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Abstract Correlation of modern finite element methods
(FEM) with advanced experimental techniques for elastomers,
biomedical materials, and living organs requires study and
modification of the behavior of these materials. In this study,
the mechanical behavior of a commonly-used elastomer, sili-
cone rubber, which provides excellent biocompatibility, was
examined under different applied loading configurations, and
large deformations were investigated through both experiment
and simulation. The stress-strain behaviors of silicone rubber
were tested, using multiple homogeneous experiments, includ-
ing uniaxial extension and equibiaxial tension, the load-apex
displacement response, and digitized deformed shapes of two
of the most-used structures for nonlinear hyperelasticity—the
inflation of a clamped circular membrane, and indentation of
the membrane by a spherical indenter. Uniaxial and equibiaxial
data were evaluated simultaneously, characterized by various
constitutive models for implementation in the FE simulation.
These constitutive models examined the prediction of the FE
simulations for the inflation and indentation tests in compari-
son to the results of experiments at various load-apex displace-
ment levels. The results showed that the constitutive models
calibrated with the uniaxial and equibiaxial tests, predicted
nearly the same results as the actual experimental results, par-
ticularly for the applied loads that generated moderate strain.
However, when the FE simulations based on the constitutive
models were adjusted, employing only uniaxial or equibiaxial

tests, they predicted different results, where the degree of their
correlations with experimental results was incomplete or in
some states simply poor. The simulations suggested that the
inverse FE procedure should not be restricted to the choice of
material models, while more attention should be given to the
choice of ranges of deformation.

Keywords Finite deformation elasticity . Uniaxial and
equibiaxial data . Inflation and indentation test . Biomedical
elastomer . Finite element simulation

Introduction

Since the significant theoretical studies of Adkins and Rivlin
in 1952 and the onset of industrial applications of rubber ma-
terials, numerous engineers have developed constitutive
modeling, experimental efforts, and finite element analysis
of these materials. Among the well-known experiments con-
ducted for calibration of unknown properties of elastomers,
there are three desirable elastomeric configurations: inflation
of a rubber membrane by injecting gas or fluid, indentation of
a thin rubber by a spherical, flat, cylindrical, or conical indent-
er, and indentation of an elastic half space. Treloar [1] carried
out a comprehensive investigation on shapes and strain distri-
butions at various degrees of inflation. Adkins and Rivlin [2]
developed a comprehensive theoretical framework for these
experimental observations. They used the strain energy func-
tion forms of the so-called neo-Hookean [3, 4] and Mooney-
Rivlin [5] methods and employed a Taylor′s series approach to
calculating the deformation arising from the inflation of an
initially flat circular hyperelastic membrane. The deformed
shapes of the inflated membranes were compared to Treloar′
s data. Assuming a general form for the strain energy function,
Green and Shield [6] examined the necessary pressure for
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inflation of a thick spherical shell made of incompressible
isotopic rubbers. Schmidt and Carley [7] studied the compar-
ison of numerical solutions and experimental data for the in-
flation of three different circular membranes. They imple-
mented five polynomial forms of strain energy proposed by
Rivlin [8] and used the Runge-Kutta method to numerically
solve the system of equations. Pajura et al. [9] studied the
effect of different strain energy functions on the inflation of
a circular membrane and compared the results with those pre-
dicted, based on the Hookean constitutive relationship. They
showed that the results employed different strain energy func-
tions that have similarity with small deformations. The prob-
lem of axisymmetric indentation of a circular membrane
through a spherical indenter was investigated by Bhatia and
Nachbar [10]. They presented a solution for a nonlinear elastic
membrane based on specific assumptions, including small
strains and explicit treatment of the contact region during in-
dentation. Bhatia and Nachbar also compared their solution
with the experimental data of Jahsman et al. [11]. Yang and
Hsu [12] treated the same problem using two distinct regions,
including contact and noncontact regions by means of a nu-
merical scheme based on theMooney-Rivlin form of the strain
energy function. Przybylo and Arruda [13] reported experi-
mental profiles of inflated rubber and compared them with
results of finite element calculations using various constitutive
models. Hassager et al. [14] presented a finite element formu-
lation for simulation of the inflation of axisymmetric visco-
elastic membranes. Numerical results showed that the varia-
tion of wall thickness at the pole of inflated membrane and the
prediction of instability occurrence were strongly dependent
on the selection of constitutive equations.

The dependency of a simulated structure’s response to the
constitutive model was more evident in Verron and
Marckmann [15], in which they implemented and compared
chain models and a neo-Hookean strain energy function for
the numerical solution of the inflation of two initially spherical
or circular hyperelastic membranes. The result of these works
showed that both the inflation profile and thickness distribu-
tion were highly influenced by the nature of the material mod-
el. Reuge et al. [16] and Rachik et al. [17] compared the
material parameters found using the direct identificationmeth-
od based on the uniaxial and equibiaxial extension test data,
and those parameter values were obtained by employing an
inverse method, based on the bubble inflation test data. They
employed the Levenberg-Marquardt optimization procedure
to calculate the cost parameters for various classical strain
energy functions. Cloonan et al. [18], using the indentation
test on a PDMS and two porcine tissues, discovered the asso-
ciated material parameters. The Mooney-Rivlin model was
used for the comparison of results obtained from test and
computational modeling. Through the indentation force com-
parison between prostate tissue and two elastomers, silicone,
and PVA hydrogel, Li et al. [19] found that those structures

had the same mechanical properties. Although a number of
researchers performed structural deformations or multiple ho-
mogeneous deformations to describe the parameters of tissue-
mimicking phantoms, others preferred to perform uniaxial
tensile or compression tests on such materials. For example,
Doyle et al. [20] created several silicone rubbers having dis-
tinct material properties. They calibrated an Ogden model
using uniaxial test data and used the obtained material param-
eters for comparison of numerical results with an experiment
for an abdominal aortic aneurysm. Using uniaxial tensile data
on a fiber-reinforced silicone rubber membranes, Bailly et al.
[21] proved that this material was a very good candidate for
new biomimetic membranes. Krone et al. [22], using just a
uniaxial tensile test of bi-layer laminates, composed of one
layer of a very soft isotropic hyperelastic hydrogel bonded to
one layer of silicone rubber, to characterize the mechanical
properties of the hydrogel. They used a polynomial form of
strain energy for a fitting procedure. Payne et al. [23] used
PDMS silicone to match the mechanical properties of skeletal
muscle tissues. The material parameters of that silicone mate-
rial were obtained by fitting several constitutive hyperelastic
models to a uniaxial compression test. Selvadurai [24] per-
formed the axisymmetric and asymmetric indentation of a
natural rubber circular membrane under a spherical indenter,
both experimentally and numerically. In this work, the numer-
ical results were obtained using finite element FE software
through implementing various constitutive models. These
models were validated by conducting a uniaxial experiment
on the natural rubber. Pearce et al. [25] examined different
strain energy functions used for analyzing the features of elas-
tomeric membranes’ indentation under a convex rigid indent-
er. The numerical results showed that the simulation of the
indentation problem was dependent on choosing the correct
form of the strain energy density function. Two new applica-
tions for the indentation of circular membranes by a spherical
indenter can be also found in recent studies [26, 27].

Taking advantage of optical methods and digital image
correlation (DIC) techniques, Meunier et al. [28] subjected
an unfilled silicone rubber to four different tests: uniaxial ten-
sion, pure shear, compression, and the inflation of a circular
membrane to define the equibiaxial data. In their study, vari-
ous constitutive models were fitted to these experimental data.
Similar experiments were performed by Österlöf et al. [29] on
a filled elastomer, and the unloading stress-strain curves were
used to fit various constitutive models. Selvadurai and Shi
[30] used the results of only uniaxial experiments in FE
modeling to numerically simulate the test of fluid pressure
loading on a natural gum rubber membrane fixed along a
circular boundary, and they compared the simulation results
with those of experiments. In this work, several hyperelastic
models were considered to describe the mechanical behavior
of rubber within a large range of strain situations. In addition,
Jones et al. [31] presented the time-dependent response of a
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carbon-black filled natural rubber under high temperatures
using an inflated structure.

The hybrid experimental-numerical method, also called the
inverse method, was introduced by Kavanagh and Clough
[32], and it has been widely used to determine the material
parameters of both elastomeric and biological membranes. In
this method, the material parameters are found through con-
sidering the deformed membranous configurations, usually
inflated or indented structures, rather than standard experi-
ments, such as uniaxial, equibiaxial, and pure shear. Iding
et al. [33] implemented this hybrid method to characterize
the constitutive equation of an isotropic hyperelastic material,
where a Newton-Raphson method was used to iteratively
solve the equations. Wineman et al. [34] showed how the
shapes of measured profiles and stretch ratio distributions in
an inflated hyperelastic circular membrane can be considered
part of an inverse identification method, to determine the ma-
terial parameters in the strain energy function. Elkut et al. [35]
designed a different experiment: indentation of a circular
hyperelastic membrane using a spherical indenter, to predict
the material parameters of the Mooney-Rivlin model
over a low-strain range. They discussed the importance
of the choice of material models on the accuracy and
robustness of the inverse FE modeling results. Further refer-
ences related to the application of the inverse method for char-
acterizing hyperelastic materials can be found in several recent
studies [36–39].

In the next section, we present a brief review of several
hyperelastic constitutive models. The work presented here
makes two new contributions to the study of hyperelastic ma-
terials. First, we performed a multitude of tests on silicone
rubber to provide researchers with a better understanding of
rubber’s responses to various mechanical loads. The collected
experimental observations included experimental tests for uni-
axial extension, equibiaxial tension, inflation, and indentation
using a spherical indenter. Correlations with uniaxial and
equibiaxial test data were used to characterize the constitutive
response of the rubber material in terms of the hyperelastic
models described by Mooney-Rivlin, Mansouri-Darijani, and
Ogden, and using neo-Hookean forms. Second, we introduced
optimal ranges for efficiency of various strain energy func-
tions responsible for nonlinear material behaviors, based on
the correlation of FE results with the experimental results for
two structures.

A Brief Review of Hyperelastic Constitutive Models

The general motion of a continuum is described by
x = χ (X, t), where X and x denote the position vectors of
material particles in their reference configurations, and the
current configuration at time t, respectively. The deformation
gradient is shown by F = ∂x/∂X. Since det(F) > 0, and the

polar decomposition theorem states that F is uniquely
decomposed as

F ¼ RU ¼ VR ð1Þ
where U and V are the right and left stretch tensors, respec-
tively. U and V are positive definite symmetric tensors, and R
is a proper orthogonal rotation tensor, which represents the
rotation of the eigenvectors of U, Ni, to the eigenvectors of
V, n that can be written as

ni ¼ RNi ð2Þ

Let λi (i = 1, 2, 3) be the eigenvalues of the stretch tensors.
Indeed, the multiple λi are the principal stretches of the defor-
mation. The invariants of the right Cauchy − Green strain
tensor are

I1 ¼ λ2
1 þ λ2

2 þ λ2
3; I2 ¼ λ2

1λ
2
2 þ λ2

1λ
2
3 þ λ2

2λ
2
3; I3 ¼ λ2

1λ
2
2λ

2
3 ð3Þ

The constitutive equation of an isothermal elastic body, which
supports no residual stress, relates the Cauchy stress tensor
σ =σ (x, t) at each place x = χ (X, t) to the deformation gra-
dient F [40] as

σ ¼ Σ Fð Þ ð4Þ

For a strain energy density function of the formW (I1, I2) in
terms of strain invariants, the constitutive equation for the
Cauchy stress of an incompressible, isotropic, nonlinear elas-
tic material, whose response functionΣ has a physical expres-
sion, can be found by

σ ¼ Σ Fð Þ ¼ −pI þ 2
∂W
∂I1

B−2
∂W
∂I2

B−1 ð5Þ

where p is the indeterminate scalar arising from the constraint
of incompressibility, and B denotes the left Cauchy–Green
strain tensor and is shown by B = FFT. In this case, the strain

invariants become I1 ¼ λ2
1 þ λ2

2 þ λ2
3, I2 ¼ λ−2

1 þ λ−2
2 þ λ−2

3

and I3 = 1.
In this section, the capability of the neo–Hookean model,

the Mooney–Rivlin strain energy density function, the Ogden
[41] model, and a recent constitutive model proposed by
Mansouri and Darijani [42] are examined for a rubber material
with medical applications, experiencing different states of fi-
nite deformation.

Treloar [3, 4] proposed a so–called neo–Hookean material
model in terms of I1with only one material parameter. This
model is the simplest phenomenological form of a strain en-
ergy function and is widely used in modeling the mechanical
response of elastomers. It has the following simple form

W ¼ μo

2
I1−3ð Þ ð6Þ

where 2μ0 is the initial shear modulus.
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Undoubtedly, the Mooney–Rivlin model stands as the
most-cited strain energy function in the literature. Mooney
published an invariant-based phenomenological model dem-
onstrating the principal invariants of the right Cauchy–Green
strain tensors, I1 and I2. Due to its simplicity and suitability in
describing the mechanical behavior of elastomers that under-
go moderately large deformations, this model is of interest.
This model can be seen in the form

W ¼ C1 I1−3ð Þ þ C2 I2−3ð Þ ð7Þ
where C1 and C2 are material parameters. The initial
shear modulus, μ0, can be found through the relation
μ0 = 2(C1 + C2).

Another stretch-based strain energy function is the Ogden
model. It delivers good agreement with Treloar’s experimental
data for the extension of unfilled natural rubber. With a
sufficient number of parameters, it can also be fitted to
a broad range of deformation states. The versatility of
this model has resulted in its appearance in many studies.
Recently, Ehret [43] found a relation between the
Ogden model and molecular statistical theory. The Ogden
model takes the form

W ¼
XN

i¼1

2μi

α2
i

λαi
1 þ λαi

2 þ λαi
3 −3

� � ð8Þ

where μi ′ s and αi are material parameters. The initial shear
modulus, μ0, can be calculated through the consistency con-

dition ∑
N

i¼1
μi ¼ μ0. In this work, the two-term Ogden model,

N = 2, is examined.
The last evaluated hyperelastic elastomers’ model, pro-

posed by Mansouri and Darijani [42], was developed based
on the first and second strain invariants. The model appears in
an exponential framework and is based on research collected
by Darijani and Naghdabadi [44] that examines all combina-
tions of the power law, and polynomial, logarithmic, and ex-
ponential functions. As a result of this investigation, they con-
cluded that a strain energy function in terms of exponential
forms, in comparison with others, achieves superior agree-
ment with the homogeneous experimental data. The proposed
model benefits from these pivotal characteristics: the presence
of a second strain invariant, simplicity, stability of the param-
eters through implementation of restrictions on the strain en-
ergy density, and superior accuracy, based on the best phe-
nomenological combination of functions. The introduced
model is in the form

W ¼ A1 exp m1 I1−3ð Þð Þ−1½ � þ B1 exp n1 I2−3ð Þð Þ−1½ � ð9Þ

where A1 and B1 are material parameters and m1 and n1 are
non-dimensional values. The initial shear modulus, μ0, is
computed through the relation μ0 = 2(A1m1 + B1n1).

There exist several comprehensive comparisons and excel-
lent reviews of the development of phenomenological and
statistical mechanics treatment of rubber elasticity in recent
publications [42, 45–48].

Experimental Observations

To create a desired silicone membrane, the principles de-
scribed by Nijhof and Cubera [49] were used here for the
curing process. The uncured silicone was cast into a ferrous
mold, and the designed mold system was placed inside a rub-
ber sheet curing press machine. Using this machine, the sys-
tem was put simultaneously under the pressure of 100 tons
and a curing temperature of 180 ° C for 15 min. Finally, the
silicone rubber membrane was placed inside an oven at 80 °C
for 180 min to complete the crosslink-forming procedure.

Uniaxial Extension

The uniaxial testing of the silicone rubber was carried out using
a TCS-2000 servo control system universal testing machine
equipped with an extensometer for accurate acquisition of strain
data and a load cell with a capacity of 20 kN (Fig. 1). The tensile
tests were performed using three dumbbell-shaped samples with
a thickness h0 = 1.50 – 1.75 mm and a width of 6.04–6.09 mm,
which were cut from the same sheet. The average stress-stretch
curve for loading of the three samples will be shown in Fig. 5.
This experiment was performed at the rate of 30 mm/min. The
controlled conditions were a temperature of 23 οC and humidity
of 53 %. To be able to describe the material behavior in the
conventional theory of finite elasticity, theMullins effect should
be examined. More information on this effect can be found
elsewhere [50–53]. As Meunier et al. [28] showed with unfilled
silicone rubber, the Mullins effects, hysteresis, and strain rate
sensitivity can be considered negligible.

Fig. 1 Uniaxial testing machine and elastomeric dumbbell
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Equibiaxial Inflation Test

The inflation test of a rubber membrane is largely used to
experimentally evaluate both the equibiaxial stress-strain
curves and the deformation shape of membranous elastomers.
A number of techniques are used to measure the full-field
displacements. In the case of large deformations, the
pioneering works of Septanika et al. [54], Laraba-Abbes
et al. [55], and Chevalier et al. [56] can be highlighted. In this
study, a test bed for equibiaxial extension on the rubber mate-
rial was designed and developed.We facilitated integrated 3-D
analysis of the structure without using the complicated 3-D
DIC method. The strain measurements were performed by a
system made of a high resolution camera mounted on a mov-
able arm in order to keep a fixed distance between the camera
and top of the inflated membrane at each time increment. The
entire procedure is described in the following paragraphs.

A rotating handle at the end of a ball screw permitted the
camera to move perpendicularly to the plane of the test bed.
As the apex height of the inflated membrane increased, a
needle coupled to the camera and tangent to the apex con-
trolled the camera’s motion using a digital depth caliper. The
depth caliper was fixed to the immovable part of the test tower,
and its movable tip was connected to a moving part of the
tower system. This arrangement enabled the system to not
only measure the apex height directly but also to maintain
an unchanged camera perspective, keeping a constant distance

between the camera and the apex of the inflated membrane.
This technique made 3-D measurement procedures free from
both 3-D calibration of the camera and reconstruction of the
picture through overlapping pictures taken by two cameras,
which are essential for performing 3-D stereo-correlation. The
perspectives and details of the designed system for the infla-
tion test are shown in Fig. 2.

The rubber membrane used in the inflation test has a diam-
eter of 240 mm and a thickness of 1.83 mm. The internal
diameter of the flange was large enough to let the specimen
expand, while avoiding any border effect [57]. To enhance the
fixity condition at the clamped boundary, an additional layer
of a hard silicone was attached to the rubber. In this study, the
membrane was pressurized until a maximum displacement at
the apex, δmax = 120 mm, was reached. The pressure-apex dis-
placement diagram is shown in Fig. 3, left. The deflected
profiles at different pressures were measured by an optical
technique that is depicted in Fig. 3, right. The deflected shapes
corresponding to the applied pressures were numbered from
point 1, P = 3.4 kPa and δ = 41.6 mm, to point 5, P =
10.6 kPa and δ = 103.2mm. The images were colored to make
the changes more visible. The image processing method was
carried out entirely through considering image pixels rather
than an actual physical distance for both acquisition of strain
and deflected shapes. In the case of the deflected shapes, the
image pixels were calibrated against a known physical dis-
tance, which in this case was the apex height measured by a

Fig. 2 The inflation test
apparatus. The section on the top
left corner shows deposition of
speckles on the specimen for the
purpose of full-field measure-
ments. The arrows show the target
points for full-field measurements
in the DIC procedure
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Fig. 3 Deformed profiles illustrating the inflation test at different pressures for membrane thickness h0 = 1.83 mm, right, and its corresponding
pressure − apex displacement response, left. A second camera placed in front of the inflated membrane acquired the profiles of inflated membrane
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digital-depth caliper. The measured results for the equibiaxial
stress-strain curves are reported in the next subsection.

Prior to this research, some studies discussed the impor-
tance of equibiaxial data in constitutive modeling of
hyperelastic materials [58, 59], and other studies attempted
to describe that uniaxial and equibiaxial deformations are the
most different in terms of possible deformation states when
considering the relative variation of the first and second strain
invariants, I1 and I2 [60, 61]. However, this research highlight-
ed the importance of including equibiaxial deformation data
for modeling of hyperelastic structures, and it’s prominent role
in FE simulation for the first time. In addition, we examined
whether or not the accuracy of the correlation of one consti-
tutive model with homogeneous experiments signified similar
accuracy for prediction of inhomogeneous structures. These
contributions are presented in the next sections.

For a circular, inflated, or indented elastic membranes,
clamped along the edge at r = a, the local deformations are a
complex function of radius, from the equibiaxial state at the
apex to the pure shear at the outer radius [1, 62]. When the
initially flat membrane was deformed into a curved state, the
principal stretches λ1 and λ2 become inhomogeneous.
Figure 4 illustrates the cross-sections for both axisymmetric
structures. As shown in Fig. 4, a material point originally
located at (r = ρ, z = 0) was then displaced to the point [r =
r (ρ), z = z (ρ)]. Let ξ denote the arc length of the cross-
section curve of the deformed membrane. The two principal
stretches are

λ1 ¼ dξ
dr

;λ2 ¼ ρ
r

ð10Þ

Note that λ1 is the longitudinal stretch, running along the
cross-section curve in the r–z plane, and λ2 is the latitudinal
stretch, running along the direction normal to the r–z plane. In
the apex neighborhood, both stretches are homogeneous in the
membrane λ1 = λ2 = λ. Note that the material is assumed to be
incompressible; thus, the extension ratio in the thickness di-

rection is equal to λ−1
1 λ−1

2 . With these assumptions, the
equibiaxial stress-strain data can be easily calculated through

inflation test measurements. To achieve this goal, knowing the
radius of curvature, tangential stretches at the apex, and pres-
sure recorded during the test are required. Once the thickness
dimension was much smaller than the other two planar dimen-
sions, the stress was also assumed to be negligible along the
thickness. In the inflation test, the deformed membrane can be
viewed as a section of a sphere with a constant radius of
curvature. Therefore, for the stress components, we may write

σ1 ¼ σ2 ¼ σ ¼ PRλ
2ho

;σ3 ¼ 0;R ¼ a2 þ δ2

2δ
ð11Þ

where σi (i = 1, 2, 3) are principal engineering stresses; R is the
radius of curvature; h0 is the initial thickness of the
membrane, and δ is the apex displacement. The stress-
strain curves for both uniaxial extension and equibiaxial ten-
sion are plotted in Fig. 5.

Indentation Test

The designed apparatus and testing facilities, shown in Fig. 6,
were applied to the indentation of an initially circular

Fig. 4 Cross-section view of the axisymmetric deformation of a silicone membrane clamped between two flanges: the left figure shows the inflation test,
while the right figure demonstrates the indentation of a circular membrane by a spherical indenter

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

2.2

1 2 3 4

E
n
g
in

ee
ri

n
g
 s

tr
es

s 
(M

P
a)

Stretch (λ)

Uniaxial extension

Equibiaxial tension

Fig. 5 Stress-stretch response of silicone rubber subjected to multiple
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relating errors. The proposed results are the average of three experiments
conducted on three specimens, for each deformation-state dependent re-
sponse of silicone undergoing finite deformation
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hyperelastic membrane with a thickness of h0 = 1.75 mm. All
other dimensions and clamping conditions were similar to
those adopted in the inflation test. The radius of the spherical
indenter was R0 = 26.94 mm, and it was attached by a rigid
lever to a TCS-2000 servo control system universal test-
ing machine. The membrane was deformed up to a
maximum apex displacement of δmax = 110 mm, with
the corresponding force of Fmax = 202.4 N. The test
was carried out at a constant loading rate of 40 mm/
min, followed by unloading at the same strain rate. The
left side of Fig. 6 depicts the force-displacement curves,
showing a perfect nonlinear and reversible behavior with no
hysteresis effect. The axisymmetric deformed shapes are
also acquired by means of the methods explained for the in-
flation test.

Material Parameters

In this work, the material parameters were determined based
on the correlation between values of the strain energy density
rebuilt from the test data and the applicable theory. This ap-
proach was introduced by Darijani and Naghdabadi [44] and
is preferred over the conventional method of stress cor-
relation discussed by Drozdov [63], Ogden et al. [64],
Hartmann [65], and Gendy and Saleeb [66]. In this pa-
per, the strain energy density function, including the
unknown material parameters, were fitted to the values of
the strain energy density cast from the test data. In this fitting
procedure, the discrepancy between the model results and the

experimental data, commonly referred to as residual sum of
squares (RSS), is defined as

RSS ¼
Xn

i¼1

∥Wdata−Wmodel∥2 ð12Þ

A Perfect Fit would Yield a Residual Sum of Squares of 0.0.
The material parameters, which are fitted simultaneously to

the uniaxial and biaxial data, initial shear modulus, and resid-
ual sum of squares are listed in Table 1, for the four investi-
gated models. The Mansouri-Darijani model had minimum
values of RSS, while the maximum value was achieved using
the neo-Hookean strain energy function. The Mansouri–
Darijani material model and the Mooney– Rivlin model pro-
duced the lowest and highest values of shear modulus, respec-
tively. Shear modulus is a quantity for measuring the stiffness
of materials, which in these results showed a small dif-
ference of about 0.013 MPa. This discrepancy increases
to 0.292 MPa when the latter constitutive models are
fitted to just uniaxial extension data. Accordingly,
adopting equibiaxial data and uniaxial experimental data pro-
vided a more localized response pattern in the form of the
various constitutive models.

Comparison of Experiments with FEM Simulation

Treatment of large elastic deformations of hyperelastic mem-
brane configurations yielded a system of nonlinear coupled

Table 1 Material parameter
values from fitting various strain
energy functions to the results of
multiple experiments shown in
Fig. 5, including their relevant
residual sum of squares (RSSs)
and initial shear moduli.

Strain energy function Material parameters RSS Initial shear modulus (μ0)

Mansouri-Darijani(2014) A1 = 22.17713 ,m1 = 0.008653

B1 = 25.87707 , n1 = 0.000254

0.0075 0.397

Ogden (1972) μ1 = 0.377912 ,α1 = 2.089584

μ2 = 0.02340 ,α2 = − 1.40032
0.0083 0. 401

Mooney-Rivlin (1940) C1 = 0.200912 ,C2 = 0.004235 0.0102 0.410

neo-Hookean (1943) μ0 = 0.407400 0.0148 0.407

Fig. 6 The designed structure
and facilities required for the
indentation of rubber with
membrane thickness h0 =
1.75 mm : showing the force –
apex displacement response of the
structure under loading, followed
by unloading on the left, while
using a spherical indenter, right
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differential equations with singularities in pole that can be
solved given the system parameters and boundary conditions.
The construction of a solution in this manner, however, be-
comes extremely unwieldy for all but the simplest forms of the
strain energy function. As mentioned in the introduction, ap-
plications of the numerical integration approaches to the solu-
tion of problems in hyperelasticity are many and varied.
Nevertheless, because of the convenience and versatility of
modern nonlinear FE codes, they are capable of handling dif-
ficulties with complex boundary conditions. These contribu-
tions become more noticeable when Coulomb friction and
non-stationary contact are accompanied by the nonlinear pro-
cess associated with hyperelasticity. To date, the reliability of
the FE simulation of nonlinear hyperelastic materials were
concerned strictly with two main subjects: the selection of
an appropriate strain energy function, and inserting true mate-
rial coefficients into the FE codes. In this research, a compre-
hensive study was conducted to demonstrate that within
the range of applied loads used here, which was com-
mon to real-world scenarios, how reliability reflected the
implementation of true material coefficients and how to
select an appropriate strain energy function. To achieve
this, the accuracy of the correlation of FEM with the
experimental observations was adequately verified
through simulation of two deformation configurations: the
first one was the inflation of an initially flat circular hyperelastic
membrane subjected to a uniform pressure, and the second one

was the indentation of a clamped circular membrane by a spher-
ical indenter.

For the simulation, we used the commercially available,
implicit finite element software Abaqus/CAE Version 6.13
(Abaqus, 2013). To simulate the rubber’s behavior, we imple-
mented the constitutive models described former, and we
adopted the framework UHYPER to create user-defined iso-
tropic hyperelastic material, as a user subroutine to utilize
Mansouri and Darijani’s model within the FE software. We
discretized the rubber membrane with 3422 S4R bi-
linear quadrilateral finite strain shell elements with dis-
crete Kirchhoff thin-shell kinematics. A finer mesh did
not make any significant difference in displacement
measures for the applied loads. Sensitivity tests were
also performed to assess the influence of mesh size, element
types (shell and solid elements), and element shapes
(triangular and quadrilateral) to ensure the FE simulation
was accurate with an optimum requirement on the computa-
tional resources.

Computational Modeling of the Inflation Test

The results of FE simulation for the inflation structure were
compared to those of the previously conducted experiments.
The effect of various values of pressure for various prescribed
constitutive models is illustrated in Fig. 7. The material pa-
rameters are tabulated in Table 1, which were computed from

Fig. 7 Comparison of deflected shapes of the inflation experiment with the computational results of the same problem at different pressures, shown
along the left side, for the four constitutive models

Table 2 The values of apex
displacements for various
constitutive models in finite
element simulation of inflation
test and related errors

Apex displacement – Error (mm – %)

Mooney-Rivlin 44.4–6.7 67.0–4.0 80.0–4.5 89.0–0.7 100–3.0

Mansouri-Darijani 47.0–13.0 70.0–9.0 81.0–6.0 90.5–2.0 103–0.0

Neo-Hookean 45.0–8.0 69.5–8.0 81.0–6.0 91.5–3.0 107.5–0.3

Ogden 45.0–8.0 70.0–9.0 82.5–8.0 92.0–4.0 95.5–8.0
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the simultaneous fitting procedures of the four constitutive
models to the uniaxial and biaxial data, and they were used
for the purpose of FE simulation of the inflation structure.
Table 2 displays how accurately each constitutive model pre-
dicted the apex displacements during the inflation test by
reporting related errors.

Computational Modeling of the Indentation Test

All conditions used to conduct the simulation of the inflation
structure were similarly carried out for FE modeling of the
indentation test. In the indentation of a rubber membrane
using an indenter, the main concern was related to friction
from the surface-to-surface contact. Nasto et al. [67] measured
the friction coefficients between the indenter and a silicone
rubber to be about 1.46. In this paper, we virtually considered
this result. For the FE simulation of contact behavior in the
normal direction, the hard pressure-overclosure option was
selected, and the separation after the contact was
allowed. Figure 8 illustrates comparisons between the
computational predictions and the experiments’ results
using typical deflected shapes of the membrane during
the indentation at the indentation load levels of 37.9 N,
87.9 N, 144.8 N, and 202.4 N. All models predicted the ex-
periments’ results very closely. When the constitutive models
were fitted to just the uniaxial data, the divergence be-
tween the computational and the experiments’ results
were increased, remarkably. For example, the Mooney–
Rivlin and Mansouri–Darijani models predicted the experi-
mental results as 9 % higher and 10 % lower, respectively, at
the load level of 202.4 N.
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Fig. 8 Comparison of the deflected shapes for the indentation experiments using the computational results of the same problem at different loads for the
four constitutive models: (a) Mooney-Rivlin, (b) Mansouri-Darijani (c) Ogden, and (d) neo-Hookean
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Results

Presenting more than one category of experiments involving
two specific boundary value problems—inflation and inden-
tation of an edge-supported circular membrane—enhanced
the model development procedure. As Figs. 7 and 8 illustrate,
through comparison of experimental results with their compu-
tational predictions, when constitutive models were fitted to
multiple experiments, the degree of correlation was not gen-
erally restricted by the selection of the constitutive model, and
all models functioned nearly the same. The exception con-
cerned the Ogden model during the inflation test, which fared
poorly in matching large deformations. Instead, the correla-
tions of a constitutive model with experimental results strong-
ly depended on the range of applied strains. These accuracies
were attributed to the inclusion of both equibiaxial and uniax-
ial data within the fitting procedures of different strain energy
functions. The similar abilities of strain energy functions were
violated when only data from the uniaxial or equibiaxial test
data was used for the fitting procedure. The computational
results of FE simulations shown in Fig. 9(a) were established
by means of only uniaxial or equibiaxial test data. In the case
of fitting constitutive models to only uniaxial data, the selec-
tion of a particular form of a strain energy function for com-
putational treatment of a problem should be given special
attention. As shown in Fig. 9(b), the selection of a particular
model was not a matter of concern when the material param-
eters were obtained from fitting with multiple experiments
(both uniaxial and equibiaxial data). The results of fitting var-
ious constitutive models to equibiaxial data alone is shown in
Fig. 9(a). All models predicted the experimental results simi-
larly, and at a low strain, equibiaxial data alone fit the simu-
lation results accurately. As Fig. 9(a) depicts, whenever the
nonlinearity level of a particular constitutive model increased,
the inaccuracies also increased when constitutive models were
fitted to only the uniaxial data. For instance, as can be seen in
Fig. 9(a), the neo-Hookean model seemed to fit the experi-
mental data better by simply using uniaxial data while the
Mansourip-Darijani model fitted the experiments inaccurately.
Therefore, the use of strain energy functions that are inherent-
ly more linear in behavior derived more reliable results for FE
simulation. In addition, the deformations presented here in-
duced large deformations, but the strains encountered in the
structures were still within the moderate range.

Results and Discussion

This work was motivated by the need for integrated experi-
ments on deformation-state dependent responses of elasto-
mers to investigate the accurate constitutive responses of these
materials. The standard experiments included uniaxial exten-
sion and equibiaxial tension, upon which various constitutive

models were fitted. The inhomogeneous experiments were
inflation and indentation of a clamped circular membrane
using pressure and a spherical indenter, respectively. The FE
simulations of these structures were established using material
constants obtained from the correlation of the constitutive
models to standard experiments. The FE simulation showed
that all the forms of strain energy functions predicted similar
results and had a good agreement with the deformation pro-
files of the two above-mentioned structures under various
levels of pressures and loads. These accuracies were attributed
to using multiple experiments rather than using only uniaxial
or equibiaxial data in the fitting procedure for determination of
the material constants. Instead, the correlations of one consti-
tutive model with the experiments strongly depended on the
range of applied strains. For situations in which multiple ex-
periments are not possible, at least for the presented ranges of
deformation shown in this study, the use of strain energy func-
tions that are inherently less nonlinear in behavior can bring
more reliable results for FE simulation, when fitted to only
uniaxial data.

The hybrid experimental-numerical method, or the inverse
method, is widely used to characterize material parameters of
both rubber-like materials and biological membranes. In this
method, the material parameters were obtained using the de-
formation of membranous configurations, usually inflated or
indented structures. Figures 7 and 8 depict that under small
deformations the FE modeling was not able to predict the
experiment well, while at moderate to large deformations,
the correlations matched the experimental data. Therefore,
adopting the use of deformation profiles at large deformations,
as a part of an inverse identification method, can produce true
material parameters in the inverse FE modeling procedure. In
other words, the inverse FE procedure should not be restricted
to the choice of the constitutive models when the strains are
moderate. Instead, more attention should be given to the
choice of the range of deformation. However, high loads could
lead to puncturing and blur the test results; therefore, a secure
experimental area, as preserved here, should be considered.
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