. [11]. Note

that the parameters of subset entropy and mean subset

fluctuation are related to SSSIG to some extent. For example,

by defining ∇ f xi; yið Þj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f x xi; yið Þ2 þ f y xi; yið Þ2

q
(where f-

x(xi, yi) and fy(xi, yi) are the first derivatives of the intensity

gray value of f(xi, yi) at pixel coordinate (xi, yi) and carefully

Table 5 Summary of artificial pattern techniques

Patterning method Imaging 

system 

Typical

image 

Feasible speckle

size range 

Initial

cost

Production cost Estimated time 

start to finish

Process 

scalability 

References

Constructive Spraying OM, OC 1to1000 µm Inexpensive Inexpensive Minutes to hours Moderate [2, 45]

Black permanent 

marker

OM, OC 100 µm and up Inexpensive Inexpensive Minutes to hours Moderate [156]

Microstamp/Stamp SEM,OM, OC 1to1000 µm Moderate Inexpensive Minutes to hours High [154, 165]

India (calligraphy) 

ink

OM, OC 100 µm and up Inexpensive Inexpensive Minutes to hours High [158, 161]

Carbon printer toner 

and graphite powder

SEM,OM, OC 1 to 100 µm Inexpensive Inexpensive Minutes to hours High [5, 153, 157, 162]

Airbrushing OM, OC 1 to 1000 µm Moderate Inexpensive Minutes to hours Moderate [99-104]

Spin coating SEM,OM, OC 1 to 1000 nm Moderate Inexpensive Minutes to hours Moderate [96, 118-121]

Nanoparticle 

patterning

SEM,OM 1-100 nm Moderate Inexpensive Minutes to hours Moderate [73]

Self-assembled 

nanoparticles

SEM,OM 1-1000 nm Moderate Inexpensive Days and up High [160]

Compressed air SEM,OM 1 to 1000 nm Moderate Moderate  Hours to days Moderate [75, 123-127]

Microsphere 

fiduciary markers

SEM,OM 1to 100 µm Inexpensive Inexpensive Minutes to hours Moderate [155, 164]

Nano film 

remodeling

SEM,OM 1 to 1000 nm Expensive Expensive Hours to days Low [74, 127-130]

E-lithography SEM,OM 1 to 1000 nm Expensive Expensive Hours to days Low [128, 133-140]

Photolithography SEM,OM 1 to 100 µm Moderate Moderate Minutes to hours Moderate [5]
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choosing the discrete estimations of the derivatives, the two
metrics are equivalent of subset entropy and SSSIG, save for a
scaling term. However, it should be noted that subset entropy
and mean subset fluctuation are derived empirically without
solid theoretical basis, while SSSIG is an outcome of substan-
tial theoretical error analysis performed for subpixel registra-
tion algorithms.

As given in Table 1, theoretical error analysis of the classic
FA-NR algorithm and the state-of-the-art IC-GN algorithm
performed by different research groups [45–51] all revealed
that both the accuracy and precision of the measured
displacements are inversely proportional to SSSIG. For
this reason, SSSIG has been considered as the most
effective and widely adopted local parameter for quan-
titative quality assessment of speckle patterns within a
single subset [13, 21]. It is worth noting that, since the
precision of DIC measurements can be accurately pre-
dicted by the known noise level of the image as well as
SSSIG [11], Pan et al. further proposed a method for
the optimal selection of subset size by adjusting SSSIG
to preset values to suppress the adverse influence of
image noise. The same idea has also been extended to
subvolume size selection [167] for internal displacement
field analysis using digital volume correlation.

Although SSSIG is a rigorous metric for local speckle pat-
tern quality evaluation, it still has two limitations. First, SSSIG
cannot differentiate random speckle patterns and periodic pat-
terns. In other words, periodic patterns such as the checker-
board may have high SSSIG values, however, it cannot be

considered as an effective pattern for DIC analysis. Second,
as a local parameter to assess the quality of each subset sepa-
rately, SSSIG is limited to the quality assessment of the
local speckle pattern within an individual subset.
However, for most isotropic speckle patterns with even-
ly distributed speckle granules, the local parameters
computed for various subsets are normally of very little
difference. For this reason, several global parameters
have been developed in the literature.

Global Parameters

In addition to local parameters, various global parameters
have been proposed to quantify the entire speckle pattern. In
this respect, Zhou and Goodson first [8] proposed that high
quality patterns should be with of speckle sizes from 2 to 5
pixels through numerically simulated speckle patterns
consisting of discrete Gaussian granules. Following the idea
of Zhou et al., Lecompte et al. [9] used an image morphology
method to determine the mean speckle size of a speckle pat-
tern. The mean speckle size in combination with the subset
size had an influence on the accuracy of the measured dis-
placements. Hung et al. [166] used an averaging technique
to assess the pattern. However, for these global parameters,
the threshold method in edge detecting to determine speckle
size would miss the true edge of shapes in patterns.

Pan et al. [13] refined the local parameter SSSIG to evalu-
ate the quality of the entire speckle pattern by developing a

Table 5 (continued)

Constructive 

Template patterning 

with TEM grid

SEM,OM 1 to1000 nm Moderate Moderate Minutes to hours High [151, 152, 159]

Temporary tattoo OM, OC 1000 µm and up Inexpensive Inexpensive Minutes to hours Moderate [158, 163]

FIB deposition SEM,OM 1 to 1000 nm Expensive Expensive Hours to days Low [76, 146-148]

Destructive FIB milling SEM,OM 1 to 1000 nm Expensive Expensive Hours to days Moderate [144, 145]

Scratching OM, OC 1 to 100 µm Inexpensive Inexpensive Minutes to hours Moderate [37, 149]

Abrading OM, OC 1to100 µm Inexpensive Inexpensive Minutes to hours Moderate [35]

Chemical etching OM, OC 1to 100 µm Moderate Moderate Hours to days Low [78, 150]
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global parameter called the mean intensity gradient (MIG).
Numerical experiments have shown that a speckle pattern
with the larger MIG produces smaller mean bias error and
standard deviation error. Hence, a good speckle pattern should
be of large MIG. The MIG for speckle pattern quality assess-
ment can be used for at least the following three purposes in
DIC measurements: (1) it can be used as the guidance for
practical sample surface preparation; (2) it can be used to
predict the precision of the measured displacements; (3) com-
bined with the desired displacement measurement precision, it
can be used for subset size selection for various speckle
patterns.

Liu et al. [18] have proposed Shannon entropy to assess
pattern quality through measures of the information content of
an image and considered that a good quality speckle pattern
should have a large Shannon entropy. An autocorrelation peak
sharpness radius Rpeak of a pre-processed image of the
pattern has been proposed by Bossuyt et al. [17] to quan-
titatively evaluate how a particular pattern influences the
sensitivity of a DIC measurement. Patterns with more fea-
tures, higher contrast and sharper edges have a smaller
autocorrelation peak sharpness radius, corresponding to
better displacement sensitivity in DIC measurements.
However, an optimal value of the quality metric can lead
to a non-optimal DIC pattern taking an checkerboard pat-
tern with single pixel squares as an example. Stoilov et al.
[15] have proposed a metric based on the comparison of
the variation of primary and secondary peaks during de-
formation. However, normalization of the metric is not
ideal because a pattern with a single large secondary

auto-correlation peak would have worse quality than a
pattern with many large secondary auto-correlation peaks.
Crammond et al. [16] have proposed that global parame-
ters such as MIG are not in themselves sufficient to eval-
uate strain accuracy. In their studies, the global parameter
Shannon entropy [18] which measures the information
content was compared with the morphological technique.
The Laplacian of Gaussian edge detection method was
used to identify the individual speckles. The numerical
experiment showed that the most even distribution of
speckle sizes in the morphological assessment resulted
in the lowest errors. The conclusion well matched the
result described by Dong et al. [77]. A review of the local
and global pattern assessment metrics is shown in Table 6.

Numerical Comparison of Various Assessment Metrics

To compare these assessment metrics, a numerical analysis
was conducted using two speckle pattern images. A high
contrast pattern image was selected from the well-
recognized round robin study (https://sem.org/dic-
challenge/) as shown in Table 7, 1# speckle pattern image.
2# speckle pattern image shown in Table 7 was generated
using Matlab software (R2016a). The assessment parameters
were calculated as shown in Table 7. It shows that 1# pattern
had a larger value of δf, SSSIG, Sf, δ, the same value of q
and H, a smaller value of Rpeak, compared with 2# pattern
(subset size used was 29 pixels × 29 pixels for calculating
local parameters).

Table 7 Numerical comparison of assessment metrics

Assessment metric Global or local 

MIG, f Global 28.48 16.68

Autocorrelation peak 

sharpness radius,

peakR

Global 2.96 5.56

Main and second 

autocorrelation peak

comparison, q

Global 0.28 0.29

Shannon entropy, H Global 5.25 5.18

SSSIG Local 825.86 483.78

Mean subset 

fluctuation, Sf
Local 184.71 108.66

Subset entropy, Local 0.23 0.14

1# 2#
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Numerical translations were exerted to the two reference
images with 0.1 pixel shifting from 0 to 1 pixel in x direction.
The displacement was measured using IC-GN algorithm with
zero-normalized sum of squared difference (ZNSSD) correla-
tion criterion [48], first-order shape function and cubic B-
spline interpolation. Totally, 5640 points were calculated
with a subset size of 29 × 29 pixels and a grid step of
5 pixels. The mean bias error ue and standard deviation
error σu of measured displacement u, whose definition
can be found in Ref. [13], are shown in Fig. 8. It can
be seen that 1# pattern image had both smaller mean
bias error and standard deviation error compared with
2#. This indicates that 1# pattern had higher quality
which well agreed with the lager value of δf, SSSIG,
Sf and δ as shown in Table 7. Since Sf andδare related
to SSSIG to some extent [21], as a result, SSSIG can be
esteemed most strongly correlated to DIC accuracy and
precision [21].

Brief Summary

Both local and global metrics for speckle pattern quality
assessment have been overviewed and quantitatively ana-
lyzed using numerical translation tests. Among these pa-
rameters, SSSIG and MIG have been esteemed as the
most effective local and global metrics with solid theoret-
ical foundations [13, 21]. However, these two metrics
cannot be used to assess the randomness in a speckle
pattern. For this reason, we consider that no single
existing parameter can be a decisive measure for the pat-
tern quality assessment [16]. In reality, the potential per-
fect way in assessing and optimizing speckle patterns
should be based on an integrated metrics, which combines
SSSIG with other parameters that can quantify the ran-
domness of speckles. Recently, Bomarito et al. [21] sug-
gested a new pattern quality metric which is based on a
linear combination of three individual metrics (i.e., the
SSSIG, watershed radius and secondary auto-correlation
peak height). They used the combined pattern quality met-
ric to generate optimal patterns, based on which DIC

measurements are demonstrated with increased accuracy
and precision in numerical and real experiments.

Conclusion

As an indispensable issue in using DIC, the speckle pattern is
closely related to the accuracy and precision of DIC measure-
ment. In this review, for the first time, the classification, fab-
rication and quality assessment of speckle patterns are com-
prehensively reviewed along with typical application exam-
ples. Emphases are specially placed on fabrication principles
and application examples of speckle patterns in three aspects:
those applied at extreme environment of elevated tempera-
tures, those with reduced size of mico/nano-scale fabrication,
and those in the field of biomechanics. The quality assessment
metrics for speckle patterns are summarized and commented
in terms of local and global parameters.

The existing speckle pattern fabrication techniques docu-
mented in the literature can satisfy the requirements in most
common experimental conditions. However, for some special
and extreme cases in practical experiments, speckle pattern
fabrication definitely needs further refinement and more stud-
ies. These cases include but are not limited to: (1) Extreme
high temperature environment (e.g. high temperature wind
tunnel) for hypersonic vehicles. In this case, besides air fric-
tion and vibration, the speckle pattern has to stand high tem-
perature far beyond 1000 °C at wind speed exceeding 5Mach;
(2) Underwater or marine environment. The speckle patterns
need to stand the moisture and corrosion; (3) In-situ long-term
creep strain monitoring in out-door conditions or for creep
damage evaluation in power plant steels. In these cases, speck-
le patterns are required to stand for moisture, high-tempera-
ture, oxidation for long duration; Furthermore, the inexpen-
sive and more practical micro- and nano-sized pattern fabrica-
tion at elevated temperature requires further studying to facil-
itate research on the crack propagation behavior, crack tip
estimation, microstructure deformation observation by SEM
imaging and other high magnification optical imaging at high
temperatures.

Fig. 8 Mean bias error and
standard deviation error of
measured u-displacement as a
function of sub-pixel
displacement
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