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Abstract The use of Finite Element meshes in Digital
Image Correlation (FE-DIC) is now widespread in experi-
mental mechanics but, so far, FE have been much less used
in Stereo-DIC. The first goal of this paper is to explain in
detail how to use FE in Stereo-DIC by means of a formu-
lation in the world coordinate system. More precisely, the
paper describes how to calibrate possibly non-linear model
of cameras and to measure shapes and displacements with
an FE mesh. It also shows that, with such a framework, it
is possible to regularize the measurement with an FE model
based on the same mesh. For instance, using this technique,
it is possible to measure the rotation field of a bending plate
in addition to its displacement.

Keywords Digital image correlation · Stereovision · Finite
element · Mechanical regularization · Plate kinematics

Introduction

Digital Image Correlation (DIC) and Digital Volume Cor-
relation (DVC) [6, 11, 24] are now widely used in experi-
mental mechanics. These families of methods are intended
to measure 2D or 3D displacement fields from digital planar
or volume images, respectively. In their initial version, the
idea was to search for the best parameters of a given trans-
formation to register small independent subsets of pixels.
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In the context of experimental mechanics, the use of Finite
Elements in the framework of DIC/DVC (FE-DIC/DVC [2,
23]) has been extensively developed during the last decade.
Among the many advantages of this technique, the main
interest for the present work lies in the fact that it provides
a very simple bridge between experiments and simulations,
which is very convenient for validation [16] and identifica-
tion purposes [9, 14, 19] and for performing mechanically
regularized measurements.

Even in situations where 2D-DIC could be used, Stereo-
DIC is preferred for both its accuracy and its simplicity [5,
25]. Classically, the idea of Stereo-DIC is to use one stereo-
scopic image pair, f1 and f2, in a reference configuration
at t0 and a second pair, g1 and g2, at t0 + dt in a deformed
configuration, see Fig. 1.

The classical Stereo-DIC procedure involves a chain of
optimization problems:

Calibration: 1) find ex/in-trinsic parameters from a
set of images of calibration grids

Shape 2) find matching field d between
Measurement: reference images f1 and f2

3) triangulation: find X at t0 from x1 and
x2 = x1 + d(x1)

Displacement 4) find matching t between images f1
Measurement: and g1

5) find matching t′ between images f1
and g2
6) triangulation: find X at t0 + dt from
x′
1 = x1 + t(x1) and x′

2 = x1 + t′(x1)

Eventually, the 3D displacement is estimated by compar-
ing measured shapes: U = X′ − X. The drawback of this
classical Stereo-DIC formulation is that the displacement is
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Fig. 1 Main steps of a 3D
displacement field measurement
of a surface with classical
Stereo-Digital Image
Correlation. Pairings are in
green and triangulations in blue
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not the unknown of a single optimization problem as it is
the case with 2D-DIC and DVC. In this situation, the bridge
between measurement and simulation is less direct. In par-
ticular, it is not possible to apply mechanical regularization
in this framework.

In contrast to that on DIC and DVC, the literature on
FE-Stereo-DIC (or FE-SDIC) is much less prolific - cer-
tainly because the extension is not straightforward. The first
attempt was proposed in [22], where a theoretical FE mesh
was used to provide the displacement measurement solution
to one single problem defined in the world coordinate sys-
tem. In [22], this formulation is not fully exploited since it
is not used for calibration and shape measurement. A very
similar global stereo formulation based on IsoGeometric
Analysis (IGA) was proposed in [1, 3]. It is used not only for
the displacement measurement but also for the calibration
of a linear camera model and shape measurement.

In the present paper,we develop and give a detailed descrip-
tion of a general framework covering all the aspects of
FE-Stereo-DIC. It consists of a formulation in the world
coordinate system that makes it possible to calibrate a stereo
rig (with possibly non-linear camera models), to measure
the actual shape of the specimen and to measure the dis-
placement field, using an FE interpolation. A technique is
proposed for building the minimal number of integration
points in this context. In addition, it becomes possible to
add a regularization based on an FE mechanical model.
For instance, the method is illustrated with a measurement
of the kinematic fields of a bending plate; in this case, the

meaning of kinematic field includes not only displacements
but also rotations.

In “Rewriting the Stereo-DIC Problem in the World
Coordinate System with Finite Elements” the three prob-
lems of calibration, shape measurement and displace-
ment measurement will be rewritten as three optimization
problems where the unknowns are the intrinsic/extrinsic
parameters, the shape, and the 3D displacement. Then, in
“Stereo-DIC and Plate Regularization (R-FE-SDIC)”, it will
be shown that, with the proposed framework, it is possible
to directly add a constraint of regularity such as a mechan-
ical regularization term. It will also be shown that the use
of a plate model in the regularization is likely to provide
accurate rotation fields. Finally in “Application”, both a
synthetic and a real test case will be presented in order to
illustrate the efficiency of the method, the effects of the
parameters, and the method’s robustness with respect to
noise.

Rewriting the Stereo-DIC Problem in the World
Coordinate System with Finite Elements

This section contains the three parts of the measurement of
a 3D displacement in the reference system RW described
by the mesh. With an FE mesh, the theoretical shape
does not necessarily correspond to the real one. Therefore,
a displacement measurement needs two preliminary steps
(Fig. 2).

Fig. 2 Steps of the new Stereo-DIC formulation with a Finite-Element mesh (FE-SDIC): (a) first guess of the theoretical CAD mesh plate (black)
on the real (a priori unknown) plate (green) before any calibration or shape measurement. (b) Calibration of the extrinsic parameters by DIC (with
fixed 3D points X). (c) Shape measurement (with fixed parameters pc). (d) Temporal measurement of the 3D displacement U (from the black
position of the mesh to the red one)
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Firstly, cameras have to be located in the world coor-
dinate system. This is called the extrinsic parameters
calibration but intrinsic parameters can also be optimized
according to the mesh used (“Calibration of Extrinsic and
Intrinsic Parameters”). Then, the mesh shape has to be cor-
rected: the projections of each point of the mesh in the two
cameras (with their projectors Pc) have to be stereo-matched
(the corresponding grey-levels must be equal). This is the
shape measurement step (“Shape measurement with an FE
mesh”). A very similar approach has already been published
in [1] for a CAD-based shape measurement with NURBS.
Finally, the 3D displacement between two steps can be
measured (“3D displacement measurement”).

Calibration of Extrinsic and Intrinsic Parameters

In this study, since the method is based on a Gauss-
Newton algorithm, the calibration has to be initialized with
the Stereo Software Vic-3DTM. The calibration consists
of finding all parameters pc of each camera’s projector
Pc:

– Six extrinsic parameters in order to find the posi-
tion of the camera’s reference system in RW : three
translations and three rotations.

– Four linear intrinsic parameters in order to project a
point from the camera to its image : two focal lengths
(fu, fv) and two centres of image (cu, cv) along the
horizontal, u, and vertical, v, directions.

– At least two non-linear intrinsic parameters : the first
order of radial distortion κ and the skew angle.

More details on the non-linear models of cameras can be
found in [5, 17]. In this paper, the intrinsic parameters are
initialized with Vic-3DTM. The first problem is to find the
extrinsic parameters in order to locate the 3D Finite Ele-
ment mesh (considered rigid) as close as possible to the real
surface, which is unknown. In the following, pc denotes the
extrinsic parameters of the projector Pc associated with the
image fc (the intrinsic parameters are fixed). For the sake
of simplicity, we first consider a standard stereo bench, i.e.
c = {1; 2}. The parameters pc are assessed by minimizing
the following objective functional based on the grey-level
conservation assumption:

p�
1, p

�
2 = argmin

p1,p2

∫
�

[
f1 (P1(X,p1))−f2 (P2(X,p2))

]2
dX

(1)

whereX stands for a 3D point located on the visible surface,
�, of the specimen.

As mentioned previously, the quadrature is performed
in the 3D domain and one image is not preferred over
another (there is no concept of master-slave), each cam-
era being treated symmetrically. This non-linear problem is
solved with a Newton algorithm. At iteration k, parameters
p = [p1, p2]T are sought in the form pk+1 = pk + δp. After
linearization and differentiation, the problem reads:

Mk
ext δp = bk

ext

⎧⎨
⎩

Mk
ext,ij = ∫

�

(
∂P1
∂pi

∇f1 − ∂P2
∂pi

∇f2

) (
∂P1
∂pj

∇f1 − ∂P2
∂pj

∇f2

)T

dX

bk
ext,i = − ∫

�

(
∂P1
∂pi

∇f1 − ∂P2
∂pi

∇f2

) (
f1

(
P1(X,pk

1)
) − f2

(
P2(X,pk

2)
))

dX

where ∂Pc

∂pi
are the projectors Pc gradient with respect to

the extrinsic parameters (even with a non-linear model, an
analytical expression is known). ∇fc is image fc gradi-
ent at Pc(X,pk

c) which depends on pc. This means that the
operatorMk

ext has to be re-assembled at each iteration.
For a gradient algorithm, the initial guess should be close

to the solution. The first guess can be obtained “by hand”
by selecting some points in each image and on the mesh.
(It would also be possible to detect at least three particular
points with a pattern recognition algorithm.) Then, a small
non-linear problem has to be solved. This problem has the
same expression as the bundle adjustment (2) [28] but, here,
X, x1, x2 = x1 + d(x1) are fixed and only the extrinsic
parameters are sought:

p�
1, p

�
2 = argmin

p1,p2
‖P1(X, p1)−x1‖22+‖P2(X,p2)−x1−d(x1)‖22 (2)

In order to illustrate these steps, Fig. 2(a) shows the first
guess of the position of the mesh on the real surface.
Figure 2(b) is the situation after the extrinsic calibration
(equation (1)). In these two steps, the mesh X is consid-
ered fixed in its reference system and the goal is to position
this system as close as possible to the unknown surface by
finding the rigid translations and rotations.

In ref. [1], some intrinsic parameters of linear camera
models are estimated using the same framework (using the
speckle pattern of the specimen only). However, the mea-
surement of a least one distance is needed to obtain an
absolute estimate of, for instance, the focal length. Here,
the model of the camera is more complex (non-linear with
distortions) and the initial mesh is flat. Thus, intrinsic
parameters cannot be optimized at the same time as the
extrinsic ones. The idea would be to release all intrinsic
parameters once the extrinsic are optimized. The functional
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is the same (equation (1)) but with pc containing only
intrinsic parameters (cu, cv, fu, fv, κ, skew) (the extrinsic
parameters are now fixed). It is possible to iterate these
optimizations alternately.

In practice, and in order to be more generic, we decided
to calibrate the intrinsic parameters using classic planar cal-
ibration targets. This step was achieved using Vic-3DTM. It
was verified that these parameters were very close to the
local minimum of the above grey-level-based functional.

Shape measurement with an FE mesh

Once all the cameras’ parameters pc are known (and opti-
mized), the shape has to be corrected. Measuring the
shape means finding the position X that verifies grey-level

conservation. Here, it is verified between the reference
images of the two cameras . The method used is the same
as for the camera parameters but the unknowns are the 3D
positions X:

X� = argmin
X

∫
�

[
f1 (P1(X,p1)) − f2 (P2(X,p2))

]2
dX

(3)

At iteration k, the estimate of the position is written Xk+1 =
Xk + δX, where the displacement correction δX is sought in
the finite element subspace with δX = ∑

i Ni (X)qi :

Mk
shapeq = bk

shape

{
Mk

shape,ij = ∫
�
NT

i (∇P1∇f1 − ∇P2∇f2) (∇P1∇f1 − ∇P2∇f2)
T Nj dX

bk
shape,i = − ∫

�
NT

i (∇P1∇f1 − ∇P2∇f2)
(
f1

(
P1(Xk, p1)

) − f2
(
P2(Xk, p2)

))
dX

where ∇Pc are the projectors’ spatial gradients which have
an analytical form. As for the calibration, the operator
Mk

shape has to be re-assembled at each iteration. After con-
vergence, an estimate of the real shape is obtained (see
Fig. 2(c)).

Remarks:

– Since this is based on a Gauss-Newton algorithm, the
algorithm requires an initialization step. Usually, a
multigrid initialization with pixel aggregation (coarse
graining) is used [18]. However, unlike what is usu-
ally done in 2D-DIC, where this step is carried out
with a coarse mesh, here the same mesh is used with
a decreasing Tikhonov regularization in order to avoid
3D projection of fields from one mesh to another.

– As noted previously, Mk
shape has to be re-assembled at

each iteration. This induces a significant cost because,
here, the reference images of all cameras are compared
by pairs. For n cameras, there are n(n−1)

2 pairs of cam-
eras. On the other hand, in [4], a reference object ˆf with
an intrinsic texture is created, and all images are com-
pared to ˆf, which is faster when the number of cameras
is four or more because only n pairs are considered.

Regularization As always in DIC, this problem is ill-
posed. With the classical approach, there are two unknowns
(the components of the left-right disparity field, d, on the
image) for only one scalar equation (grey-level conserva-
tion). Here, a 3D field is sought, which means that, for the
same number of equations, there is one more unknown. In
problem (3), the mesh can slide along the surface of the
object. There can be global sliding (see Fig. 3(b)) which

implies that the dimension of the operator’s kernel is at
least 3 (sliding along two surface directions and one rota-
tion). But in the formulation, the problem is even harder
because each node can move relatively to another (see
Fig. 3(c)) without changing the value of the functional.
Thus, a higher degree of regularization has to be added to the
functional.

For the local sliding, an isometric constraint can be
imposed, like a Tikhonov regularization term:

δX� = argmin
δX

∫
�

[
f1(P1(X + δX,p1))

−f2(P2(X + δX,p2))
]2

dX + λ ‖δX‖2K

where the norm ‖ · ‖K can be associated with a mechani-
cal operator K (truss, stiffness or Laplace). One advantage
of using SDIC with NURBS [1] is that only a few con-
trol points are necessary to describe a surface that indirectly
regularizes the problem. So the shape interpolation can be
uncoupled from the displacement interpolation, which can
be refined without modifying the shape. In FE, this uncou-
pling is not possible and the same mesh is used for both
shape and displacement measurement. Thus, it must be
regularized externally.

However, both NURBS and FE approaches are subject
to global sliding. The previous regularization does not pre-
vent that problem. These shifts are particularly visible when
iterating alternately between the optimization of the camera
parameters and the shape measurement.

To avoid these shifts and restore the uniqueness of the
problem, it was decided to seek the correction of the nodal
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Fig. 3 Illustration of the
ill-posed problem of shape
measurement. (a) Theoretical
position of the mesh after
calibration and shape
measurement. (b) Global or (c)
Local sliding during the shape
measurement

displacement along the normal to the surface [13]. The prob-
lem then has only one degree of freedom (dof ) per node.
In practice, the surface normal is estimated at each node
(average of the neighbouring element normals) in the initial
shape of the mesh.

3D displacement measurement

Once the real shape (thus, the real mesh) is known, it is pos-
sible to measure the 3D displacement U between two steps
(t0 and t0 + dt). Unlike classical Stereo-DIC, the three opti-
misation problems are turned into a single problem where
U is the only unknown. The main idea for this reformula-
tion is to work only in the 3D mesh, chosen to be the world
coordinate system RW . All problems are written in this 3D
coordinate system and weak-form integrals of the grey-level
conservation are also in RW .

For each 3D point X, the projector Pc gives a point x in
the image. Obviously, it is also possible to have the projec-
tion of the displaced point X′ = X + U(X) (at t0 + dt) in
the images of the deformed configuration gc (see Fig. 4).

The point X is projected on the reference image fc and
X′ is projected on the image gc. Their grey-levels should be
equal for each camera c. Thus, the functional reads:

U� = argmin
U

∑
c

∫
�

[
fc (Pc(X,pc))

−gc (Pc(X + U(X),pc))
]2

dX (4)

which is just the grey-level conservation equation for each
camera. This corresponds to the vertical pairing in Fig. 4.
Each term of each camera being independent, it is possible

Fig. 4 3D displacement
measurement in Stereo-DIC
with a finite element based
method (FE-SDIC)
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to consider more than two cameras [4]. Such a formula-
tion in the world coordinate system was first introduced in
[22]. The benefit is that each camera is used symmetrically.
At iteration k, a correction of the 3D displacement field is
introduced: Uk+1 = Uk + ∑

i Ni (X)qi and the problem
reads:

(∑
c

Mc,k
dic

)

︸ ︷︷ ︸
Mk

stereo

q =
(∑

c

bc,k
dic

)

︸ ︷︷ ︸
bk

stereo

{
Mc,k

dic,ij = ∫
�
NT

i (∇Pc∇fc)(∇Pc∇fc)
T Nj dX

bc,k
dic,i = ∫

�
NT

i (∇Pc∇fc)
(
fc(Pc(X, pc)) − gc(Pc(X + Uk,pc))

)
dX

Remarks:

– Both the left and right hand sides are sums of the
independent operators on each camera. This implies
that this problem can be parallelized as in the domain
decomposition method in 2D-DIC [15].

– Like shape measurement, this algorithm needs an ini-
tialization step, such as a multigrid initialization based
on pixel aggregation (coarse graining), and a Tikhonov
regularization with a Laplacian operator.

– The correlation operator Mk
stereo depends on the dis-

placement (because of the gradient of the projectors
∇Pc(X + Uk)), which means once again that it should
be re-assembled at each iteration. In practice, this is
not done because the multigrid initialization is close
to the actual displacement. Thus, no significant differ-
ence is found between the situations with or without
re-assembling (except that the former is far more time
consuming).

To avoid a time drift of the pairing, it is also possible to
introduce an additional term that minimizes the difference
of grey-level between the images of the deformed config-
uration gc at t0 + dt taken in pairs (this corresponds to a
horizontal pairing in Fig. 4):

U� = argmin
U

∑
c

∫
�

[
fc (Pc(X),pc) − gc (Pc(X +U(X), pc))

]2
dX

+
∑

c

∑
e<c

∫
�

[
gc (Pc(X+U(X), pc))−ge (Pe(X+U(X), pe))

]2
dX

(5)

The pairing at t0 is already verified with the calibration and
the shape measurement. Of course, with this last term, a
non-negligible cost is added when more than two cameras
are used.

Quadrature In all the previous equations, quadrature was
performed in the 3D world coordinate system and not on

the images as with classical DIC. So a dedicated quadrature
method had to be set up. In contrast to simulation where
a Gauss method is efficient, here, the integrand involves
the greyscale gradient, which has a very short variation
length. A Riemann integral method was therefore cho-
sen by splitting each finite element homogeneously and
homothetically. This choice has been proven to be more
accurate [17]. In practice, a smaller number of points can
be built with equivalent accuracy. This method considers
an inhomogeneous partition of quadrangles and triangles
in the isoparametric coordinate system, built by homoge-
neous partition of the two smallest edges. In Fig. 5, we
show that such a technique significantly reduces the num-
ber of integration points. According to our tests, with this
method, there is rarely more than one integration point per
pixel.

Remark In this work, this formulation in the 3D coordinate
system is needed in order to add a mechanical regularization
term to the Stereo-DIC measurement. However, this is also
interesting in 2D-DIC [17] for two reasons:

– The pixel based quadrature does not integrate a constant
function accurately. The area of an element is approx-
imated by an integer number of pixels and depends
on the point of view of the camera. Even the shapes
of the elements are not accurate because of the linear
approximation of the element edges: with distortions
the projection of a segment is not necessarily linear.
This has little impact on the standard uncertainty of the
measurement but can improve the systematic bias by an
order of magnitude, even with a simple linear model of
the camera.

– A more complex model of the camera with distortions
can be used which drastically decreases measurement
uncertainties. This is useful when identifying param-
eters with a FEMU method based on displacement
(FEMU-U). It is also an essential method for crack
propagation based onWilliams series if it is not possible
to use a telecentric lens.

Stereo-DIC and Plate Regularization (R-FE-SDIC)

Once the 3D displacement is the only unknown, it is easier
to add a regularization term. The idea is not only to make a
measurement, but also to filter it with a mechanical model.
This is very important when trying to measure rotation fields
accurately.

Furthermore, for a plate or shell model, not only displace-
ments but also rotations at the mid-surface are considered
(see Fig. 6). The 3D displacement,U, measured with Stereo-
DIC is the displacement of the observed surface, i.e. the
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Fig. 5 Example of a different quadrature rule in the isoparametric coordinate system in order to find as few integration points as possible

top one. Here, we propose a method for measuring the
mid-plane unknowns directly.

Plate kinematic regularization

With a plate theory (such as the Mindlin-Reissner theory of
plates), a simple linear projector � can be used to deter-
mine the displacement of the upper skin depending upon
the displacements V and rotations θ of the mid-surface.
By extension and for the sake of simplicity, the vector of
unknowns containing displacements and rotations of the
mid-surface is denoted by V.

U = �V ⇔
⎡
⎣ Ux

Uy

Uz

⎤
⎦ = �

⎡
⎢⎢⎢⎢⎣

Vx

Vy

Vz

θx

θy

⎤
⎥⎥⎥⎥⎦

Fig. 6 Representation of a 3D plate or shell of thickness h. The 3D
displacement U measured with an optical bench is on the observed
surface whereas the plate or shell model considers displacements V
and rotations θ at the mid-surface

Then the Stereo-DIC problem can be written:

V� = argmin
V

1 − λm

αv

∑
c

∫
�

[
fc (Pc(X,pc))

−gc (Pc(X + �V(X),pc))
]2

dX

+λm

αm

‖KV‖22 (6)

where the unknowns are not only the displacement of the
upper skin, U, but also the five degrees of freedom, V,
of the mid-surface. αv and αm are weighting coefficients
for vision and stiffness terms. Thus, λm is a dimension-
less coefficient for the mechanical regularization term, set
between 0 and 1 (see “Regularization coefficients”). Finally,
K is a regularization matrix since, when two unknowns are
added per node, a regularization term is needed. Due to the
formulation in the world coordinate system, the real 3D dis-
placement is the unknown of the problem. Thus, it is easy to
add a mechanical operator (such as KV = F for an elastic
deformation) in order to regularize the functional. However,
for the present study, it is not possible to obtain the external
forces. Thus, the stiffness matrix K is replaced by K, a reg-
ularization matrix defined by K = PkK with Pk a diagonal
matrix (7). The latter could be Boolean but, in this study, Pk
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is used to weight some dofs (e.g. to weigh the influence of
rotations with respect to the membrane behaviour):
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

P
ij
k = 0 ∀j �= i

P ii
k = 0 for all dofs on the non-free edges

P ii
k = 0 for the membrane dofs related to Vx and Vy

P ii
k = 1 for the dofs related to Vz

P ii
k = 1

h2
for the dofs related to θx and θy (h being the element size)

(7)

Thus, K is a matrix containing all dofs except those sup-
ported by the nodes that are concerned with Dirichlet
boundary conditions [20].

At iteration k, the problem reads:
[
1 − λm

αv

�T Mk
stereo �+ λm

αm

K
T
K

]

︸ ︷︷ ︸
MK

δq = 1 − λm

αv

�T bk
stereo − λm

αm

K
T
K q0

Remark Replacing K by K means no regularization on
the degrees of freedom of the non-free edges. Thus the
behaviour of the nodes of these edges is only towed by the
vision term. However, in this study, a plate model is used,
which means that the unknowns are 3 displacements and 2
rotations at the mid-plate surface. An additional difficulty
arises due to the fact that each dof on the non-free edges
implies a singularity in MK. On the one hand, if these dofs
are not taken into account, the problem cannot be solved. On
the other hand, if they are removed fromMK the associated
nodes are clamped. Thus, there is a difficulty, which will be
solved in “Mechanical and Tikhonov regularization”, espe-
cially for the rotations, as the displacement dofs can be
considered inMk

stereo but the rotation dofs cannot.

Mechanical and Tikhonov regularization

To overcome the absence of mechanical regularization on
the non-free edges (particularly for rotations of these nodes
in question), it is possible to add a Tikhonov regularization
term (minimization of a Laplacian term):

V� = argmin
V

1 − λm − λt

αv

∑
c

∫
�

[
fc (Pc(X,pc))

−gc (Pc(X + �V(X),pc))
]2

dX

+λm

αm

‖KV‖22 + λt

αt

‖�V‖22 (8)

which gives:

[
1−λm−λt

αv
�T Mk

stereo � + λm

αm
K

T
K + λt

αt
TT T

]
δq

= 1−λm−λt

αv
�T bk

stereo − λm

αm
K

T
K q0 − λt

αt
TT T q0

where T is the Tikhonov matrix corresponding to the Lapla-
cian term, αt is a weighting coefficient and λt is a second
dimensionless coefficient for this regularization term, set
between 0 and 1 with respect to λm (see “Regularization
coefficients”). In concrete terms, each node excluded from
K will be associated with a zero eigenvalue. Adding the
Laplacian term amounts to imposing the condition that these
nodes adopt a behaviour similar to that of their neighbours.

Remark The normalization coefficients αv and αm are
computed with the initial guess of the displacement U0. For
αt , since any non-zero value would be appropriate, it is set
to 1. The coefficients are defined by:

⎧⎪⎨
⎪⎩

αv = U0T
Mk

stereoU
0

αm = U0T
K

T
KU0

αt = 1

Application

Synthetic test case

In order to quantify the measurement error with the reg-
ularization method described, the goal here is to create
some synthetic images for a plate test case. A pair of
real images taken during a test is used (Fig. 8). The
plate size is 26.5 × 26.5 cm2. Both cameras being cal-
ibrated, the two projectors Pc are known. On the initial
plate, for each camera c, the 3D reference points of the
plate Xr = (X, Y, 0)T are also known. It therefore suf-
fices to determine the displaced points (according to a
plate model) corresponding to each reference point to cre-
ate a new image. According to the small strain and small
displacement assumption, each point originally located at
position Xr = (X, Y, 0)T will be moved to the point
Xd = (X, Y, p(X, Y ))T with p a function giving the out-
of-plane position of a point according to a chosen plate
model. Thus, for all pixel positions x of the new image, two
unknowns (X, Y ) are sought as the solution to a system of
two equations that can be solved with a Newton algorithm
(Fig. 7(a)):

Pc((X, Y, p(X, Y ))T ) − x = 0

Then, it is known that this displaced point was originally
located at position Xr = (X, Y, 0)T (Fig. 7(b)). It is thus
possible to create a synthetic image of a deformed configu-
ration by interpolating the grey-level of the reference image
fc at the pixel x by projecting the reference 3D point Pc(Xr )

(Fig. 7(c)).
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Fig. 7 Creation of a synthetic
image of a deformed
configuration gc with a plate
model p. (a) search for the 3D
displaced point Xd that
corresponds to the pixel x
according to a plate model p. (b)
projection of this displaced
point onto the initial shape in
order to find the reference 3D
point Xr . (c) interpolation of the
reference image to associate a
grey-level with the pixel x of the
new image gc

(a) (b) (c)

With this method, a pair of synthetic images is created
for a bending plate study (Fig. 8). It is then possible to com-
pute the measurement error by comparing the measure to
the prescribed model p.

Influence of the mesh size

The idea here is to calculate the measurement error accord-
ing to the mean size of the elements of an FE mesh. Both
FE-SDIC and R-FE-SDIC (regularized, here with a plate
model) are used. Figure 9 presents the standard deviation
of the error with both methods when measuring the out-of-
plane displacement Vz and the rotation θy . For the latter,
with an FE-SDIC method, only the 3D displacement of
the upper skin U is measured and the rotations are calcu-
lated using the derivative of the out-of-plane displacement
Uz = Vz.

It can be seen in Fig. 9(a) that, when the mesh size
decreases, the measurement error also decreases due to the
“FE error” until a mean element size of approximately
10 mm is reached. Then, because of a lack of pixels in the
projected elements, the error increases, which corresponds
to the “DIC error”. In contrast, it can be noted, in blue, that
thanks to the mechanical regularization, the error does not
increase. Figure 9(b) shows that it is possible to measure the

rotations directly, regardless of the mean element size. Also,
as expected, the derivative of the measured field (in red) is
noisier than the measured rotation field (in blue).

Noise robustness

It is also possible to study the behaviour of measurement
uncertainties if a different level of noise is added when cre-
ating the synthetic images, cf. Fig. 10. For that purpose,
we added zero-mean white Gaussian noise with an increas-
ing standard deviation ranging from 1 to 8 grey-levels. The
measurement with mechanical regularization is much more
robust relative to noise.

Remarks:

– In this study, the image noise was estimated to be
less than 3 grey-levels (Allied Vision Pike FireWire 5
Megapixels).

– No filtering algorithm was used in this work. The only
regularisation was based on the use of a mechanical
operator.

Regularization coefficients

Obviously, the result of such a measurement depends on the
parameters λm and λt used. They are the cut-off wavelength

Fig. 8 Real images of a plate in
bending. Reference images of
left (a) and right (b) camera
used to create synthetic images
with a plate model p. The plate
size is 26.5 × 26.5 cm2
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Fig. 9 Standard deviation of the
error on the out-of-plane
displacement Vz (a) and the
rotation θy (b) for different sizes
of mesh. This is computed with
both methods: FE-SDIC (red)
and R-FE-SDIC regularized
measurement using a plate
model (blue)

of low-pass filters [8, 10, 21]. Usually, parameters of this
kind are set between 0 and 1 (equation (9)). Thus, the three
terms of (8) are normalized with αv , αm and αt .

⎧⎪⎪⎨
⎪⎪⎩

0 ≤ 1 − λm − λt︸ ︷︷ ︸
λvision

≤ 1

0 ≤ λm ≤ 1
0 ≤ λt ≤ 1

(9)

Thus, different values of λm can be used in order to study
the measurement error. Without mechanical regularization,
a displacement can be observed but a rotation cannot. Thus,
the rotation measurement with a low value of λm, corre-
sponding to a low mechanical regularization, should not be
less accurate than with a larger regularization coefficient.
But, as can be seen in Fig. 11(a) and (c), it is hard to find the
optimal parameter, especially when looking at the rotation.
The simplest way to find it, for such an approach, is to draw
an L-curve [7, 12] that represents both DIC and Mechani-
cal residual. The optimal parameter will naturally be at the
corner of the L-curve (cf. Fig. 11(e)).

On the other hand, the parameter λt aims to take account
of the degrees of freedom with a Dirichlet condition. At

first view, it might seem that setting this parameter to any
non-zero value would suffice: λt �= 0. Yet it can be seen
in Fig. 11(b), (d) and (f) that this parameter does have
an impact on the measurement. In fact, the weight of this
coefficient has an influence on the boundary. And since
boundary displacement uncertainty has a tendency to spread
in the mechanically regularized region, it has an effect on
the solution [8].

Real test case

The same measurement is now carried out with real images.
As expected, the measurement of the rotation by R-FE-
SDIC (FE-Stereo-DIC mechanically regularized with a
plate theory) is more accurate than without mechanical
regularization, because the latter (FE-Stereo-DIC) is the
numerical derivative of a measured field (cf. Fig. 12).

The main advantage of a Stereo method based on the
world coordinate system is that it is possible to use a real
mesh. In a classical FE-SDIC method, the mesh has to be
adapted to the measurement. Here, the goal is to adapt the
measurement in order to set up a real dialogue between
experiment and simulation. The mesh chosen for a simula-
tion can also be used for a measurement. For example, the

Fig. 10 Standard deviation of
the error on the out-of-plane
displacement Vz (a) and the
rotation θy (b) versus the
standard deviation of the noise.
This was computed with both
methods: FE-SDIC (red) and
R-FE-SDIC regularized
measurement using a plate
model (blue)
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Fig. 11 Schemes for studying
the influence of λm (left) and λt

(right). Standard deviation of
the error when measuring the
out-of-plane displacement Vz (a,
b) and the rotation θy (c, d) for
different values of λm and λt .
This is computed with the R-FE-
SDIC measurement regularized
with a plate model (blue) and
the value corresponding to the
FE-SDIC method is plotted
(red) for comparison. L-curve
(e, f) of both parameters in order
to minimize both DIC and
Mechanical residual

mesh can be refined in the centre for a potential defect (cf.
Fig. 13). In this figure, the shape measurement is compared
to the shape computed by Vic-3DTM. It can be seen that the
point cloud resulting from Vic-3DTM is close to the mesh
except at the boundary, where the Vic-3DTM shape is not
available.

With this kind of mesh, even the displacement field com-
puted without regularization would not be correct because
of the mesh refinement at the centre (cf. Fig. 14).

The quality of these results is verified, by looking at Vic-
3DTM measurements of the same images sets. For example,

in Fig. 15, the out-of-plane displacement fields Vz were
measured by Stereo-DIC (Vic-3DTM) with two subset sizes
(and associated steps) in order to compare the results with
small or large subsets equivalent to the small and large
elements of the mesh of Fig. 13.

It can be noticed that the noise level in the out-of-
plane displacement measured by standard DIC code is
comparable to the one measured by FE-SDIC without
mechanical regularisation. In the center of the mesh where
the elements are smaller, the level of noise is compara-
ble to the one when using small subsets size. The same
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Fig. 12 Comparison of the measurement of the displacement Vz (a) or the rotation θy (b) with different approaches : FE-SDIC (red) or R-FE-SDIC
(black)

Fig. 13 Shape of a large plate measured by SDIC during an actual experiment. A suitable mesh was devised to provide a better resolved FE-SDIC
measurement around a potential defect located in the centre of the plate. The FE-SDIC shape measurement (mesh) is compared to a classical
SDIC shape measurement (Vic-3DTM: point cloud)

Fig. 14 Comparison of the
out-of-plane displacement fields
Vz measured by FE-SDIC
without regularization (a), or
R-FE-SDIC with regularization
(b)

Fig. 15 Comparison of the
out-of-plane displacement fields
Vz measured by Stereo-DIC
(Vic-3D) with two subset sizes:
(left) a small subset size
comparable to the small
elements of the mesh of Fig. 13;
(right) a large subset size
comparable to the large
elements of the mesh of Fig. 13

(a) small subset size (b) large subset size
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conclusion holds for larger elements and subset size. Thanks
to FE-SDIC, it is possible to further regularize the mea-
surement when using mechanical regularisation as shown in
Fig. 14.

Conclusion

A full stereovision framework for measuring the 3D shape
and displacements using a Finite Element mesh has been
developed. The formulation incorporates a grey-level-based
calibration step extended to non-linear camera models. It
has been shown that, unlike stereovision using NURBS
functions [1], the shape measurement is very ill-posed and
requires additional regularization. For that purpose we used
a type of isometric constraint. Thanks to this formulation
in the world coordinate system, the same FE mesh can be
shared between both numerical simulation and measure-
ment. It is thus a good tool for performing quantitative
comparisons between non-planar experiments and corre-
sponding simulations, which are most often based on Finite
Elements [26, 27]. In addition, a technique has been pro-
posed to build the minimal number of integration points in
such a context.

As an application, themethodwas used for themeasurement
of the displacement and rotation fields of a plate in bend-
ing, using a mechanical regularization based on the elastic
stiffness operator associated with the FE mesh. In addi-
tion, stereo synthetic test cases were developed and anal-
ysed in order to exemplify the efficiency of the proposed
method.
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