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Abstract This paper proposes an optimized damage identifi-
cation method in beam-like structures using genetic algorithm
(GA) without baseline data. For this purpose, a vibration-
based damage identification algorithm using a damage indi-
cator called ‘Relative Wavelet Packet Entropy’ (RWPE) was
implemented to determine the location and extent of damage.
The procedure does not require vibration signals from an un-
damaged structure because the method of comparing signals
from different locations in the existing state was found to be
effective. To ameliorate the algorithm, GA was utilized to
identify the best choice for Bmother wavelet function^ and
Bdecomposition level^ of the signals by means of the funda-
mental fitness function to optimize the algorithm. This result-
ed in the high accuracy of the damage identification algorithm.
In addition, this method has eliminated the difficulties in
selecting the type of mother wavelet function for damage
identification purposes. To investigate the robustness and ac-
curacy of the proposed method, numerical examples and ex-
perimental cases with different damage depths were consid-
ered and conducted. The results demonstrated that the pro-
posed method has great potential in the identification of dam-
age location and depth of cut in beam-like structures since it
does not require the recorded data from an undamaged beam
as a baseline for damage detection. Moreover, the relationship
between damage location and depth of damage has been

evaluated and results showed that the algorithm can be applied
to actual structures.

Keywords Relative wavelet packet entropy . Genetic
algorithm . Damage detection . Vibration signal

Introduction

Damages such as notches, cracks and delaminations, are in-
evitable in aerospace, mechanical and civil engineering struc-
tures and may occur during their service life. To ensure struc-
tural integrity and prevent structural damages from deteriorat-
ing at an alarming rate, advanced structural health monitoring
(SHM) techniques are required and have been widely studied
during the last few decades [1]. Vibration-based analysis has
been reported as a promising method for SHM [2, 3]. The
premise of vibration-based SHM is that the dynamic charac-
teristics of a structure are a function of its physical properties.
Therefore, changes in these physical properties, such as reduc-
tion in stiffness resulting from localized structural damagewill
cause observable changes in the dynamic characteristics of the
structure.

In recent years, the wavelet transform has emerged as a
promising tool for structural health monitoring and damage
detection due to its potential characteristics such as singularity
detection, good handling of noisy data and being very infor-
mative about damage location/time. Consequently, many
studies on damage detection have focused on the wavelet
transform scheme. Kim and Melhem [4] have presented a
considerable amount of literature on the subject, with particu-
lar application to crack detection of beam-like structures.

Recent studies in this context can be categorized into two
groups based on the dependence on healthy data; in the first
group, researchers only employed the spatial data of the
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defective structure while in the second group, data of both
undamaged and damaged structures were required.

In the first group of references [5–10], although the fre-
quently considered damaged structure was a beam, other el-
ements such as plane frames [11] and plates as a bi-
dimensional structure [12–14] were also considered. Even
though the signal to be processed by the wavelet transform
is frequently the mode shape of the damaged structure, Wang
and Deng [15] employed other spatial data like displacement
and strain measurements of a cracked beam subjected to im-
pact loading to locate damage by sensing local perturbations
at sites of damage, and then considering the displacement
response of a plate under in-plane stress. Zhong and Oyadiji
[16] developed an approach based on the difference between
two sets of detailed coefficients by using stationary wavelet
transform (SWT) for crack detection in beam-like structures.
The main limitation of the method is its applicability in sym-
metric beams. Subsequently, Zhong and Oyadiji [17] pro-
posed a technique based on the difference of the continuous
wavelet transforms (CWTs) of two sets of mode shape data
which correspond to the left half and the right half of the
modal data of a cracked simply-supported beam. A continu-
ous relative wavelet entropy (CRWE)–based baseline-free
damage algorithm was proposed by Lee et al. [18] for truss
bridge structures. The damage-sensitive index (DSI) of each
sensor’s location was defined by CRWE measurements of
different sensor-to-sensor pairs. The CRWE was reported to
be able to detect damage but with considerably large compu-
tation cost for the real time monitoring algorithm. Among the
baseline-free methods, Mikami et al. [19] employed variation
between two sets of power spectrum density magnitudes cal-
culated by means of wavelet packet decomposition compo-
nents of two sets of acceleration response of the damaged
beam. The method was able to examine the effect of damage
location, wavelet type and decomposition level in the steel
beam.

With regard to the second group, the procedures in these
articles were similar to those of the first group except that
healthy data was employed in the baseline. Wavelet coeffi-
cients of the original signal were generally subtracted from
the damaged coefficients [20–24]. In a different study, Han
et al. [25] proposed a damage detection index called the wave-
let packet energy rate index for the damage detection of beam
structures. The simulated and experimental studies demon-
strated that the wavelet packet transform-based energy rate
index was a good index candidate that was sensitive to local
structural damage. However, a significant limitation of this
method is that a reliable reference structural model for the
healthy condition was required. Ren and Sun [26] proposed
damage identification features such as wavelet entropy, rela-
tive wavelet entropy and wavelet-time entropy, which were
defined and investigated to detect and locate damage through
the vibration signals measured from the undamaged

(reference) and damaged structures. Neural networks have
been established as a powerful tool for pattern recognition
and damage identification, especially when combined with
wavelet transform. Yam et al. [27] proposed a method based
on the energy variation of the wavelet packet components of
the structural vibration response and identification of structur-
al damage status using artificial neural networks (ANNs) be-
fore and after the occurrence of structural damage. Diao et al.
[28] proposed a two-step structural damage detection ap-
proach based on wavelet packet analysis and neural networks.
The significant disadvantage of the methods included in the
second group is the absence of healthy data for many struc-
tures, especially the older ones. Hence, many research works
have been carried out to develop methods requiring only dam-
aged data.

Experimental noise is inevitable for real data, thus its influ-
ence on wavelet coefficients have been widely reported. Law
et al. [29] developed the sensitivity-based damage detection
method based on the wavelet packet energy of the measured
accelerations. The method identified damage of a structure
from a fewmeasurement locations with no sensitivity to noise.
Cruz and Salgado [30] evaluated six vibration-based damage
detection methods including curvature, COMAC, damage in-
dex, continuous wavelet transform, discrete wavelet analysis
and wavelet packet signature for various crack depth, damage
extension and noise level in a bridge. Levels of noise sensi-
tivity of the evaluated methods were found different while
wavelet packet signature was more tolerant of the noise.
Vafaei et al. [31] proposed a method based on artificial neural
networks and wavelet transform for identifying seismic-
induced damage of cantilever structures. Results showed that
the noise intensity had negligible effect on damage
identification.

In the last two decades, genetic algorithms (GAs) [32] have
been recognized as promising intelligent search techniques for
difficult optimization problems. GAs are stochastic search
techniques based on the mechanism of natural selection and
natural evolution. Hao and Xia [33] applied a genetic algo-
rithm with real number encoding to identify the structural
damage by minimizing the objective function, which directly
compares the changes in the measurements before and after
damage. Three different criteria were considered, namely, the
frequency changes, the mode shape changes, and a combina-
tion of the two. The algorithm did not require an accurate
analytical model and gave better damage detection results
for the beam than the conventional optimization method.
Vakil-Baghmisheh et al. [34] successfully applied the genetic
algorithm to predict the size and location of a crack in a can-
tilever beam by minimizing the cost function, which was
based on the difference of measured and calculated natural
frequencies. Rafiee et al. [35] has suggested a technique for
choosing the number of neurons in the hidden layer and wave-
let functions using an intelligent fault identification system.
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GA and ANNs were employed to identify the failure type of a
complex gear box system.

In this study, a new approach for optimized damage iden-
tification in beam-like structures is presented and applied to a
damaged steel beam. This new approach is based on wavelet
packet transform (WPT) which reduces the redundant infor-
mation of data and enables faster computation. The WPTwas
combined with entropy analysis to determine an effective
damage indicator, RWPE, to obtain information about the rel-
ative energy correlated with various frequency bands present-
ed in structural response segments for investigating the loca-
tion and severity of damage. The method does not require the
baseline data from an undamaged beam because of its effec-
tive comparative approach of response signals of different
locations.

The choice of the mother wavelet function and decompo-
sition level of signal is the most crucial challenge in wavelet
analysis. In order to employ the dyadic discrete wavelet trans-
form, Daubechies (DB) wavelets which have been chosen
from the orthogonal wavelets family was employed in this
research. DB wavelets have the significant advantage of
matching the transient components in vibration signals.

The order of the mother wavelet function is another subject
matter in wavelet analysis. This drawback has been previously
specified by trial-and-error procedure based on inherent char-
acteristics of the data. Therefore, GA was employed to ame-
liorate this problem and to search for the optimal Daubechies
order and decomposition level of the signal. Both numerical
simulation and experimental data with different damage sce-
narios revealed that the proposed algorithm has a great poten-
tial in damage identification of beam-like structures.

Wavelet Packet

Wavelet Packet Decomposition (WPD)

Wavelet transform (WT) is a relatively new signal processing
method efficient for multi-resolution analysis and local fea-
tures of non-stationary signals. It can be considered as an
extension of the traditional Fourier transform with modifiable
window size and location [36]. Wavelet packet transform
(WPT) could be considered as an extension of the WTwhich
provides a complete level-by-level time-frequency decompo-
sition. In addition, it can give a rich structure that permits
adaptation to a particular signal. WPT also enables multi res-
olution damage detection since it can localize multi-frequency
bands in the time domain. More details can be found in the
textbook by Mallat [37]. The wavelet packet function is de-
fined as

ψi
j;k tð Þ ¼ 2 j=2ψi 2 jt−k

� �
i ¼ 0; 1; 2;…; 2 j−1 ð1Þ

where a wavelet packet ψj,k
i (t) is a function of three indices

with integers i, j and k, denoting the modulation, the scale and
the translation parameter, respectively. Moreover, ψ0(t) =φ(t)
for i=0 and ψ1(t) =ψ(t) for i=1. The wavelet φ(t) is called the
scaling function and ψ(t) is called the mother wavelet func-
tion. The wavelets ψi for i>1 are obtained from the scaling
function and the mother wavelet function as:

ψ2i ¼
ffiffiffi
2

p X
k
h kð Þψi 2t−kð Þ ð2Þ

ψ2iþ1 ¼
ffiffiffi
2

p X
k
g kð Þψi 2t−kð Þ ð3Þ

where g(k) and h(k) are quadrature mirror filters associated
with the mother wavelet function and the scaling function. In
this work, the measured dynamic structural response is
decomposed into wavelet component functions. While the
level of decomposition is j, 2j WPD components can be ob-
tained. The original signal can be expressed as a summation of
WPD components as,

f tð Þ ¼
X 2 j

i¼1
f ij tð Þ ð4Þ

where t is time lag; fj
i(t) is the WPD component signal that can

be represented by a linear combination of wavelet packet
functions as follows:

f ij tð Þ ¼
X ∞

k¼−∞
Ci

j;kψ
i
j;k tð Þ ð5Þ

where Cj,k
i is the wavelet packet coefficient and can be calcu-

lated from

Ci
j;k ¼

Z
−∞

∞

f tð Þψi
j;k tð Þdt ð6Þ

WPT offers good time resolution in the high-frequency
range of a signal and good frequency resolution in the low-
frequency range of the signal. In general, the wavelet-based
methods are completely reliant on the mother wavelet func-
tion. Ingrid Daubechies invented what is called ‘compactly
supported orthonormal wavelets’– thus making discrete wave-
let analysis practical [38]. In structural health monitoring,
wavelet functions in the Daubechies family are often chosen
for signal analysis and synthesis because it satisfies the two
crucial requirements, i.e., the orthogonality of local basis func-
tions and second or higher-order accuracy is generally deter-
mined by trial and error. Apart from the reliance on the mother
wavelet function, the wavelet-based methods link up with the
decomposition level at which the wavelet analysis must be
carried out. The specification of an appropriate level is not
possible in advance and depends on a wide range of parame-
ters which include the characteristics of the structure, the na-
ture of the signal and the type, location and severity of the
damage, etc. Several researchers have suggested to try differ-
ent decomposition levels [11, 19, 39–42]. In other words,
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there is no computational logic behind the selection of
Daubechies order which is therefore considered to be opti-
mized for damage identification in this study. It is of para-
mount significance to note that calculation of the wavelet co-
efficients is directly dependent on the shape of the mother
wavelet such that the correlation between mother wavelet
and signal is calculated as wavelet coefficients. This study
aims to propose an effectual method to eliminate the short-
coming arising from the similarity of Daubechies family func-
tions with adjacent order (e.g., DB4 and DB5), as depicted in
Fig. 1, as well as acquiring higher precision and efficiency by
introducing a damage indicator.

Damage Indicator and Identification Procedure

The wavelet packet component energy is a suitable tool to
identify and characterize a specific phenomenon of signal in
the time-frequency domain. It has been shown by Yen and Lin
[43] that the energy stored in a specific frequency band at a
certain level of WPD provides a greater potential for signal
feature than the coefficients alone. Sun and Chang [41] con-
ducted a comparative study on the sensitivity of four damage
indices based on variations of frequency, mode shape, flexi-
bility and wavelet packet energy and deduced that wavelet
packet energy based index has a high potential to capture the
reduction in structural stiffness. The sensitivity of the wavelet
packet transform component energy with regard to local
change in the system parameters was derived by Law et al.
[29]. Ren et al. [39] has studied the application of wavelet
packet energy variation based damage detection method in
bridge shear connector monitoring.

The wavelet packet energy Ef of a signal is defined as

E f ¼
Z

−∞

∞

f 2 tð Þdt

¼
X 2 j

m1¼1

X 2 j

m2¼1

Z
−∞

∞

f m1
j tð Þ f m2

j tð Þdt ð7Þ

where f m1
j and f m2

j stand for decomposed wavelet compo-

nents. The total signal energy can be expressed as the

summation of wavelet packet component energies when the
mother wavelet is orthogonal:

E f ¼ �
X 2 j

i
E f ij

¼
X 2 j

i¼1

Z
−∞

∞

f ij tð Þ2dt ð8Þ

Then, the energy ratio of each wavelet coefficient can be writ-
ten as

pi j ¼
E f ij

E f
ð9Þ

The pij values correspond to a ratio of the energy of a partic-
ular coefficient E f ij

to the total energy. The pij value acts like a

probability distribution of the energy. Therefore, the pij values
sum to one.

The Shannon entropy represents the amount of information
which is also often used as a measure of the extent of signal
energy concentration in the time-frequency domain. Ren and
Sun [26] applied the concept of the wavelet entropy to struc-
tural damage detection problems. The wavelet entropy spectra
represent the level of order/disorder of vibration signals [44].
According to the Shannon entropy theory and wavelet energy
ratio defined above, wavelet packet entropy is given as

SWPE ¼ SWPE pð Þ ¼ −
X

j

X
i
pi j:lnpi j ð10Þ

in which the range of j depends on the selection of decompo-
sition level of a signal and it is a constant value in the case of
the WPT. The damage detection problem can be formulated
through the changes in the wavelet packet entropy of damaged
structures to detect the location and severity of damage. To
identify the change of vibration signals of a structure, the
relative wavelet packet entropy (RWPE) is defined as:

SkRWPE pαk
���pβk� �

¼
X

j

X
i
pαki j ln

pαki j

pβki j

 !�����
����� k ¼ x; y; z

ð11Þ

where α and β denote locations where the data is measured. It
is notable that accelerations measured in the same direction
should be used in computations of RWPE. Since damage at a
location affects vibration signals in every direction, the
baseline-free damage indicator, FRWPE, at a location Bα^ has
been defined as:

FRWPE ¼
X x;y;z

k¼1

X N

β¼1
SkRWPE pαk

���pβk� �
ð12Þ

In equation (12), N indicates the whole number of locations
corresponding to the number of sensors. Based on this equa-
tion, the vibration signal at a reference point is compared with
signals from other measured points, and thus allows the pos-
sibility of damage detection without using data from the un-
damaged state.

DB6DB4 DB5

DB16DB15DB14

Fig. 1 Order of Daubechies wavelet function
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In order to determine the location of damage clearly, it is
proposed to establish a threshold value for damage indicators
through applying statistical properties and the one-side confi-
dence limit of the damage indicators from successive mea-
surements [25, 45]:

UL ¼ μþ Z
α

σffiffiffiffi
N

p
� 	

ð13Þ

in which N stands for the whole number of sensors distributed
in a structure where a total ofN FRWPE values can be achieved.
When the mean value and the standard deviation of these
FRWPE values are represented as μ and σ, UL expresses the
one-side 1−αð Þ upper confidence limit for these FRWPE values,
while Zα is the value of a standard normal distribution with
zero mean and unit variance such that the cumulative proba-
bility is 100 1−αð Þ %. This limit can be considered as a
threshold value which is an entrance point of possible abnor-
mality in the damage indicator indicated by the FRWPE. The
advantage of this damage identification is that setting of the
threshold value is according to statistical properties of the
damage indicator measured with sensors. The location of sen-
sors whose the FRWPE values exceed the threshold will repre-
sent where possible damage takes place.

Numerical Investigation

Finite Element Method Analysis

To verify the suitability of the proposed damage identification
method, numerical simulations were conducted on three I-
section steel beams with a span length of 3 m and simulated
damage elements, as shown in Fig. 2. Beam 1 was the single
damage scenario with damage located at point 5 while Beam 2
had two damage points at locations 11 and 13. Beam 3 had
three damage points induced at the middle of the beam and at
locations 10 and 12. Damage was simulated in the form of a

notch with a 3 mm width. Damage depth for all beams was
increased gradually from 3 mm up to 75 mm as depicted in
Fig. 2(a). The mass density and modulus of elasticity of the
beammaterial were 7850 kg/m3 and 2.1 GPa, respectively, and
the Poisson’s ratio was 0.33.

The time history acceleration responses of beams were
computed by the finite element analysis package
(ABAQUS) using transient dynamic analysis. To simulate
an impulse load, the force-time history was applied at location
14 on the beam. The node acceleration responses of the beam
under the impulse load were obtained from sixteen locations
on the top flange as shown in Fig. 2(b) at a sampling frequen-
cy of 2000 Hz to identify the characteristics of damage in
beams.

Tested Damage Scenarios

To verify the efficiency and accuracy of the proposed
baseline-free damage identification algorithm for beam struc-
tures, a total of three damage scenarios were tested for small-
scale damage, i.e., 3 mm, with different sensor locations, as
depicted in Table 1. For damage scenarios SS1 (single damage
1), DS1 (double damage 1) and TS1 (triple damage 1) all
sensors are located at 16 specified locations. In DS2 scenario,
fifteen sensors are distributed at points 1–16, except point
number 13. The purpose of DS2 is to verify that the proposed
algorithm does not indicate any false alarm when the sensor is
not located at the damage location. In addition, the TS2 sce-
nario with the fifteen numbers of sensors deployed (see Table
1), demonstrate the influence of sensor position in identifica-
tion of damage location.

Genetic Algorithm

GA is an optimization method that simulates the natural evo-
lution phenomena inspired by Darwin’s survival-of-the-fittest
theory. In this optimization method, information about a prob-
lem, such as variable parameters, is coded into a genetic string

Fig. 2 (a) Cross section of tested
beams, (b) dimensions and
damage locations of tested beams
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known as the chromosome. Each of these individuals has an
associated fitness value, which is usually determined by the
fitness function to be maximized or minimized [32, 46]. In a
GA, a population of individuals is created by randomly gen-
erating a set of candidate solutions and encoding these solu-
tions into binary strings. Each individual in the population
then undergoes evaluation and is assigned a fitness value
based on how well the individual satisfies the state objective.
Generally, GA consists of three operations: (1) parent selec-
tion, (2) crossover, and (3) mutation.

In this study, the tournament selection for choosing the
solution pairs of the reproduction stage has been adopted
among the selection operators [47] and two-point crossover
was employed for every chromosome of the chromosome-pair
with a 50 % probability of selection. The two parents selected
for crossover were in charge of exchanging information that
lies between two randomly generated points within the binary
string.

The successful application of GAs to a problem is signifi-
cantly reliant on detecting an appropriate method for chromo-
some encoding. The success of the training process is impor-
tant for the creation of a fitness function to rank the perfor-
mance of a specific chromosome [32]. The genetic algorithm
rates its own performance with respect to that of the fitness
function. Consequently, the generic algorithm would be un-
able to achieve the requirements of the users unless the fitness
function adequately takes account of the desired performance
features.

In the proposed algorithm, the GAwas employed in order
to search for the optimal Daubechies order and decomposition
level of the signals by means of the fundamental fitness func-
tion as:

max Fit ¼ 1−
mean F γ

RWPE

� �
X nd

k¼1
RFβ

k

















2

ð14Þ

where ‖ ⋅ ‖2 is the Euclidean norm, γ is number of sensor
locations (γ=1, 2, …, N)), RF is the baseline-free damage
indicator, FRWPE, at identified location β, (β=1, 2, …, k),
and k is the number of damage locations.

The procedure of employing GA begins by defining a chro-
mosome, i.e., an array of variables whose values are to be

optimized. The proposed chromosomes contained five genes
for the Daubechies mother wavelet function and three genes
for the decomposition level of signals, as shown in Fig. 3. The
fitness function generates an output from the set of input var-
iables of a chromosome. These chromosomes undertake ge-
netic operations to produce next generation chromosomes.
This process is repeated until the convergence condition is
reached. The convergence condition is obtained when either
the best chromosome has not changed for a number of gener-
ations or the number of generations reaches its given maxi-
mum value.

Figure 4 depicts the general scheme of damage identifica-
tion optimization. In addition, Tables 2 and 3 present the pa-
rameters and variables of the GA used in the research,
respectively.

Baseline-Free Damage Identification Result

Damage Location Identification

The applicability of the proposed baseline-free damage iden-
tification algorithm is validated with several considered dam-
age scenarios, shown in Table 1. With regard to the identifi-
cation of damage location in the single damage scenario, SS1,
by running the GA, DB2 and level 5 have been selected as the
best values for Daubechies order and decomposition level,
respectively, and subsequently the FRWPE values for every
point are calculated, as depicted in Fig. 5(a). It can be ob-
served that the magnitude of FRWPE at point 5 was greater than
those from the other locations corresponding to the exact dam-
age location. To determine the damage location distinctly, the
threshold value for damage indicators were established
through applying the statistical properties and the one-side
confidence limit of the FRWPE values. With a 98 % confidence

Table 1 Various sensor
deployments on damaged beams Damage type Damage scenario Sensor location

Notch cutting Single SS1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

Double DS1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

DS2 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16

Triple TS1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

TS2 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16

DB order 
Decomposition 

Level 

0 1 1 1 1 1 0 1
Fig. 3 Proposed chromosome for GA
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interval α ¼ 0:02ð Þ, the histogram of FRWPE values after con-
sidering the damage threshold for SS1 damage scenario is
depicted in Fig. 5(b). It is evident that the FRWPE

UL arise at sensor
location 5, which indicates the actual damage location.

In addition, the sensitivity of results are confirmed by com-
paring the FRWPE values before and after the damage in SS1
damage scenario, as illustrated in Fig. 5(c). The significant
increase in the FRWPE was depicted at the damage location.
Thus, the indicator FRWPE is considered an effective measure
in the proposed damage detection algorithm.

In the multi-damage cases, the optimal DB order and de-
composition level corresponding to each damage scenario
have been selected by using GA, as shown in Table 3. In
addition, the results of double and triple scenarios with various
number of sensor locations were presented in Fig. 6. It can be

observed that, in DS1 damage scenario, Fig. 6(a), the FRWPE
UL

arises clearly at sensor locations 11 and 13, which coincide
with real damage locations. As indicated in Fig. 6(b), when the
sensors were not located at damage location 13, no peak was
observed in FRWPE values to indicate the damage location 13.
The histogram of FRWPE

UL with consideration of damage thresh-
old values obtained from equation (13) is depicted in Fig. 6(b).
From this figure, it can be seen that only the sensor in location
11 was able to successfully identify the location of damage. In
addition, comparison of the peak values of FRWPE

UL in DS1
damage scenario, reveals that larger intensity of the FRWPE

UL

occurs when the damage was located near the center of the
beam since the local perturbations caused by the damage, take
place at a far distance from the support. On the other hand, the
presence of damage adjacent to the support results in a singu-
larity around the support, which can reduce the accuracy of the
identification.

Fitness function

Calculate

Signal decomposition 

Calculate 

No 

Yes 

Mutation

Crossover 

Selection 

Generation 

End

Stopping

Raw vibration signal 

Determine the optimized damage identification through 

maximizing the objective function among the damage extents 

derived from loop 

Mother wavelet 

Decomposition level 

Fig. 4 General scheme of
algorithm optimization for
damage identification

Table 2 GA parameters

Number of generation 200

Population 30

Selection function Tournament

Fitness normalization Rank

Crossover Pc= 0.7, Single-point, uniform

Mutation Pm= 0.2, Uniform

Table 3 GA variables

Variable name Range Optimized value

Beam1 Beam2 Beam3

Daubechies order DB1-DB31 DB2 DB5 DB15

Decomposition level 2–7 5 5 6
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The results of triple damage scenarios with different num-
ber of sensors were also presented in Fig. 6(c) and (d), respec-
tively. Based on the result in TS1 damage scenario shown in
Fig. 6(c), it can be seen that the FRWPE

UL arise at location 8,9,10
and 12, which coincided with damage locations. In addition,
the results indicated that the FRWPE

UL for sensor locations 8 and
9 have lower intensity and sensitivity relative to the sensor
location 10, even though they were located in the middle of
the beam span. The reason for such behavior was caused by
the influence of damage and signal attenuation, when it was
located adjacent to sensor locations the signal attenuates and a
part of signal energy decays once it was recorded by the sen-
sor. As shown in Fig. 6(d), the TS2 damage scenario with
fifteen sensor deployment could also successfully identify
the damage locations.

By comparing the results, it can be demonstrated that, the
FRWPE
UL value at damaged location for single damage scenario

(Fig. 5) was considerably larger than the one for triple damage
scenario (Fig. 6). It means that as the number of damage lo-
cations increases, the number of sensors were also required to
increase in order to secure sufficient specificity for identifying
multiple damage locations.

Identification of Progressive Damage

The verification of the proposed algorithm was also carried
out with progressive damage scenarios of the simulated
simply-supported beams from the small-scale damage.
Figure 7 shows the values of indicators FRWPE

UL calculated ac-
cording to equation (12) for beam 1 with a single damage
scenario. By using the GA, DB2 and level 5 were selected
as the best values for the Daubechies order and decomposition
level, respectively. Figure 7 clearly depicts the difference be-
tween various orders of Daubechies to discriminate the loca-
tion and severity of damage. As can be seen, the damage
locations were distinguishable in these histograms with
FRWPE
UL reaching a maximum value at location 5 which was

the exact damage location. However, the peak of FRWPE
UL was

not as clearly distinguishable in DB15 even though it had the
same location and severity of damage. Furthermore, the
changes in values of FRWPE

UL for each depth of damage were
not as comparable to DB2. For DB11, the shortcomings were
identical to that of DB15 but gave more appropriate results.
DB5 was not a worthy consideration since it was not able to
precisely indicate the damage location. It is significant to note

Fig. 5 Damage identification in beam1, (a) histogram of FRWPE, (b) histogram of FRWPE
UL after consider damage threshold, (c) comparison of FRWPE

before and after damage
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that the accuracy of differentiating the damage cannot be com-
pared to DB2 for the single damage scenario.

In order to clarify the estimated values, the performance of
the fundamental fitness function at the fifth level of

F
F

F
F

(a) 

(b) 

(c) 

(d) 

Fig. 6 Damage identification in
multiple damage scenarios with
different sensor locations, (a)
DS1, (b) DS2, (c) TS1, (d) TS2
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decomposition was also calculated manually through the per-
centage of standard difference between the FRWPE values at
damage locations and average of the remaining points
([(∑iFRWPE

max −∑FRWPE
ave )/∑FRWPE

ave )] × 100; i= number of da-
mage scenarios) at every specific depth of damage. The results
are tabulated in Table 4. Comparison of each column associ-
ated with every depth of damage for all the considered DBs
indicates that frommanual calculations, wavelet functionDB2
was the suitable wavelet function order. This coincides with
the outcome of GA estimation. For instance, in the case of
30 mm damage depth, the maximum value of standard differ-
ence was associated with DB2 by 90.10 % compared to other
DBs. A similar trend was observed for other considered dam-
age depths.

To extract the relevant information fromTable 4 for all DBs
in each depth of damage, the one-way ANOVA followed by
Duncan’s multiple-range test were employed. Significant dif-
ferences between DBs (F=23.43, p<0.01) and DB2 were
found in the statistical analysis. The results revealed that the
mean of DB2 (M=50.82) was significantly greater than other
DBs.

In beam 2, the GAwas utilized to identify the most accurate
location and severity of damage by maximizing the fitness
function. The outcome of the GA analysis which is depicted
in Fig. 8 revealed that DB5 with 5 level of decomposition
performed better in two damage scenarios compared to other
Daubechies orders. Firstly, by comparing the considered

Daubechies orders shown in Fig. 8, it can be seen that for
DB11, the damage locations were not easily identified while
DB5 clearly identified damage locations 11 and 13 together
with appropriate representation by the histograms i.e., values
of FRWPE

UL at damage locations compared to other Daubechies
orders. Meanwhile, by scrutinizing the histograms, the dam-
age locations in DB2 and DB15 could be identified. In addi-
tion, from the histograms it can be observed that the intensity
of FRWPE

UL at location 11 was relatively larger than location 13
although both have similar damage severity. This is possibly
due to location 11 being close to the middle of the beam while
location 13 was close to the support.

For beam 3 with multiple damages, DB15 with 6 level of
decomposition was found to be the appropriate DB order for
damage identification. The advantage of DB15 compared to
other Daubechies orders was that the value of FRWPE

UL , as
shown in Fig. 9, precisely shows the damage locations along
the beam length. The intensity ofFRWPE

UL was influenced by the
notch locations as well as the distance from the supports. The
corresponding intensity of FRWPE

UL for the damage located at
the middle of the beam is expected to be larger than those
closer to the support. However, due to the signal attenuation
effect raised by the presence of damage between two sensor
locations, the intensity of FRWPE

UL of the damage between loca-
tions 8 and 9 is lower than that of location 10.

To verify the estimated values, Table 5 shows the mean
values of standard difference percentage of FRWPE values

F
F

F
F

Fig. 7 Histograms of FRWPE
UL in beam1 with different Daubechies orders
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Table 4 Daubechies wavelets comparison for each damage depth for beam 1

Wavelet function order Standard difference (%)

Damage depth (mm) Mean*

3 6 12 21 30 39 48 57 66 75

DB 2 28.74 28.12 36.13 41.41 46.08 59.43 59.54 70.10 69.40 69.34 50.83a

DB 3 14.51 15.11 17.27 18.33 23.81 23.34 27.75 26.79 26.37 27.78 22.11cdef

DB 4 13.09 14.87 15.72 17.16 23.73 25.39 27.49 25.50 24.34 26.64 21.39cdef

DB 5 20.09 30.34 23.64 26.77 34.09 40.68 46.92 42.29 41.83 41.97 34.86b

DB 6 14.08 13.32 18.80 18.31 19.92 20.53 28.24 29.37 28.57 28.94 22.01cdef

DB 7 13.11 13.05 14.17 16.18 16.62 17.35 19.45 19.85 17.70 19.98 16.75fgh

DB 8 6.45 7.96 10.85 10.54 11.15 12.63 14.17 13.06 15.72 15.47 11.8 h

DB 9 9.97 9.87 12.01 13.14 14.19 16.69 16.40 17.13 20.06 19.97 14.94gh

DB 10 15.13 15.67 15.42 18.23 27.16 27.26 30.30 31.34 30.39 31.52 24.24 cd

DB 11 17.94 19.22 24.37 22.79 30.23 31.82 35.45 31.80 29.61 29.99 27.32c

DB 15 17.45 17.09 20.73 21.90 26.39 26.86 26.67 25.53 24.99 26.59 23.42cde

DB 16 12.99 12.90 13.23 14.35 18.01 18.28 20.82 20.97 19.26 21.58 17.24efgh

DB 17 14.19 13.88 13.97 15.16 19.55 19.72 21.38 23.80 23.07 23.79 18.85defg

DB 18 9.64 11.31 12.19 12.21 12.54 12.46 13.87 12.92 12.94 13.38 12.34 h

DB 19 8.36 9.68 11.81 12.37 12.20 13.34 15.73 15.78 15.39 15.84 13.05gh

DB 20 14.50 15.84 15.26 21.73 23.56 23.22 30.22 31.14 29.98 31.36 23.68 cd

DB 21 10.29 11.53 12.00 12.00 13.12 13.04 13.80 14.48 13.38 13.89 12.75gh

*Mean values with the same letter were not significantly different

F
F F

F

Fig. 8 Histograms of FRWPE
UL in beam 2 with different Daubechies orders
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for multiple damage scenarios at specified level of decom-
position without using GA. Analysis performed by
ANOVA indicated the significant differences among the
DB5 and DB15 with other DBs in each damage scenario.
Comparison of results showed that the mean value of DB5
and DB15 are considerably greater than other DBs in each
damage scenario. Hence, it can be inferred that not only
does the GA has the potential to verify the proposed al-
gorithm to obtain the optimal solution but also provides
evidence for the accuracy of the parameters for adjust-
ment of the algorithm.

Results have demonstrated that the locations of notches can
be successfully determined from the measured time history
acceleration responses through variation of FRWPE

UL . In addi-
tion, the respective amplitude levels of the histograms can
be used as a criterion to identify severity of damage, although
not quantitatively. Therefore, selection of a proper mother
wavelet for wavelet-based methods is crucial to improve the
performance of the proposed method in order to achieve ac-
curate results. The type ofmother wavelet function plays a key
role in reducing the false positives adjacent to damage loca-
tions, as depicted in Figs. 7, 8 and 9. This is mostly because
the correlation between the mother wavelet functions and the
signal is calculated as a wavelet coefficient and this is the
significance of the proposed method.

F
F F

F

Fig. 9 Histograms of FRWPE
UL in beam 3 with different Daubechies orders

Table 5 Daubechies wavelets comparison for multiple damage
scenarios

Wavelet function order Mean*

Beam 2 Beam 3

DB 2 179.67bc 450.22cde

DB 3 158.36def 426.83ef

DB 4 156.84ef 397.60 g

DB 5 223.12a 462.16c

DB 6 166.28cdef 447.53cde

DB 7 153.57f 435.12de

DB 8 173.07bcd 441.83cde

DB 9 168.26 cdef 450.44cde

DB 10 167.76cdef 456.26 cd

DB 11 169.38bcde 494.83b

DB 15 181.18bc 531.31a

DB 16 163.28def 432.90de

DB 17 162.98def 433.85de

DB 18 158.54def 442.19cde

DB 19 162.21def 407.38 fg

DB 20 182.88b 496.71b

DB 21 166.30cdef 457.11 cd

*Mean values with the same letter were not significantly different
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Experimental Verification

Experimental Setup

To validate the proposed algorithm by experimental data
where measurement error and noise are present, vibration tests
were performed on three I-section steel beams with different
damage scenarios. Beams with a 3 m span length, as shown in
Fig. 10, with damage at the designated locations described in
Table 6 were considered. The damage was induced by intro-
ducing a saw cut at the prescribed locations on the beam with
varying depth of cut.

The analogue data from the sensors is converted via an
analysis digital center using the OROS OR35 analyzer. The
signal analyzer is capable of generating all the different forms
of signals, including white noise which was used in this test.
The beam was excited using a shaker at node 14. The accel-
eration response of the K-shear Kistler accelerometers was
measured at sixteen locations on the top flange along the beam
(Fig. 10(b)). These accelerometers have a frequency range of
0.5–10 kHz and a sensitivity of 100 mV/g.

The time history signal of the shaker and the accelerome-
ters were amplified and response signals were processed by
the analyzer. Figure 11 shows the front end of the analyzer
with sixteen accelerometers connected to channel 4–20 and
channel 21 was used for the force transducer. The sampling

rate was set to 5.12 kS/s to achieve a frequency bandwidth of
2000 Hz.

Experimental Results

The following observations were made based on the structural
response signal of damaged beams. By running the GA on the
first damage case i.e., beam 1 with a single damage as shown
in Fig. 12(a), Daubechies order 2 and decomposition level 6
were chosen as the best parameters for the adjustment of the
algorithm for differentiating the damages. The damage loca-
tion at position 5 could be clearly identified with the signifi-
cant change in values of FRWPE

UL . In beam 2 with the double
damage scenario as depicted in Fig. 12(b), the influence of
changing the wavelet function as well as level of decomposi-
tion on the accuracy of damage identification was investigated
by using the GA. As a consequence, Daubechies wavelet
function with order of 5 and decomposition level 6 were se-
lected as the best function for identification of damage

Fig. 10 (a) Damage locations of tested beams. (b) Experimental setup and data acquisition system

Table 6 Damage scenarios

Damage
case

Damage
scenario

Damage point Width of
damage (mm)

Depth of
damage (mm)

Beam 1 Single 5 3 3 up to 75

Beam 2 Double 11,13 3 3 up to 75

Beam 3 Multiple Middle of
beam, 10,12

3 3 up to 75

Fig. 11 Front end of analyzer
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location and severity. Furthermore, the intensity of FRWPE
UL at

damage location 11 which was located at the middle of the
beam were slightly higher than that of damage location 13
which may be due to its close distance to the support. In beam
3 with the multiple-damage scenarios as shown in Fig. 12(c),
Daubechies order 20 and decomposition level 6 were selected
as the suitable function by GA and both damage locations and
severities could be identified. However, for the whole set of
data, the maximum value of the FRWPE

UL was always detected at
the exact damage location.

The results have demonstrated that for wavelet-based
methods, the choice of the mother wavelet function is of par-
amount importance to improve the performance of the algo-
rithm. However, as indicated in this study, it is possible to
have satisfactory algorithm performance with a particular
mother wavelet function. Moreover, from the comparison of
histograms in different damage scenarios, the values of FRWPE

UL

were found to be proportional to damage severity. Therefore,
this damage indicator can be used to quantify the damage
severity. Also, by comparing results corresponding to the
damage cases, it can be seen that changes in damage location
causes a scenario which requires a different suitable mother
wavelet function. Hence, the final outcome obtained from GA
was found to have great potential to determine the optimal

solution and to investigate the reliability of the parameters
for algorithm adjustment.

In addition, varying operational and environmental condi-
tions of the structure raise a discrepancy, i.e., false alarm,
which is reduced because of the baseline-free nature of the
proposed method. Since all sensors are subjected to the same
environmental condition and measured the vibration signals at
the same time. Thus the vibration signals measured at a loca-
tion can act as reference signals to other location that has
comparable structural feature.

Conclusions

An intelligent damage identification algorithm to detect dam-
age in beam-like structures using vibration signal was devel-
oped and implemented. To verify the efficiency and practica-
bility of the method proposed in the current research, both
numerical simulation and experimental tests were carried
out. The baseline-free damage indicator was defined from an
optimized wavelet packet transform which was combined
with the information entropy to gain the advantages of both
techniques. Results conclude that the wavelet-based tech-
niques are absolutely dependent of the mother wavelet

(a) (b)

(c)
Fig. 12 Histograms of FRWPE

UL in (a) beam 1, (b) beam 2, and (c) beam 3 with different Daubechies orders
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function. On the other hand, the most inevitable challenge in
wavelet analysis for damage identification as shown in previ-
ous research works has been the determination of mother
wavelet function and decomposition level through trial and
error based on intrinsic characteristics of the data. This has
limited earlier researches to use a specific mother wavelet
function and decomposition level for various damage scenar-
ios of beam-like structures. However, the novelty of the pro-
posed method is using various mother wavelet functions and
decomposition levels for every damage scenario at different
locations. The mother wavelet and decomposition level are
optimally chosen by GA which can resolve the problem of
baseline-free methods. The baseline-free methods suffer from
presence of multiple-damage scenario in several locations
throughout a beam. Therefore, the difficulty in implementa-
tion of mother wavelet function through trial-and-error based
methods is eliminated. Also, all the results show that the op-
timal damage indicator can be successfully used to identify the
damage locations as well as damage severity from the re-
sponse data of the damaged beam using an effective compar-
ative approach. The results demonstrated that the proposed
algorithm has great potential and considerable accuracy for
damage identification in beam-like structures.
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