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Abstract We report on the difficulties of extracting plastic
parameters from constitutive equations derived by instru-
mented indentation tests on hard and stiff materials at
shallow depths of penetration. As a general rule, we refer
here to materials with an elastic stiffness more than 10 % of
that of the indenter and a yield strain higher than 1 %, as
well as to penetration depths less than ∼ 5 times the charac-
teristic tip defect length of the indenter. We experimentally
tested such a material (an amorphous alloy) by nanoin-
dentation. To describe the mechanical response of the test,
namely the force-displacement curve, it is necessary to con-
sider the combined effects of indenter tip imperfections and
indenter deformability. For this purpose, an identification
procedure has been carried out by performing numerical
simulations (using Finite Element Analysis) with constitu-
tive equations that are known to satisfactorily describe the
behaviour of the tested material. We propose a straightfor-
ward procedure to address indenter tip imperfection and
deformability, which consists of firstly taking account of
a deformable indenter in the numerical simulations. This
procedure also involves modifying the experimental curve
by considering a truncated length to create artificially the
material’s response to a perfectly sharp indentation. The
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truncated length is determined directly from the loading part
of the force-displacement curve. We also show that ignor-
ing one or both of these issues results in large errors in the
plastic parameters extracted from the data.

Keywords Nanoindentation · Indenter deformability · Tip
defect · Hard material · Stiff Material

List of symbols

E Young’s modulus
ν Poisson’s ratio
Yc Compressive yield strength
εc
y Compressive yield strain

ϕ Friction angle (Drucker-Prager yield criterion)
P Indentation force
δ Indentation depth
C Indentation loading pre-factor
�δ Indenter truncated length
R Indenter tip radius
β Indenter equivalent complementary angle
L Residual of the identification procedure

Introduction

The instrumented indentation technique (IIT) is a versa-
tile mechanical test that allows us to probe the mechanical
behaviour of materials [1]. It is commonly used to extract an
indentation elastic modulus by analysing the unloading part
of the force-displacement curve [2]. This technique can also
be employed to extract mechanical parameters from consti-
tutive equations aimed at describing the inelastic behaviour
of materials (plasticity, viscoplasticity. . . ) [3]. IIT can be
used at shallow depths of penetration (typically less than
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100 nm) with the aid of modern and powerful sensing
devices. This nano indentation technique offers the possibil-
ity to probe the mechanical behaviour at shallow depths in
fibres, thin films or in bulk brittle materials with a low load
to prevent the onset of cracking [1, 4]. In many studies mod-
elling IIT data, it is assumed that the indenter (commonly
diamond) will not deform during the test since the indenter
stiffness is generally much higher than that of the material.
This is the assumption made in most reverse analysis meth-
ods (see e.g. [5–8]). However, this classical assumption is
questionable when the material is either very hard (Meyer’s
hardness > 10 GPa) or very stiff (Young’s modulus > 100
GPa) or even both. This is the first issue examined here.

In some cases, IIT is used at very shallow depths of pen-
etration, for example on hard materials or coatings. This
raises an additional issue concerning the blunted tip of the
indenter. This type of tip defect can be neglected for IIT data
obtained at sufficient depths of penetration [9] but should be
taken into account at shallower depths. This issue becomes
even more important when the tip is used repeatedly so that
the size of the defect [9] is increased. In any case, at these
shallow depths, the material is indented by a blunt inden-
ter rather than a sharp one. In such cases, there is no longer
any geometrical similarity resulting in a parabolic behaviour
for the loading part of the force-displacement curve. In
other words, a length scale is introduced by the inden-
ter. Various methods [10–13] have been developed to take
into account of tip defects when estimating the material’s
stiffness by analysing the unloading part of the indenta-
tion curve. However, these methods are not transposable
for the determination of plastic parameters derived from
constitutive equations. Moreover, some numerical studies
[14] demonstrate the strong influence of the tip defect for
shallow penetration depths.

In this study, we first illustrate the issues of indenter tip
imperfection and deformability by using a carefully chosen
stiff and hard material. We then propose a way to cir-
cumvent the problems arising from indenter deformability
and show that this issue must be also taken account. The
originality of this paper is that it addresses simultaneously
both indenter imperfection and deformability and proposes
a dedicated procedure for extracting plastic parameters by
using IIT applied to a real material.

Experimental and Numerical Methods

Materials and Indentation Procedures

This study is based on an iron-based amorphous alloy
(or bulk metallic glass) with a nominal composition of
Fe41Co7Cr15Mo14C15B6Y2 (at. %). This material is chosen
here for the purposes of this study since it exhibits suitable

features: it is homogeneous, with an isotropic mechanical
behaviour, and does not show any length scale for the inden-
tation test or any cracking features. Moreover, it is hard, stiff
[15] and can be modeled easily and accurately by classical
plasticity models (assuming it behaves like Zr- or Pd-based
metallic glasses as in [16]). The glass transition temperature
is 838 K and the crystallisation temperature is 876 K [17].
The elastic properties of this material have been reported
elsewhere [18]. The Young’s modulus and Poisson’s ratio
are E = 226 ± 15 GPa and ν = 0.337 ± 0.023, respectively.
Instrumented indentation tests were carried out with a nano-
indenter testing device (TI950, Hysitron, USA) at ambient
conditions (23 ◦C and 55 % relative humidity). The inden-
ter tip is a modified Berkovich diamond pyramid. Based
on AFM (Atomic Force Microscopy, Bruker, Nanoscope V,
USA) imaging using a procedure described in [19], and a
standard indenter tip calibration method on a fused quartz
standard sample [10], we obtain an indenter tip radius value
of ∼ 260 nm.

Nano-indentation tests were carried out on a dedicated
sample, with a ‘10-10-10’ loading sequence: 10 s to reach
the maximum load Pm, 10 s of holding time, and 10 s to
unload the sample’s surface. The tests were load-controlled
and the Pm value was 10 mN. Due to the high reproducibil-
ity of the nano-indentation test on the glass surface, five
indents were performed. All imprints were free of cracks,
since the critical load for cracking is ∼ 5 N [18].

Numerical Procedures

Finite Element simulations of the indentation process were
performed using a two-dimensional axisymmetric model
with a sample and an indenter. The sample is divided into
a core zone, underneath the indenter tip, where the mesh is
fine, and a shell zone where the mesh is coarse. The core
zone is itself divided into a square zone with 32 × 32 square
elements and an outer zone with quadrangular elements (32
again along the axis z = 0). The shell zone is divided into
a transition zone and an outer zone, both with quadrangular
elements.

All elements are linear. The dimensions of the mesh are
chosen to minimize the effect of the far-field boundary con-
ditions. This is achieved by using a sufficient number of
outer elements in the shell zone. The typical ratio of the
maximum contact radius to sample size is about 2 × 103.
The indenter is modelled as a perfect cone exhibiting an
half-angle � = 70.29◦ to match the theoretical projected
area function of the modified Berkovich indenter. Its mesh
is the same as that of the sample with a geometrical trans-
formation accounting for the geometry of the indenter. The
indenter (in diamond) is assumed to be composed of an
isotropic, linear elastic material (Poisson’s ratio of 0.07 and
Young’s modulus of 1100 GPa). The contact between the
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indenter and the sample surface is ideal (in accordance with
Signorini conditions) and taken as frictionless. The con-
tact zone is situated along the core zone. The boundary
conditions correspond to a nil displacement on the outer
nodes of the sample, in addition to an axisymmetric con-
dition along the vertical axis. The force on the indenter, P

(taken as positive), is controlled and the displacement of
the indenter, δ (counted positively), is recorded far from its
tip. The boundary-value problem is solved using the com-
mercial software ABAQUSTM (version 6.10). The pre- and
post-processing tasks are performed with the Abapy tool-
box [20]. Details and views of the meshes are given in the
documentation associated with Ref. [20].

We assume that the constitutive behaviour of the stud-
ied iron-based amorphous alloy can be described in terms
of linear isotropic elasticity (parameters E - Young’s modu-
lus - and ν - Poisson’s ratio) followed by rate-independent
(with a plastic multiplier λ̇ in equation (1)) perfectly plas-
tic flow (no strain hardening) using a threshold defined by
a Drucker-Prager yield criterion (f in equation (1)) in the
stress space (σ∼ is the Cauchy stress tensor). The plastic flow

rule (ε̇∼
p in equation (1)) is assumed to be associated i.e. the

dilatancy angle is equal to the friction angle ϕ [21], and λ̇ is
the plastic multiplier :
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f
(
σ∼; Yc, ϕ

)
= σVM

eq − p tanϕ −
(

1 − tanϕ

3

)

Yc ≤ 0

ε̇∼
p = λ̇

∂f

∂σ∼
= λ̇

(
3

2

s∼
σVM
eq

+ 1

3
tr (σ∼) i∼

)

(1)

where s∼ is the deviatoric part of σ∼, σVM
eq =

√
3
2 tr

(
s∼ · s∼

)

the von Mises equivalent shear stress in tension, i∼ is the

second-order unit tensor, p = − 1
3 tr

(
σ∼
)
is the hydrostatic

pressure, tr is the trace operator, and Yc the compression
yield strength.

The use of such a constitutive model for metallic glasses
has already been discussed in the literature for example in
the case of Zr- or Pd-based metallic glass [22–25]. We do
not aim to show that the Fe-base alloy follows the same
behaviour but rather use a simple and robust constitutive
equation able to model accurately the experimental results.
Accordingly, the numerical values of the parameters are not
be discussed in detail in terms of the material’s behaviour.

To obtain a match between experimental and numerical
results (the force-displacement curves), we use an auto-
mated procedure for identifying material parameters based
on a hybrid method (Levenberg-Marquardt, gradient and
Newton-Raphson algorithms, SiDoLo software) [3]. Impos-
ing the same loading conditions (force versus time) as the
experiment, the square of the difference between the model

(sim) and the experimental values (∗) is evaluated at the Mq

instants of observation ti on the displacement δ, by the resid-
ual L for a given value of the set of material parameters
A = (Yc, ϕ):

L (A) = 1

Mq

Mq∑

i=1

(
δsim(ti) − δ∗(ti)

)2
(2)

The identification procedure consists of finding the minima
in L (A).

Another way to proceed would involve fitting both the
loading and unloading stages, the former with a parabola
(using one parameter, the loading prefactor C), the latter
by a power-law fit including the maximum load Pm, the
final depth δf and an exponent m (or using the ratio of
reversible and irreversible works to the total work [26]).
This alternative procedure was not adopted in the present
study.

Results and discussion

Experimental Results

The mechanical response of the indentation test is repre-
sented on a plot showing the force P vs. the displacement
δ (counted positively). Figure 1 presents the experimental
results obtained on the Fe-based glass. The curves obtained
are highly reproducible. A way to qualify the bluntness
of the tip, without imaging it by AFM, an issue raised in
“Materials and Indentation Procedures”, is to calculate a
truncated length [11]. The truncated tip defect length, �δ,
is obtained straightforwardly by plotting

√
P vs. δ for the

fused quartz reference sample or for the iron-based amor-
phous alloy, during the loading stage (increasing P ). This

Fig. 1 Force-displacement curves for the Fe-based metallic glass
under a nanoindentation test (five tests)
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curve should be linear with its origin at (0,0) for a perfect tip
(similitude regime, self similarity of sharp indentation, see
e.g. [4, 26, 27]). This is not the case for shallow depths of
penetration below ∼ 50 nm, so �δ was calculated by taking
the intercept of a linear fit of this curve for high values of δ,
as seen in Fig. 2. �δ is found to be ∼ 15 nm. The loading
prefactor C (the square of the slope at depths greater than
50 nm in Fig. 2) is found to be 274 ± 2 GPa.

Numerical Results

Estimation of initial material parameters

We use here the elastic parameters discussed above (E =
225 GPa, ν = 0.337). The compressive yield strength is esti-
mated taking the quasi-universal compressive yield strain
for iron-based alloys, which is εy ∼ 2 % [28] (for a reduced
temperature T(= 293 K)/Tg = 0.35), so that Yc = 4500
MPa. The friction coefficient is estimated at ∼ 10◦, which
is the value commonly found for metallic glasses [29].

Creating the material’s response for a perfectly sharp tip

To identify the material parameters of the constitutive equa-
tion, we will compare the numerical simulation results to the
experimental data. The latter are shifted to greater penetra-
tion depths by �δ. Such a method allows us to capture the
material’s response to IIT assuming a perfectly sharp inden-
ter. This comparison is nevertheless valid only for depths
greater than ∼ 2-3 times the tip defect. To our knowledge,
this method is not used for identifying plastic parameters
derived from numerical simulations.

Fig. 2 Plot of the square root of the force versus the indentation depth
during the loading stage of a 10 mN indentation test on the Fe-based
glass. A linear fit for depths higher than 50 nm (for which we are in
the similitude regime) is extrapolated down to the x-axis to give the tip
defect in terms of a truncated length �δ ∼ 15 nm

To assess this methodology, we present some numeri-
cal simulations (with controlled displacement), using a rigid
indenter with a blunted tip modelled as spherical with a
radius of 260 nm, in accordance with the experimental AFM
measurements and tip calibration described in “Materials
and Indentation Procedures”. Such a geometry is repre-
sented in Fig. 3. The spherical part (in red) and the conical
part (in blue) are joined so that they have the same slope at
point T. The tip defect length (td) is given by the radius of
the spherical tip (R = 260 nm) and the angle between the
horizontal axis and the conical part (β = 19.7◦). In our case
td is 16 nm. The vertical distance between the horizontal
axis and point T (zt ) is 15 nm.

The material is elasto-plastic (J2 plasticity without strain
hardening) with the parameters described above, apart from
the friction coefficient ϕ, which is taken as nil, and the max-
imum penetration depth is 292 nm. The fit of the loading
stage of the resulting force-displacement curve gives a trun-
cated length �δ of ∼ 15 nm in accordance with the tip
defect length td = 16 nm, as well as the AFMmeasurements
of this defect length (also 15 nm). Then, another simulation
is run but with a perfectly sharp indenter with a maximum
penetration depth increased by 15 nm i.e. 307 nm. Figure 4
reports the results of these two simulations, along with the
curve from the first simulation shifted by 15 nm to the
right. By comparing the sharp indentation with the shifted
blunted simulation, it is clear that the two curves are the
same for depths greater than 2-3 times the truncated length
�δ. This numerically validates the approach used to create
the material’s response to perfectly sharp indentation.

Fig. 3 Blunted indenter tip modelled as sphero-conical. The spherical
part (in red) and the conical part (in blue) are joined so that they have
the same slope at point T. The tip defect length (td) is given by the
radius of the spherical tip (R) and the angle between the horizontal axis
and the conical part (β). The vertical distance between the horizontal
axis and point T is zt
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Fig. 4 Numerical simulations (force-displacement curves) with a
rounded tip of 260 nm (in accordance with AFM measurements) at a
given arbitrary penetration depth δm = 292 nm and a perfectly sharp
tip (at a penetration depth δm + �δ, where �δ is the truncated length
(found by fitting the loading stage of the rounded tip simulation, here
15 nm). When shifted by �δ to greater penetration depths, the rounded
tip simulation yields results overlapping with those obtained with a
perfect tip. The inset indicates furthermore that this is only valid for δ

greater than ∼ 40 nm that is ∼ 2-3 times �δ

Taking into account the indenter tip defect
and its deformability

The experimental results (shifted by �δ) are shown along
with a numerical simulation with the identified parameters
(reported in Table 1, (d)). On Fig. 5, we can see a very close
match between the two reported curves. The very small
value of the residual (0.6) is also indicative of the quality of
the match. The identified parameters are in accordance with
literature results.

Table 1 Results of the four different identification procedures in
terms of material parameters. Yc (compressive strength) and ϕ (fric-
tion angle) are the identified plastic parameters (see equation (1));
εc
y = Yc/E is the compressive yield strain; L is the residual of the
identification procedure (see equation (2))

Yc [MPa] εc
y [ %] ϕ [ ◦] Residual L (a.u.)

(a) 5200 2.31 20 15

(b) 1835 0.816 41 26

(c) 5120 2.28 8 13

(d) 3690 1.64 22 0.6

Case (a) is when taking into account neither the indenter tip defect
nor its deformability. Case (b) is when taking into account only the
indenter deformability. Case (c) is when taking into account only the
tip defect. Case (d) is when taking into account both the indenter tip
defect and its deformability. Note that both E,Young’s modulus, and
ν, Poisson’s ratio are kept constant at 225 GPa and 0.337, respectively.

Fig. 5 Results of the identification procedure (d). When taking
into account the indenter deformability, the force-displacement curve
obtained from numerical simulations with the parameters found in
Table 1 (d), matches the experimental curve (shifted by the truncated
length �δ = 15 nm). The results of a direct simulation with the same
material parameters but with a rigid indenter highlight the dramatic
influence of indenterb deformability for hard and stiff materials

Using the same material parameters, another simulation
is presented considering this time with a rigid indenter.
The force-displacement curve is plotted on the same Fig. 5
exhibiting a stiffer response as expected. The loading pre-
factor, C, which is 274 GPa for the simulation with the
deformable indenter now becomes 301 GPa, with the rigid
one, that is 10 % higher.

We have then carried out three other identification proce-
dures:

– a first one, referred to as (a), without taking the
tip defect into account (therefore without shifting the
experimental data by the truncated length �δ) and with
a rigid indenter,

– a second one, referred to as (b), without taking the tip
into account but with a deformable indenter,

– a third one, referred to as (c), by taking the tip into
account (therefore by shifting the experimental data by
the truncated length �δ) and with a rigid indenter.

Table 1 and Fig. 6 show the results of these identifications
in terms of material parameters and residuals. None of these
three identification procedures is able to match the experi-
ments. The discrepancies are mainly explained by the failure
to take account of the tip defect (as in cases (a) and (b)).
This situation would become even more exacerbated for IIT
tests performed at shallower penetration depths. Moreover,
case (c) shows that it is insufficient to take the tip defect into
account while ignoring the indenter deformability.

We could explicitly take into account the tip defect for
analysis of the whole force-displacement curve [9, 30]. Such
an approach would involve imaging the real geometry of the
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(a) (b)

(c) (d)

Fig. 6 Results of the four different identification procedures in terms
of force-displacement curves (experiment versus numerical simula-
tion). Case (a) is when taking into account neither the indenter tip
defect nor its deformability. Case (b) is when taking into account only
the indenter deformability. Case (c) is when taking into account only
the tip defect. Case (d) is when taking into account both the indenter
tip defect and its deformability

indenter, exporting it to a computer-aided design software
and/or meshing it before running a Finite-Element analysis.
Although this procedure may appear straightforward, it is
nevertheless somewhat tedious and time-consuming since it
requires fine AFM imaging and a three- dimensional numer-
ical simulation. By contrast, the method proposed here is
much easier to apply and requires only a fit of the loading
step of indentation. As regards indenter deformability, we
need to use a deformable indenter in the numerical simu-
lations. The identification results of case (c) show that this
requirement is crucial.

Concluding Remarks

We performed instrumented nano-indentation tests on an
amorphous alloy (or metallic glass) of the FeC family.
This material is chosen since it is both very stiff (as steel)
and very hard (as single-crystal quartz), with isotropic and
homogeneous properties, exhibiting no length scale for the
range of penetration depths studied. Moreover, its mechan-
ical behaviour is known to be adequately described by sim-
ple constitutive equations involving a small number (two)
of plastic properties. We present an identification proce-
dure for extracting the plastic properties by minimising the
discrepancy between the experimental force-displacement
curve and the numerical simulation. The experimental curve
is modified to take into account the truncation of the inden-
ter tip by simply shifting the raw data to greater penetration
depths by an amount referred to as the truncated length,

which is readily determined by fitting the loading stage of
the force-displacement curve. The simulation is obtained
by performing Finite Element Analyses with a deformable
indenter. The identification procedure allows us to obtain
a perfect match with the experimental data, and the identi-
fied parameters are highly consistent with values expected
from the literature data. Moreover, this approach is validated
numerically. We also show that the identification procedure
fails when it does not take into account the tip defect or the
indenter deformability or both. The present results obtained
on a stiff and hard material clearly show the crucial impor-
tance of considering the tip defect of the indenter as well as
its deformability, when developing a constitutive model to
describe the mechanical response of indentation tests. The
results obtained with this particular material can be general-
ized. The higher the yield strain and the elastic stiffness, the
more important it is to consider the indenter as deformable.
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