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Abstract We propose a generalized approach based on frac-
ture mechanics and contact mechanics to estimate the fracture
toughness in metallic materials from instrumented indentation
testing. Models were developed for brittle and ductile fracture.
Different criteria were applied to each model to determine the
critical fracture point during indentation. For brittle fracture,
the critical fracture point was defined in terms of the critical
mean pressure; for ductile fracture, the critical fracture point
was derived from fracture strain and critical plastic zone size.
Each fracture criterion was used to determine the indentation
fracture energy corresponding to the fracture energy required
for crack extension. The fracture toughness was estimated for
various metallic materials using each model and compared
with standard fracture toughness tests.
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Introduction

Fracture toughness, defined as a material’s resistance to crack
propagation, is one of the most important aspects of structural
integrity. Fracture toughness can be measured using

standardized test methods such as those developed by
ASTM and BS [1–3]. However, it can be difficult to measure
fracture toughness with these methods because they require
specific specimen dimensions and complex test procedures to
validate the measured values. In addition, standard measure-
ments cannot be applied to small-volume regions (e.g., weld
zones, thin films) or to in-service industrial structures because
of the requirements of the test procedures and the destructive
nature of the tests. Among the alternative test methods avail-
able, indentation testing is widely used to evaluate fracture
toughness because of the simplicity of the test procedure and
specimen preparation. In addition, indentation testing can be
applied to small-volume regions and in-service structures be-
cause it is localized and nondestructive in nature. The research
on indentation fracture toughness has focused primarily on
brittle materials such as glass and ceramics because cracking
is induced in such materials upon contact with the indenter.
Lawn et al. [4] showed that the fracture toughness (KIC) can be
determined based on the relation between the crack length and
the indentation load using linear elastic fracture mechanics.

However, in ductile materials such as metals, cracking does
not occur during indentation. Some researchers [5–8] have
attempted to use indentation to estimate the fracture toughness
of ductile materials by adopting a criterion for a critical point
corresponding to the onset of crack extension. The modified
critical strain model [5, 6], the indentation energy to fracture
(IEF) model [7] and the critical indentation energy model
based on continuum damage mechanics [8] have been pro-
posed for this purpose. In these models [5–8], the stress state
similarity beneath an indenter tip and in front of a crack tip is
an important theoretical basis that enables estimation of the
fracture toughness from indentation tests. Lee et al. [8] ana-
lyzed the stress state ahead of the crack tip and beneath the
spherical indenter tip using the finite element method; their
results showed that the degree of tri-axial stress generated by
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indentation with a spherical indenter is similar to that ahead of
the crack tip. The plastic deformation zone generated by the
tri-axial stress under the indenter is constrained by the sur-
rounding elastic material in much the same way as ahead of
a sharp notch. Lee et al. [8] proposed that fracture toughness
can be predicted by determining the critical indentation depth
corresponding to the crack extension. They assumed that a
fracture was initiated when the volume fraction of voids nu-
cleated within the indented material reached a critical fraction.
They proposed that this critical void volume fraction can be
calculated from the variation in the elastic modulus evaluated
by an indentation test. However, this approach is difficult to
apply because the elastic modulus during indentation is
strongly affected by machine compliance. In addition, the es-
timated fracture toughness of metals [5–8] has been limited to
specific ranges for brittle metallic materials (KIC <10 MPa ·
m0.5) and ductile metallic materials (KJC >250 MPa · m0.5).

We propose a generalized approach to estimate the fracture
toughness of metallic materials using instrumented indenta-
tion testing with a spherical indenter. The concepts of critical
fracture stress and critical fracture strain are applied to con-
struct a new fracture toughness model based on the fracture
behavior characteristics of metallic materials. In typical frac-
ture phenomena, there are two general types of fracture be-
havior: brittle fracture and ductile fracture. Brittle fracture oc-
curs with little or no plastic deformation and very little energy
absorption and is usually characterized by a flat cleavage frac-
ture surface with little or no ductility. In the initiation of cleav-
age fracture, the material separates within the crack tip when a
critical stress is reached at a material element near the crack tip
[9]. The critical stress criterion can be applied to metallic
materials showing cleavage fracture, that is, brittle fracture
can be initiated when the local stress becomes large enough
to drive a crack from the brittle phase [9]. Thus, brittle fracture
initiates in a material beneath an indenter when the local stress
exceeds a critical value during indentation testing. We define
the critical value through stress analysis based on contact me-
chanics. The model applied to brittle metallic materials, called
the critical indentation stress model, is applicable to brittle
metallic materials with relatively low fracture toughness
(KJC < 100 MPa · m0.5) or in the lower shelf region of the
ductile-brittle transition curve. In contrast, ductile fracture oc-
curs with large amounts of plastic deformation and is usually
characterized by large shear lips and tearing. In locally ductile
fracture initiation, the critical strain criterion can be applied to
metallic materials with tearing [9], that is, a critical level of
crack tip strain causes ductile void nucleation and coalescence
[9]. Thus, we assume that the rate of energy release due to
ductile fracture is equivalent to the plastic work induced by the
strain ahead of the crack tip. We attempt to estimate the plastic
work by evaluating the plastic work induced by indentation
strain. The model applied to ductile metallic materials, called
the critical indentation strain model, is applicable to ductile

metallic materials with relatively large fracture toughness
(KJC > 250 MPa · m0.5) or in the upper shelf region of the
ductile-brittle transition curve.

Theoretical Modeling

Critical Indentation Stress Model

The indentation critical stress model assumes that brittle frac-
ture is initiated in a material beneath an indenter when the
local stress exceeds a critical value. To determine this critical
value, we analyze the indentation stress field using contact
mechanics. When the indenter and the specimen have elastic
contact, the stress components in the radial and hoop direc-
tions outside the contact circle are given by Hertz’s elastic
contact theory [10], as in equation (1); Fig. 1 shows a sche-
matic diagram of the stress field according to Hertz’s theory.

σr

pm
¼ −

σθ

pm
¼ 1− 2νð Þ

2

a2

r2
ð1Þ

Here, σr is the stress in the radial direction, σθ is the stress in
the hoop direction, pm is the mean pressure over the contact
area, a is the contact radius, ν is Poisson’s ratio and r is the
radial distance from the center of the contact.The stress com-
ponent, σr, is tensile outside the contact circle, as shown in
equation (1), and it induces ring cracks when a critical inden-
tation load is applied to a brittle material, such as a glass or
ceramic [11]. The stress reaches its maximum value at the
edge of the contact circle, r = a. Although initial plastic yield-
ing is initiated at a depth of approximately 0.48a beneath the
indenter, the elastic solution is valid as long as pm does not
exceed the yield strength at r = a. Substituting r = a into equa-
tion (1) allows us to rewrite equation (1) as:

σr ¼ −σθ ¼ 1−2νð Þ
2

⋅pm ð2Þ

Fig. 1 Schematic diagram of Hertzian elastic contact: maximum tensile
stress occurs at r = a
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When ν = 0.3, equation (2) is equal to equation (3) (we use a
Poisson’s ratio of 0.3 because this is a good approximate value
for most metallic materials):

σr ¼ −σθ ¼ 0:2⋅ pm ð3Þ
By inserting equation (3) into the von Mises yield criterion,
we obtain equation (4), which is expressed in terms of the
yield strength:

py
m ¼ 2:88 ⋅σys ð4Þ

Equation (4) indicates that when the indentation mean pres-
sure reaches 2.88 times the yield strength of the metallic ma-
terial, yielding occurs at r = a. We define equation (4) as the
first critical condition required for crack extension in the crit-
ical stress model because at that value, ring cracking is in-
duced in brittle materials, such as glasses and ceramics
[11].The second critical condition required for crack extension
can be defined by elastic-plastic contact theory. While brittle
materials, such as glass and ceramic, crack without plastic
deformation ahead of the crack tip, brittle metallic materials
undergo plastic deformation before crack extension; thus, a
small amount of plastic deformation must be considered
through elastic-plastic theory. Yielding at r = a means that a
plastic zone is formed on the surface. Beyond that point, elas-
tic theory no longer applies to the indentation stress field, so
elastic-plastic theory is applied. To analyze the elastic-plastic
stress beneath a spherical indenter, Johnson [12] proposed an
extending cavity model, which was a modification of Hill’s
spherical cavity model. Figure 2 shows a schematic diagram
of the stress field according to the extended cavity model.
Johnson [12] postulated that the contact surface of the indenter
is encased in a hemispherical core of radius a and that the
stress state within the core is hydrostatic, pi. He assumed that
the stresses and displacement outside the core have radial

symmetry and are the same as in an infinite elastic and perfectly
plastic body containing a spherical cavity under pressure pi. He
also assumed that the hydrostatic stress in the core is equal to
the radial stress at the interface between the core and the plastic
zone. According to Johnson’s theory, within the plastic zone a
< r < c, the stresses are given by the following equations:

σr

σys
¼ −2ln

c
r

� �
−
2

3
ð5Þ

σθ

σys
¼ −2ln

c
r

� �
þ 1

3
ð6Þ

where c is the radius of the plastic zone and r is the radial
distance from the center of the contact. At the interface be-
tween the core and the plastic zone, the radial stress σr, given
by equation (5), is equal to the core pressure pi with a change
in sign according to Johnson’s assumption. The radial distance
r is equal to the core radius a at that interface. Therefore, we
rewrite equation (5) as:

pi
σys

¼ −
σr

σys

� �
r¼a

¼ 2
3
þ 2ln

c
a

� �
ð7Þ

where pi is the core pressure and c/a is the ratio of the plastic
zone radius and the core radius.As the mean pressure is ap-
plied, c/a begins to increase.When the plastic zone reaches the
specimen surface, the plastic zone radius c is equal to the core
radius a. At the moment, c/a is equal to 1:

pi
0

σys
¼ 2

3
þ 2ln 1ð Þ ð8Þ

where pi' is the core pressure at the moment that the plastic
zone reaches the specimen surface. However, the portion cor-
responding to equation (8) is already included in the previous
elastic stress field and must be excluded from the elastic-
plastic indentation field analysis. By subtracting equation (8)
from equation (7), we can rewrite equation (7) as follows:

pi−pi0ð Þ
σys

¼ Δpi
σys

¼ 2
3
þ 2ln

c
a
−1

� �
ð9Þ

After the plastic zone reaches the surface of the specimen, c/a
continues increasing as the indentation load is applied.
However, after the indentation load reaches a certain value,
c/a no longer increases and remains constant [12], and the
strain energy reaches its maximum value. We define the core
pressure at that moment as the second critical condition re-
quired for cracking because the maximum strain energy can be
used as the failure criterion to predict the critical condition for
the fracturing of materials [13, 14]. However, the value of c/a
at that moment is unknown and must be measured to resolveFig. 2 Schematic diagram of the expanding cavity model
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equation (9). Puttick et al. [15] investigated the relation be-
tween the indentation pressure and fracture pattern for
polymethyl methacrylate (PMMA) using Hill and Johnson’s
spherical cavity model. They proposed a c/a of 2.9 for an
ideal elastic-plastic material. Although the c/a of 2.9
was measured in PMMA, they derived the value under
the condition of an elastic and perfectly plastic material,
which is the same as our approach. The fracture behav-
ior of PMMA, which is an acrylic or acrylic glass, is
similar to brittle fracture [9]. Therefore, adopting a c/a
of 2.9 in equation (9), we rewrite equation (9) as:

Δpi ¼ 1:95⋅σys ð10Þ

Thus, we can determine the critical indentation mean pres-
sure by summing the mean pressure in the first critical condi-
tion and the mean core pressure in the second critical condi-
tion. We can combine equation (4) and equation (10) as:

pcm ¼ pym þΔpi ¼ 4:83⋅σys ð11Þ

where pm
c is the critical mean pressure required for crack

extension in the critical stress model, which depends on the
yield strength of the material. The yield strength in equation
(11) can be obtained by indentation testing based on an ISO
technical report (ISO TR29381) [16]; the procedures for eval-
uating yield strength are briefly explained below.

Critical Indentation Strain Model

For brittle metallic materials, the critical mean pressure can
serve as a criterion for crack extension because it occurs with
little or no plastic deformation after yielding ahead of the crack
tip. However, for ductile metallic materials, a large amount of
plastic deformation occurs before crack extension, so plastic
deformation characteristics must be considered in determining
the critical point corresponding to crack extension in such me-
tallic materials. Accordingly, we attempted to modify the crit-
ical strain model proposed by previous researchers [17] on the
basis of the relation between the J-integral and plastic defor-
mation characteristics, such as the plastic zone size and strain
energy density, i.e., the tensile toughness. The J-integral has
been used as a fracture parameter because of its path indepen-
dence (the global and local energy release rates are equal), and
it has frequently been used to describe the energy required for
crack extension. A J-integral value that meets the size require-
ments and plane strain can be converted to an equivalent KIC,
designated KJC, using equation (12) [9, 18]:

K JC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J crit ⋅ E
1−ν2

r
ð12Þ

where Jcrit can be either be a JIC value, measured near the
initiation of ductile crack extension, or a JC value for cleavage

fracture [9]. E is the elastic modulus and ν is Poisson’s ratio.
The J-integral is accumulated in the form of plastic work in the
specimen during crack growth; hence, the J-integral is deeply
related to plastic behavior and the plastic zone size and shape at
the crack tip [9]. Peel and Forsyth [19] assumed that the energy
release per unit crack length is balanced by the amount of
plastic work performed ahead of the crack tip. The plastic work
performed at the crack tip is given by:

Wp ¼ 2⋅rc⋅
dW
dV

� �
ð13Þ

whereWp is the plastic work, rc is the critical plastic zone radius
at which stable crack extension begins ahead of the crack tip,
and dW/dV is the strain energy density obtained from the tensile
stress-strain curve. Important parameters, such as the plastic
size and plastic work which are necessary to evaluate the rate
of energy release, i.e., the J-integral, appear in equation(13), so
we adapt equation (13) to the critical strain model by assuming
that JIC,IIT =Wp, as follows:

J IC;I IT ≈Wp ¼ 2⋅ rc⋅
dW
dV

� �
ð14Þ

Substituting equation (14) into equation (12), we rewrite equa-
tion (12) as:

K JC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2⋅E⋅rc ⋅

dW
dV

� �

1−ν2

vuuut ð15Þ

The strain energy density is a tensile property that can be eval-
uated from the area under the tensile stress-strain curve:

dW
dV

� �
¼

Z ε f

0
σdε ð16Þ

where εf is the true fracture strain determined by tensile tests.
Several mathematical approximations have been suggested to
estimate the strain energy density. For ductile metals with
stress-strain curves similar to those of structural steel, the area
under the curve can be approximated by [20]:

dW
dV

� �
¼ σys þ σuts

2
⋅ε f ¼ σR ⋅ε f ð17Þ

where σR is the flow stress, σys and σuts are the yield strength and
ultimate tensile strength, respectively, and εf is the true fracture
strain. Using equation (15), equation (12) can be expressed as a
function of the material properties and the plastic zone radius:

K JC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ⋅E ⋅rc ⋅σR ⋅ε f

1−ν2

r
ð18Þ

Equation (18) is similar to the formula in the critical strain model
proposed by Han and Rosenfield [17], except that the
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characteristic length, which is the parameter associated with the
microstructure, is replaced by the plastic zone size. By consider-
ing the plastic zone size, it is possible to predict the relative
capacity for crack extension resistance ahead of the crack tip
based on material deformability. Among the parameters in equa-
tion (18), tensile properties, such as the yield strength, tensile
strength and elastic modulus can be evaluated from instrumented
indentation tests based on an ISO technical report (ISO
TR29381) [16]. The procedure for evaluating the tensile proper-
ties involves four steps, as illustrated in Fig. 3: step 1 – determi-
nation of the contact area, step 2 – definition of the true stress and
strain, step 3 – fitting to the constitutive equation, and step 4 –
evaluation of the tensile properties [16]. Partial repetition of the
load-removal procedure is performed fifteen times before step 1.
Three important parameters must be obtained from each partial
loading-unloading curve: the maximum load, Lmax; the maxi-
mum depth, hmax; and the elastic unloading stiffness, S, which
is defined as the slope of the upper portion of the unloading curve
during the initial stage of unloading (also called the contact stiff-
ness), as illustrated in Fig. 3. Determination of the exact contact
depth is important for determining the contact area. During
spherical indentation testing, materials exhibit two types of re-
sponse: elastic deflection and plastic pile-up. Oliver and Pharr
[21] defined elastic deflection hd as:

hd ¼ w
Lmax
S

ð19Þ

where w is a constant that depends on the geometry of
the indenter (w = 0.75 for a spherical indenter). We set
w to 0.75. The other response is the plastic pile-up
behavior [22, 23, 25], which depends on the work-
hardening exponent n and hmax/R:

hpile ¼ f n;
hmax

R

� �
ð20Þ

where hpile is the plastic pile-up height and R is the
indenter radius. From Eqs. (19) and (20), the contact
depth(hc) can be obtained as:

hc ¼ hmax−hd þ hpile ð21Þ

After the contact depth is determined, the contact area,
Ac, can be calculated from the relationship between the
contact area and contact depth:

Ac ¼ π 2Rhc−hc2
	 
 ð22Þ

In step 2, the uniaxial true stress is determined from the
maximum load, Lmax , and the contact area, Ac .
According to Tabor’s approach [24], the mean indenta-
tion pressure has the following linear relationship with
the uniaxial true stress:

σr ¼ pm
ψ

¼ 1

ψ
L
Ac

ð23Þ

where σr is the true stress obtained from the indentation, pm is the
mean indentation pressure and ψ is a plastic constraint factor.
equation (23) is widely used in indentation research, and there
are various definitions of the value of the plastic constraint factor
ψ [24–27]. We use a plastic constraint factor of 3 to evaluate the
true stress. The uniaxial true stain is determined from the geo-
metric parameter a/R based on the deformation shape and the
strain distribution under a spherical indenter [24, 25, 27]:

εr ¼ f a=Rð Þ ð24Þ
where a is the contact radius and R is the indenter radius. In step
3, the true stress and strain obtained by instrumented indentation
testing are fitted using two constitutive equations:

σ ¼ Kεn ð25Þ

σ ¼ Aþ ETε ð26Þ

Fig. 3 Schematic procedure for
evaluating the tensile properties
using instrumented indentation
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where K is the strength coefficient, n is the strain-hardening
exponent and ET is the tangential modulus of the material.
equation (25) is used for common metals that show power-
law hardening, while equation (26) is used for austenitic ma-
terials, such as stainless steel, that show linear hardening. In
step 4, the tensile properties are determined. The elastic mod-
ulus is measured from the indentation load-depth curve to
determine the yield strength. Oliver and Pharr [21] expressed
the elastic modulus as a function of contact stiffness and con-
tact area as follows:

Er ¼
ffiffiffi
π

p
2

Sffiffiffiffiffi
Ac

p ð27Þ

where Er is the reduced elastic modulus measured from inden-
tation, S is the contact stiffness and Ac is the contact area. The
yield strength is determined as the interception of the fitted
stress-strain curve and the linear curve with the slope of the
elastic modulus of 0.2 offset from the origin. The strain-
hardening exponent is determined from the fitting curve of
the stress-strain curve. The ultimate tensile strain is the same
as the strain-hardening exponent according to the theory of
instability in tension [20]. The ultimate tensile strength can be
determined at the ultimate tensile strain, which is obtained from
the strain-hardening exponent. Finally, we can obtain the yield
strength, tensile strength and elastic modulus from indentation
testing. However, the other parameters in equation (17), such as
the critical plastic zone rc and the fracture strain εf cannot be
directly obtained from the indentation load-depth curve.

The key point in this model is to assess the critical plastic
zone size and the fracture strain using instrumented indenta-
tion. However, fracture does not occur in the material beneath
the indenter during indentation; thus, the fracture strain in
tension cannot be estimated by indentation testing. To deter-
mine these two parameters, we adopt an empirical approach
for the material properties, which can be estimated by instru-
mented indentation. The plastic zone size can be determined
by considering the balance between the plastic flow and the
elastic constraint beneath the indenter. Ahead of a crack tip,
the amount of plastic deformation is constrained by the sur-
rounding material, which remains elastic. Thus, the plastic
zone size depends on both the elastic and plastic properties
of the material. A similar constraint occurs beneath the indent-
er. Therefore, if a material’s elastic constraint characteristics
are dominant, its plastic zone will be relatively small, but if its
plastic characteristics are dominant, its plastic zone will be
relatively large. This effect of the elastic and plastic character-
istics with regard to the plastic zone size can be expressed as a
function of the resilience, i.e., the ability of a material to ab-
sorb energy when deformed elastically. We thus attempt to
derive an experimental relation between the plastic zone size
and resilience. Approximate values of the plastic zone size rc
can be obtained using equation (14). In equation (14), we

measure two parameters, the JIC and strain energy density,
dW/dV, to calculate the rc. The fracture toughness, JIC, can
be obtained by fracture toughness testing. dW/dV can be ob-
tained by calculating the area under the tensile stress-strain
curve through equation (16). Detailed procedures for fracture
toughness and tensile testing are explained below. Resilience
can be measured from the tensile stress-strain curve using
equation (28) [20]:

Ur ¼ σys
2

2E
ð28Þ

where σys is the yield strength and E is elastic modulus. The
yield strength and elastic modulus can be obtained by inden-
tation testing based on ISO TR29381 [16]. As Fig. 4 shows,
an experimental relation between the plastic zone size and
resilience can be derived:

ffiffiffiffi
rc

p ¼ 0:10947⋅ URð Þ0:3594 ð29Þ

Using a similar approach, the fracture strain can be
considered in terms of ductility. Ductility is the extent
to which a metal can be deformed without fracture in a
metalworking process and is usually determined by
measuring the elongation during tensile testing. Nelson
and Winlock [28] suggested that elongation can be
expressed as the uniform strain to the point at which
necking begins. From a ductility perspective, fracture
strain is related to the uniform strain, although the uni-
form strain might not represent the fracture strain
completely. We obtain both the fracture strain and uni-
form stain from tensile testing for 27 metallic materials
listed in Table 1 and derive the following experimental
relation between fracture strain and uniform strain, illus-
trated in Fig. 5:

e f ¼ 0:08388þ 1:36553 ⋅εu ð30Þ

Fig. 4 Relationship between the critical plastic zone size calculated from
the fracture and tensile test results and the resilience measured by the
indentation test
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Substituting Eqs. (29) and (30) into equation (18), we
can rewrite equation (18):

K JC ¼ 0:10947 ⋅ URð Þ0:3594⋅
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ⋅E ⋅σR ⋅ 0:08388þ 1:36553 ⋅εuð Þ

1−ν2

r

ð31Þ

Experimental Details

To verify the proposed fracture toughness model, uniaxial
tensile tests, fracture toughness tests, and indentation tests
were performed on the materials listed in Table 1, selected
on the basis of industrial requirements for fracture toughness.
For example, API X-grade steels are commonly used in gas
and petroleum pipelines, low-alloy Cr-Mo steels are used in
power plant facilities, ASTM A106 steels are used in low-
temperature pipelines and 300 series stainless steels are re-
quired for pipes in nuclear power plants. Various structural
steels and tool steels are used in the fracture toughness tests.

The uniaxial tensile tests were conducted according to
ASTM E8:09 [29] at room temperature. Smooth round

6 mm-diameter test specimens, proportional in size to full-
size specimens, were used, and the gage length was 25 mm.
The tensile tests were performed on an INSTRON 5582 ma-
terial testing machine with a cross-head speed of 1 mm/min.
To obtain reliable average values for the tensile properties, at

Table 1 Tensile properties of the
tested materials Material E (MPa) σYS (MPa) σUTS (MPa) n ef εf

Carbon steels SKH51 207 295 784 0.259 0.171 0.117

A387 G11 207 555 854 0.141 0.214 0.081

SK3 207 315 707 0.263 0.356 0.180

SKD11 207 343 808 0.255 0.118 0.099

SCM4 207 723 994 0.130 0.168 0.066

SUJ2 207 404 822 0.240 0.333 0.161

SKS3 207 435 756 0.218 0.314 0.160

S45C 207 338 728 0.269 0.273 0.147

A106 207 305 583 0.217 0.303 0.158

SCM21 207 289 579 0.223 0.298 0.142

API X65 207 467 651 0.169 0.350 0.149

SS400 207 259 497 0.238 0.380 0.182

A387 G22 207 519 689 0.142 0.249 0.085

API X100 207 599 918 0.141 0.251 0.089

SKD61 207 377 766 0.235 0.310 0.142

API X120 207 746 1023 0.130 0.200 0.054

Stainless SUS440 207 330 821 0.256 0.215 0.118

SUS420J2 207 398 798 0.207 0.290 0.124

SUS403 207 335 672 0.212 0.360 0.154

SUS321 207 252 1040 0.373 0.724 0.471

SUS304 207 286 1138 0.359 0.774 0.493

SUS347 207 245 999 0.369 0.644 0.416

SUS304L 207 259 1165 0.402 0.654 0.427

Non-ferrous alloy Al7075 70 518 622 0.080 0.136 0.050

Al6061 70 262 300 0.062 0.124 0.082

Al2024 70 459 669 0.152 0.165 0.128

InCu 120 160 481 0.328 0.483 0.371

Fig. 5 Relationship between engineering fracture strain and uniform
strain measured by the tensile test

Exp Mech (2017) 57:1013–1025 1019



least five tensile tests was conducted. The tensile properties
measured by the tensile test are listed in Table 1.

Instrumented indentation tests were performed using an
AIS 2100 portable indentation system (Frontics Inc., South
Korea). This indentation system applies and measures real-
time indentation loads and depths with a 300-kgf load cell
and a linear variable displacement transducer with resolution
of 0.002 kgf and 0.1 μm. The indenter was a tungsten carbide
ball with a 0.25 μm radius, and testing was performed under
displacement-controlled conditions at an indentation speed of
0.3 μm/min. The maximum indentation depth was 150 μm.
Fifteen loading cycles, with unloading down to 50 % of the
maximum load, were applied at 10 μm intervals. At least five
sets of indentation data were obtained from indentation tests
on each material, and the average values were used to analyze
the fracture toughness. Indentation specimens were 20 × 20 ×
20 mm in size, and their surfaces were polished with 1-μm
Al2O3 powder.

The fracture toughness tests were performed according to
ASTM E1820 [2] using two methods: the basic procedure and
the resistance curve procedure. The basic method was used for
materials that did not exhibit significant stable crack growth prior
to fracture instability. The fracture toughness JC was measured
using the basicmethod. The resistance curvemethodwas used to
measure the fracture toughness JIC near the onset of ductile crack
extension, i.e., stable crack growth. A J-R curve was obtained
using the single- specimen unloading compliance method: the
crack lengthwas computed at regular intervals while testing each
specimen by partially unloading the specimen andmeasuring the
compliance. The configuration of the SENB (single-edge
notched bending) specimens is shown in Fig. 6, and the results
of the fracture toughness test and information about the specimen
thickness are summarized in Table 2.

All test specimens with an orientation corresponding to
loading in the longitudinal direction and crack propagation
in the transverse direction were extracted from rolled plate.
Specimens were extracted from the disk and hollow ori-
entation of L-R, i.e., loading in the longitudinal direction
and crack propagation in the radial direction. Straight fa-
tigue pre-cracks were made on the specimens in front of
the side-notch to make the ratio of the total crack length
to the specimen width (a/W) between 0.5 and 0.7 because
the unloading compliance technique is less sensitive for

a/W < 0.5. The maximum load for fatigue pre-cracking
was calculated from the following equation:

Pm ¼ 0:5Bb20σR

S
ð32Þ

where σR is the flow stress, which is typically the average
of the yield strength and the ultimate tensile strength.
After pre-cracking was performed, side grooves were ma-
chined into each specimen to maintain a straight crack
front during the J-R curve test. The total thickness reduc-
tion was 0.2B.

An INSTRON 8503 was used as the fracture toughness
testing instrument. Themaximum interval of the extensometer
was 10 μm. Fracture toughness values for each material were
averaged from at least three tests. The tested materials were
heated to measure the length of the original crack, i.e., the
length of the fatigue pre-crack, and the length of the final
physical crack, i.e., the extended length after testing at approx-
imately 300 °C for 30 min. Stereographic microscopes were
used to measure the crack length. Each crack length was

Table 2 Fracture toughness of the tested materials

Material B JIc or Jc KJc stdev.

Carbon steels SKH51 8 14.57 59.75 4.4

A387 G11 20 19.9 67.28 -

SK3 8 34.76 88.86 10.8

SKD11 8 40.52 98.37 6.8

SCM4 8 43.68 106.16 0.3

SUJ2 8 54.38 113.87 13.0

SKS3 8 60.6 118.17 5.8

S45C 15 144.61 181.32 5.1

A106 13.5 304.56 263.03 13.6

SCM21 15 339.98 281.37 12.0

API X65 14 372.91 291.18 8.0

SS400 20 423.05 310.21 0.1

A387 G22 16 518.58 343.14 18.1

API X100 19 548.24 352.8 19.0

SKD61 20 571.61 360.58 3.0

API X120 16 687.95 395.52 9.3

Stainless SUS440 8 26.33 73.82 1.5

SUS420J2 8 103.87 155.29 10.6

SUS403 13 332.4 274.98 10.9

SUS321 22 499.02 336.91 2.7

SUS304 20 537.13 349.27 17.1

SUS347 23 591.39 366.74 6.4

SUS304L 20 666.29 389.21 11.0

Non-ferrous alloy Al7075 8 17.24 36.42 3.6

Al6061 8 21.61 40.86 2.0

Al2024 8 48.2 64.07 7.5

InCu 17 187.25 156.77 15.2

Fig. 6 Geometry of the SENB specimen used in the fracture test,
according to ASTM E1820:09
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measured at nine equally spaced points centered about the
specimen centerline, as shown in Fig. 7. Provisional JIC values
were determined from the J-R curves, and verification of their
validity was performed in accordance with the data require-
ments in ASTM E1820 [2].

Results and Discussion

Determination of the Fracture Toughness Using
the Critical Indentation Stress Model

For the critical indentation stress model, the critical mean
pressure required for crack extension is defined in equation
(9). To estimate KJC using the indentation, JC must be mea-
sured. Lee et al. [8] confirmed that the degree of tri-axial stress
generated by indentation with a spherical indenter is similar to
that ahead of a crack tip. Thus, they proposed that the inden-
tation energy per unit area until the critical fracture initiation
point is related to the fracture energy. They defined the inden-
tation load-depth area until the critical point as the critical
indentation energy corresponding to the fracture energy. We
define the indentation energy per unit contact area until the
critical point obtained in equation (9) as the critical indentation

energy. We take the energy as the critical J-integral and call it
JC,IIT. The procedure for determining the fracture toughness
through the critical indentation stress model is illustrated in
Fig. 8. The critical indentation energy can be calculated from
the indentation load-depth curve by:

JC;IIT ¼
Z

0

h* L
Ac

dh ð33Þ

where L is the applied load, Ac is the contact area and h* is the
critical indentation depth corresponding to the critical mean
pressure. Figures 8, 9 and 10 show typical spherical indentation
load-depth curves. Unlike the indentation loading curve with a
sharp indenter, the indentation loading curves with spherical
indenters are commonly linear because of the spherical geom-
etry and work hardening in the materials. Thus, the loading part
of the indentation load-depth curve can be assumed to be linear:

L ¼ mhc ð34Þ
Ac can be determined from equation (21). Substituting equa-
tions (22) and (34) into equation (33) yields

JC;IIT ¼
Z h*

0

mhc
π 2Rhc−hc2
	 
 dh ð35Þ

Fig. 7 Example of the optical size measurement for SCM21: (a) original
crack length and (b) final physical length

Fig. 8 Schematic procedure for determining the fracture toughness using
the critical indentation stress model
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Resolving equation (35) allows us to obtain equation (36).

JC;IIT ¼ m
π
ln

2R

2R−h*

� �
ð36Þ

Inserting equation (36) into equation (12) gives us

K JC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E⋅

m
π
ln

2R

2R−h*

� �

1−v2

vuuut ð37Þ

The critical indentation depth h* can be determined
from the critical mean pressure. Figure 8 shows that the
mean contact pressure at each unloading depth can be
calculated from the indentation load-depth curve. The
mean contact pressure points are then fitted to a consti-
tutive equation by a simple power-law:

pm ¼ a ⋅hb ð38Þ
where a and b are fitting constants. Substituting the
critical mean pressure from equation (11) into equation
(38) allows us to calculate the critical indentation depth,
and inserting the critical indentation depth into equation
(37) enables us to determine the fracture toughness of
brittle metallic materials.

Determination of the Fracture Toughness
Using the Critical Indentation Strain Model

Recalling equation (31), we must evaluate various inputs, such
as the tensile properties, including the flow stress, resilience,
elastic modulus, and uniform strain. The values of all the param-
eters in equation (31) can be determined by indentation testing.
The procedure for determining fracture toughness through the
critical indentation strain model is illustrated in Fig. 9. The
strain-hardening exponent can be obtained from the fitting curve
of the true stress and strain in step 4. However, the value of the
strain-hardening exponent must be determined preliminarily in
step 1 to calculate the contact depth. Hence the following itera-
tive method is used to obtain the strain-hardening exponent in
advance. In step 1, an imaginary strain-hardening exponent is
pre-determined, and its value is compared repeatedly with the
strain-hardening exponent in step 4 [16]. When the two values
are the same, the value is established as the strain-hardening
exponent obtained from indentation testing. However, the itera-
tion method produces large self-deviation. Hence, we use an
alternative method to determine the strain-hardening exponent.
The strain- hardening exponent is a material constant that is used
in calculations of stress-strain behavior during work hardening
and is determined from an empirical representation over the
range of plastic deformation of the true stress and strain curve.
In an indentation process, the shape of the indentation loading
curve reflects the hardening behavior of the indented material.

The strain-hardening exponent is defined by analyzing the
slope of the indentation loading curve. The slope m of the
loading curve can be expressed by the indentation loads and
depths at each unloading point (Fig. 10):

mi j ¼ Li−Lj

hi−h j
ð39Þ

where i and j are the number of unloadings and L and h are the
indentation load and depth, respectively. The loading slopes
are calculated at 10 μm intervals up to 150 μm through depth

Fig. 9 Schematic procedure for determining the fracture toughness using
the critical indentation strain model

Fig. 10 Schematic diagram of the slope m of the indentation loading
curve
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control; then, we can obtain the slope mij. The slope ratio, p is
defined as the minimum value of the slope divided by the
maximum value:

p ¼ mmin

mmax
ð40Þ

The relationship between p and the strain-hardening exponent
n is shown in Fig. 11. The strain-hardening exponents of 27
metallic materials obtained from tensile testing are detailed in
Table 1. Although large variation is observed for some mate-
rials, a good proportional relationship is observed overall.
From these results, the following positive linear relation is
derived to estimate the strain-hardening exponent:

n ¼ −0:54033þ 1:07078⋅p ð41Þ
The data fitting is performed by least squares regression, and
the linear fitting is the most suitable with the least data
deviation.

Comparison of the Fracture Toughness Measured
by Indentation and Fracture Testing

The fracture toughness values obtained from equation (37)
and equation (31) are compared with those from conventional
fracture tests in Figs. 12 and 13, respectively. The results for
brittle metallic materials, shown in Fig. 12, indicate an overall
variation of approximately 15 % between the indentation and
fracture tests, but the Al-alloy results show slightly larger er-
rors than the others. This is expected because of the difference
in the Poisson’s ratio: a value of 0.3 was assumed for all
materials, but some nonferrousmetals, such as Al-alloys, have
Poisson’s ratios in the range 0.33–0.35. This affects the critical
stress criterion in equation (37), and it is responsible for the
larger error for Al-alloys in the final results.We confirmed that
the accuracy of the Al-alloy results increases by approximate-
ly 3 % when a Poisson’s ratio of 0.35, which is obtained from

tensile testing, is used to estimate the fracture toughness in
equation (37). However, further study is required because
we cannot measure the Poisson’s ratios using indentation test-
ing: large errors occur when the unknownmaterial to be tested
is Al-alloy.

The fracture toughness values obtained for ductile ma-
terials exhibit variation of approximately 20 % between
the fracture test and indentation test results as shown in
Fig. 13. For most materials, the fracture toughness values
obtained from indentation are lower than those obtained
from fracture testing. If we consider the universal devia-
tion in fracture toughness in the upper transition or upper
shelf region [30], Fig. 13 shows mostly good agreement.

Further discussionmay be required for somematerials such
as S45C and SUS420J2, which show larger deviations than
the other materials. The final fracture of these two materials
occurs under increasing load, but the fracture surface exhibits
ductile tearing. Thus, they exhibit both ductile and brittle frac-
ture characteristics. Such characteristics correspond to the
fracture behavior of materials in the transition temperature

Fig. 12 Comparison of the fracture toughness in the fracture tests and
indentation tests of brittle metallic materials (the dotted lines indicate a
deviation of 15 %)

Fig. 11 Relationship between the slope ratio p evaluated from the
indentation loading curve and the strain-hardening exponent measured
by the tensile test

Fig. 13 Comparison of the fracture toughness in the fracture tests and
indentation tests of ductile metallic materials (the dotted lines indicate a
deviation of 20 %)
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region; therefore, we define these two materials as transition
materials. Given the fracture behavior of transition materials,
we attempted to find an applicable modification of the critical
stress model. We assumed that the fracture of transition mate-
rials is initiated when the mean contact pressure reaches the
ultimate tensile strength in the tensile test. According to the
Tabor relationship [24], this assumption can be expressed as:

pcm;transition ¼ 3⋅σuts ð42Þ

where pm,transition
c is the indentation stress required for crack

extension for transition materials and σuts is the tensile
strength evaluated by indentation testing. Equation (42) refers
to the modified critical stress criterion for transition materials
only, and reanalyzing the results for transition materials im-
proved the accuracy, as shown in Fig. 14. This approach may
be applicable to estimation of the variation in fracture tough-
ness in the low-temperature region. However, the criterion in
equation (42) has no physical meaning, and further study is
required. In addition, issues involved in distinguishing the
types of models remain. We must know preliminarily whether
the tested material corresponds to the critical stress or critical
strain criterion (or perhaps the modified critical stress criteri-
on) to apply the proposed model. When a material to be tested
is unknown or the fracture toughness of the material is altered
due to embrittlement induced by degradation or low tempera-
ture, we need a method or procedure for selection one of the
models. This issue will be discussed in future work.

Conclusion

We propose a newmodel for estimating the fracture toughness
of metallic materials using instrumented indentation testing
with a spherical indenter. The model has two forms: a critical
indentation stress model and a critical indentation strain

model. Different criteria were applied to each model to deter-
mine the critical fracture point during indentation. In the crit-
ical indentation stress model, we confirmed that the critical
mean pressure, derived from contact mechanics, can be used
as the criterion to estimate the fracture toughness of brittle
metallic materials. In the critical indentation strain model,
the equation derived from the relation between the energy
release rate and the plastic deformation characteristics is valid
for estimating the fracture toughness of ductile metallic mate-
rials. Uniaxial tensile tests, fracture toughness tests and instru-
mented indentation tests were performed on 27 materials to
verify the proposed fracture toughness models. The results
show mostly good agreement between the KJC values obtain-
ed from the indentation tests and those obtained from standard
fracture toughness tests.
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