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Abstract With adhesive bonding, design can be oriented to-
wards lighter structures because of the direct weight savings
over fastened or welded joints and also due to the flexibility to
joint different materials. Cohesive Zone Models (CZM) are a
powerful design tool, although the CZM laws of the adhesive
bond in tension and shear are required as input in the models.
This work experimentally evaluates the shear fracture tough-
ness (GIIC) and CZM laws of bonded joints for three adhesives
with distinct ductility. GIIC was characterized by conventional
and the J-integral techniques. Additionally, by the J-integral
technique, the precise shape of the cohesive law was defined.
For the J-integral, a digital image correlation method is used to
estimate the adhesive layer shear displacement at the crack tip
(δs) during the test, coupled to a Matlab® sub-routine for ex-
traction of this parameter automatically. As output of this
work, fracture data is provided in shear for each adhesive,
showing the marked differences between the three adhesives
evaluated. This information enables the subsequent strength
prediction of bonded joints under this mode of loading.

Keywords Adhesive joint . Fracture toughness . Cohesive
law . Experimental testing . Digital image correlation

Introduction

Modern and competitive structures are sought to be strong,
reliable and lightweight, which increased the industrial and
research interest in adhesive bonding, namely improving the
materials strength and fracture properties. With this joining
technique, design can be oriented towards lighter structures,
not only regarding the direct weight saving advantages of the
joint over fastened or welded joints, but also because of the
flexibility to joint different materials. Other advantages in-
clude the smaller surface geometry disruption, more uniform
stresses along the joint, ease of fabrication, design flexibility
and corrosion prevention when bonding different materials
[1]. In the automotive industry, this increases the design flex-
ibility and gives better possibilities for optimization, resulting
in weight reduction and more competitive vehicles. Klarbring
[2] showed by an asymptotic analysis that the behaviour of
thin adhesive layers between stiff adherends is ruled by two
straining modes: elongation and shear (whose derivative var-
iables are the normal, σ, and shear stresses, τ, respectively).
Although this approach is a simplification of the rigorous
stress state at the adhesive layer, many previous studies enable
concluding that the simplification is accurate for reproducing
the macro-behaviour of adhesive layers leading to the strength
prediction of the bonded structures [3]. One justification for
this, for ductile adhesives in particular, was given by
Andersson and Stigh [4]: the damaged or Fracture Process
Zone (FPZ) develops by a significant length beyond the crack
tip, which makes the fracture toughness (GC) of adhesives not
particularly dependent on the precise details of stresses at the
crack tip.

In any field of industry, the large-scale application of a
given joint technique supposes that reliable tools for design
and failure prediction are available. Analytical models, for
which a comprehensive discussion and comparison is given
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by Adams et al. [5], are limited for damage growth analysis.
The concepts of Linear Elastic Fracture Mechanics (LEFM)
can be used to analyse fracture of adhesive bonds [6], although
involving a few limitations, the most relevant ones being (1)
the assumed stress fields are not correctly captured when
large-scale plasticity is present and (2) in most cases the pur-
pose is to analyse undamaged joints, i.e., without any sort of
macroscopic defect [7]. Thus, these conventional techniques
are not the most applicable for bonded joints, unlike CZM,
which assumes that the FPZ can be described at a macro-scale
by a law relating the cohesive tractions (tn for tension and ts for
shear) and the relative separations at the crack tip (δn for ten-
sion and δs for shear). By combining concepts such as the
cohesive tractions and GC of materials, it is straightforward
to initiate damage in materials and enable its propagation.
Whilst CZM principles date back to the works of Dugdale
[8] and Barenblatt [9], it was only decades later that
debonding under mixed-mode (i.e., tensile and shear combi-
nation) was addressed, e.g., in the work of Tvergaard and
Hutchinson [10]. The cohesive laws are independently char-
acterized for each loading mode and each transition in the
global (mixed-mode) law is assessed by different criteria.
Mode-mixicity is highly relevant for bonded joint failure anal-
ysis since, due to the complex loadings and crack growth
between stronger adherends, cracks in adhesive joints mostly
propagate under mixed-mode. This has led to the application
of this technique to adhesively-bonded structures in the fol-
lowing years [11], in conjunction with development and test-
ing of refined damage onset and failure criteria, different co-
hesive law shapes and improved cohesive law estimation tech-
niques [3, 12]. Currently, a large variety of structural problems
involving a wide range of mode-mixicities can be solved up to
complete failure. The most important step in applying this
technique is the estimation of the CZM law, although this is
still not standardized [13]. A few data reduction techniques are
currently available (the property identification technique, the
direct method and the inverse method) that vary in complexity
and expected accuracy. In all cases, pure fracture tests, such as
the Double-Cantilever Beam (DCB) for mode I and the End-
Notched Flexure (ENF) for mode II, are usually employed.
Data reduction methods for the tensile fracture toughness
(GIC) by the DCB test are abundant, either conventional or
not requiring crack length (a) measurements and accounting
for plasticity [14]. This test specimen is also standardized
(ASTM D3433-99 and BS 7991:2001). The ENF test geom-
etry is less addressed, yet conventional and plasticity account-
ing methods are available [15].

The property identification method is based on building a
parameterized CZM law by isolated materials properties. The
main limitation is that the surrounding adherends lead to de-
viations between the bulk and thin adhesive bond cohesive
properties, which are not accounted for [4]. The inverse meth-
od relies on a trial and error fitting analysis to experimental

data, such as the load–displacement (P-δ) curve of fracture
tests, allowing tuning of the simplified shape CZM laws for
particular conditions [16]. Other grounds for comparison are
the R-curve [17] or crack opening profile [18]. Direct methods
output the cohesive law directly from experimental data. One
of these consists of the direct tension or shear tests [19]. For
the other, the cohesive law is obtained by measuring the J-
integral and values of δn and δs [20], and differentiation of the
tensile strain energy release rate (GI)–δn or shear strain energy
release rate (GII)–δs curves. The direct method is particularly
attractive because it characterizes the adhesive under identical
adherend restraining conditions to real applications and gives
the exact shape of the CZM law. By this method, the full
cohesive law is evaluated up to crack initiation. Actually, GC

gradually increases as the specimen is loaded and it attains a
steady-state value when the crack begins to propagate. The
onset of crack propagation corresponds, in the cohesive law,
to the last phase of the law (zero stresses) [4]. This could be a
limitation for materials exhibiting growing values of tough-
ness with the advancing crack (e.g., fibrous composites be-
cause of fibre bridging). However, this method gives an un-
ambiguous measurement of GC for homogeneous materials
such as adhesive layers [21]. Ouyang and Li [22] developed
a general J-integral model/direct method for an adhesively-
bonded ENF specimen with dissimilar adherends, which
could be adapted to the standard ENF specimen, i.e., with
identical adherends. Investigations showed that GIIC is inde-
pendent of the initial crack length (a0). Moreover, the shape of
the shear cohesive law highly affects the critical load, partic-
ularly for short values of a0. In the work of Leffler et al. [21],
the value of GIIC and shear CZM law of an epoxy adhesive
(DOW Betamate XW1044-3) were assessed experimentally
by a J-integral methodology applied to the ENF specimen.
The experimental procedure consisted of measuring δs by a
digital camera attached to a microscope while recording the
P-δ data. Results showed relatively consistent results for dif-
ferent values of adherend thickness (tP), while two experimen-
tal conditions were compared: constant displacement rate and
constant shear deformation rate. By comparing the resulting
cohesive laws (obtained by differentiation of the GII-δs laws),
results showed virtually identical τ values, although the values
ofGIIC were slightly different, on account of the varying shear
deformation rates. An identical methodology was followed by
Ji et al. [23] to assess the influence of the adhesive thickness
(tA) on the interfacial behaviour of bonded joints between
composite plates, considering values between 0.1 and
0.8 mm. Results indicated that the interfacial shear strength
increased with higher tA values. The shape of the measured
laws was also influenced by this parameter. The same authors
[24] extended the previous study considering steel adherends.
Zhu et al. [7] characterized the tensile (DCB) and shear (ENF)
cohesive laws of steel/polyurea/steel specimens by the J-inte-
gral/differentiation approach to obtain the rate dependency of
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these laws considering nominal strain rates between 0.003 and
3 s−1. The required value of δs for the J-integral calculation was
obtained by a Charged-Coupled Device (CCD) camera with a
measurement accuracy of 2 μm. The shear CZM laws were
highly nonlinear. Additionally, they were strain rate-dependent,
which was explained by the interfacial behaviour. Carlberger
and Stigh [25] studied, by the J-integral/direct method, the
mode I and mode II cohesive behaviour of adhesive layers of
the epoxy adhesive Dow Betamate® XW1044-3 as a function
of tA. The ENF testing protocol for mode II characterization
relied on using a Linear Variable Differential Transformer
(LVDT) mounted between rigid supports, one fixed to each
adherend, to provide the real-time measurement of δs. GIIC

showed to be more influent than the shear cohesive strength
(ts

0) by varying the value of tA. However, the GIIC dependency
with tA was much smaller than GIC, although revealing an in-
creasing trend with tA. In the work of Marzi et al. [26], identical
conclusions were found, following the procedure of Carlberger
and Stigh [25]. A slightly different approach, but yet within the
framework of the J-integral, is postulated by Stigh et al. [27], in
which the adherends can deform plastically. This enables the
specimen size to be reduced, but it requires the additional mea-
surement of rotations at three locations in the ENF specimens
during thes tests.

This work evaluated the value of GIIC of bonded joints for
three adhesives with distinct ductility, including a novel high
strength and ductile polyurethane adhesive for the automotive
industry. The experimental work consisted of the shear frac-
ture characterization of the bond by a conventional and the J-
integral techniques. Additionally, by the J-integral technique,
the precise shape of the cohesive laws is defined. For the J-
integral, a digital image correlation method is used for the
evaluation of δs during the test, coupled to a Matlab® sub-
routine for automatic extraction of this parameter.

Experimental Work

Materials

The aluminium alloy AA6082 T651 was selected because of
its high tensile yield stress (σy), which prevents adherend
plasticization during the tests, which would cancel the validity
of the GIIC results by plastic dissipations in the adherends.
This is an aluminium alloy with high strength and ductility,
as shown by the mechanical properties obtained in the work of
Campilho et al. [28]: Young’s modulus (E) of 70.07±
0.83 GPa, σy of 261.67±7.65 MPa, tensile failure strength
(σf) of 324.00±0.16 MPa and tensile failure strain (εf) of
21.70±4.24 %. To compare the behaviour of different adhe-
sives and to evaluate the method’s capability under different
scenarios, either brittle/ductile failure or varying orders of
magnitude in the measured quantities by the optical method,

the following adhesives were used: the brittle epoxy Araldite®
AV138, the ductile epoxy Araldite® 2015 and the ductile
polyurethane Sikaforce® 7752. A comprehensive mechanical
and fracture characterization of these adhesives was recently
undertaken in different studies by the authors [3, 20, 28, 29].
Bulk specimens loaded in tension enabled obtaining E, σy, σf
and εf. The values of GIC and GIIC were obtained by conven-
tional data reduction schemes using the DCB and ENF tests,
respectively. Table 1 presents the relevant mechanical and
fracture data of the adhesives.

Joint Geometries, Fabrication and Testing

Figure 1 shows the characteristic geometry and dimensions of
the ENF joints: mid-span L=100 mm, a0≈60 mm, tP=3 mm,
width b=25 mm and tA=0.2 mm. The joints were assembled
under controlled conditions of temperature and humidity.
Before bonding, the adherends’ faces to join were roughened
by grit blasting followed by cleaning with acetone. Curing
was carried out in a steel mould to assure the correct alignment
between adherends and also the position of the calibrated
spacers. Actually, calibrated steel spacers were inserted be-
tween the adherends at both edges of the adhesive layer to
obtain a constant value of tA in the adhesive bond, after ap-
plying demoulding agent to enable removal after curing. The
crack tip spacer, which aims at producing a sharp pre-crack in
the adhesive layer to ensure stable crack growth at the begin-
ning of crack propagation, was composed of a 0.1 mm thick
razor blade between calibrated steel spacers. These were
stacked and glued together (Fig. 2(a)), making a total thick-
ness of 0.2 mm. The cutting edge of the blade was offset from
the sheets and positioned facing the adhesive layer before
application of the adhesive such that, after curing of the adhe-
sive, a sharp pre-crack was produced at the adhesive layer’s
edge (Fig. 2(b)). The spacer at the opposite edge of the crack
has the sole purpose of assuring the selected tAvalue and, thus,
it is only composed of a 0.2 mm thick component. Application
of demoulding agent to the spacers enabled their extraction
after curing of the adhesive. Curing was performed at room
temperature. Final set-up of the specimens was then undertak-
en with the removal of the steel spacers and painting the crack
tip path with brittle white paint to better visualize a during the
tests. After this procedure, the crack was manually propagated
for few millimetres to fully guarantee a stable initiation of
crack growth and a black numbered scale was glued in both
upper and lower adherends to aid the parameter extraction for
the direct method. For optimization of the optical data acqui-
sition process, the scales were positioned such that the
manually-propagated crack tip was exactly at the mark of
10 mm in the scale. Figure 3 shows a specimen after this
procedure, in which the crack tip spacer induced a pre-crack
approximately at the 7 mmmark in the scale, with the manual
propagation extending it up to the mark of 10 mm. The tests
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comprised a total of twenty-four specimens (eight for each
adhesive) and they were carried out at room temperature in a
Shimadzu AG-X 100 testing machine equipped with a 100 kN
load cell. For the required test documentation, an 18 MPixel
digital camera was used, with no zoom and fixed focal dis-
tance to approximately 100 mm, to obtain high resolution
images for further application of the previously discussed
techniques. The test setup is depicted in Fig. 4. This procedure
made possible obtaining a during the test by a manual mea-
surement method, necessary to measure GIIC by the conven-
tional and J-integral techniques. The manual measurement
was undertaken by the individual analysis of each image and
comparison against the scale marks using zooming tools.With
the reported camera resolution, the average pixel size was
approximately 0.011 mm, enabling high precision measure-
ments. Only one conventional method does not require mea-
surement of a, as it will be detailed further in this work.
Moreover, this procedure also enables estimating δs by a de-
veloped Matlab® algorithm, necessary for the application of
the direct method. The correlation of the mentioned parame-
ters with the P-δ data was done by the time elapsed since the
beginning of each test.

Methods to Determine GIIC

Data reductions schemes that are based on LEFM principles
and without accounting for the adhesives’ ductility usually un-
derestimateGIIC [15]. In this work, apart from the J-integral, the
following conventional techniques were tested: Compliance
Calibration Method (CCM), Direct Beam Theory (DBT),
Corrected Beam Theory (CBT) and Compliance-Based Beam
Method (CBBM).

Conventional Methods

The classical data reduction schemes to obtainGIIC are usually
based on compliance calibration or beam theories. The CCM
is based on the Irwin-Kies equation [30]

GIIC ¼ P2

2b

dC

da
; ð1Þ

where C=δ/P is the specimen’s compliance. Cubic polyno-
mials (C=C1a

3+C0) were used to fit the C=f(a) curves,
resulting into

Table 1 Properties of the
adhesives Araldite® AV138,
Araldite® 2015 and Sikaforce®
7752 [3, 20, 28, 29]

Property AV138 2015 7752

Young’s modulus, E [GPa] 4.89±0.81 1.85±0.21 0.49±0.09

Poisson’s ratio, ν 0.35 a 0.33 a 0.30 a

Tensile yield strength, σy [MPa] 36.49±2.47 12.63±0.61 3.24±0.48

Tensile failure strength, σf [MPa] 39.45±3.18 21.63±1.61 11.48±0.25

Tensile failure strain, εf [%] 1.21±0.10 4.77±0.15 19.18±1.40

Shear modulus, G [GPa] 1.56±0.01 0.56±0.21 0.19±0.01

Shear yield strength, τy [MPa] 25.1±0.33 14.6±1.3 5.16±1.14

Shear failure strength, τf [MPa] 30.2±0.40 17.9±1.8 10.17±0.64

Shear failure strain, γf [%] 7.8±0.7 43.9±3.4 54.82±6.38

Toughness in tension, GIC [N/mm] 0.20 b 0.43±0.02 2.36±0.17

Toughness in shear, GIIC [N/mm] 0.38 b 4.70±0.34 5.41±0.47

amanufacturer’s data
b estimated in reference [28]

Fig. 1 Geometry of the ENF
specimens
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GIIC ¼ 3P2C1a2

2b
: ð2Þ

Beam theories were also used to measure GIIC. The DBT,
which does not account for crack length corrections to consid-
er the effects of shear deformation (unlike the CBT), is given
as [31]

GIIC ¼ 9Pδa2

2b 2L3 þ 3a3
� � : ð3Þ

The CBT was proposed by Wang and Williams [32] and is
written as

GIIC ¼ 9 aþ 0:42ΔIð Þ2P2

16b2ExtP3
; ð4Þ

where Ex is the adherends, E value in the length direction and
Δ1 is a crack length correction to account for shear deforma-
tion [15]

ΔI ¼ tP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ex

11Gxy
3−2

Γ

1þ Γ

� �2
" #vuut ; ð5Þ

in which Gxy is the in-plane shear modulus and Γ is given by

Γ ¼ 1:18

ffiffiffiffiffiffiffiffiffiffiffi
ExEy

Gxy

s
; ð6Þ

where Ey is the value of E of the adherends in the thickness
direction. The CBBM was also developed for the ENF spec-
imen [15], enabling the estimation of GIIC only using the

experimental compliance. This technique relies on an equiva-
lent crack that does not require measurement and is computed
based on the current specimen’s compliance. The equivalent
crack length, aeq, is introduced, which accounts for the FPZ
effects at the crack tip (not taken into account when the real
value of a is considered). GIIC can be obtained by the follow-
ing expression

GIIC ¼ 9P2aeq2

16b2E f tP3
: ð7Þ

Detailed explanations of the method can be found in reference
[15]. Ef is an equivalent flexural modulus obtained from the
specimen’s initial compliance and value of a0.

J-integral Method

This Section describes the direct method forGIIC and cohesive
law estimation by ENF experiments [7, 21, 25]. This tech-
nique relies on the simultaneousmeasurement of the J-integral
and δs (Fig. 5). As previously discussed [20], the J-integral is
suited to the non-linear elastic behaviour of materials, but it
remains applicable for plastic monotonic loadings, as it is the
case of the ENF test protocol. The proposed GII evaluation
expression results from using alternate integration paths to
extract the J-integral [33], resulting in the following closed-
form expression for GII [21]:

GII ¼ 9

16

Puað Þ2
ExtP3

þ 3

8

Puδs
tP

; ð8Þ

(a) 

(b) 

Fig. 2 Gluing of crack tip spacer (a) and schematics of the crack tip spacer (a)

Fig. 3 Side view of a specimen
prepared for testing
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where Pu is the current load per unit width at the loading
cylinder. The first term corresponds to the LEFM solu-
tion. The second term relates to the influence of a flexible
adhesive layer, and it can give a large contribution to GII

[21]. The accuracy of this expression requires the linear
elastic behaviour of the adherends, which needs to be
checked during the design of the specimens’ geometry
and verified after each test is done. By evaluating the J-
integral around the damage region or FPZ of the adhesive
layer, it is possible to write

GII ¼
Z

0

δsc

ts δsð Þdδs: ð9Þ

δsc is the shear crack-tip end-opening at failure of the
cohesive law. Expression (9) gives a direct relation be-
tween the stress state at the crack tip and GII. The evolu-
tion of GII with δs is as follows: before crack propagation,
GII increases up to attaining GIIC. At this stage, the crack
begins to propagate. GIIC is thus obtained by the steady-
state value of GII in the GII-δs plot. This point in the plot
corresponds to cancelling of the corresponding stress
component and consequent formation of a crack. The
ts(δs) plot or shear cohesive law of the adhesive layer is

thus estimated by fitting of the resulting GII-δs curve and
differentiation with respect to δs [21]

ts δsð Þ ¼ ∂GII

∂δs
: ð10Þ

Differentiation can be performed by polynomial functions or
least square adaptions of Prony-series to the GII data, this last
technique to be recommended when the polynomial expres-
sions reveal to be rough approximations of the experimental
data [25]. Because of compression and friction effects at the
crack faces of the ENF specimen eventually compromising
the cohesive law accuracy, some authors [7] considered in-
stead the Arcan test method to obtain the shear cohesive law
of adhesive layers.

Optical algorithm for parameter extraction – ENF specimen

A numerical algorithm was developed to measure δs based on
image processing and tracking of a set of reference points
throughout a sequence of images. The optical method requires
the identification of 6 points, from p1 to p6 (Fig. 6), which
define the curvatures of the top and bottom adherends. δs is
given by the arc length between p3’ and p4’, which are the
projections of p3 and p4 into the medial curve of the specimen.
The process starts by manually identifying the 6 points in the
first picture of a test. Points p1 to p6 are printed with a distinct
colour, which helps finding their correct locations. Starting
from the points in the first picture, the points of the following
pictures are automatically tracked with an algorithm in
Matlab®. Full details of the point tracking algorithm are pre-
sented in a previous work [20]. With this procedure, all 6
points locations are easily found for all pictures taken during
an ENF test. On the other hand, the procedure to measure δs is
described next in detail since it was specifically tuned for this
parameter and test method (ENF test) with all its specificities.

Compared to the commercially available Digital Image
Correlation (DIC) systems, the advantages of using the

Fig. 4 ENF test setup with a specimen ready for testing

Fig. 5 ENF specimen under loading, with description of the analysis parameters
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proposed method are the lower equipment costs (only a cam-
era with large resolution is necessary), and the higher resolu-
tion of the camera (20 MPixel or more compared to 2 to 5
MPixel of the commercially available systems).

Computation of δs The value of δs is obtained by measuring
the arc length between p3 and p4 on the curve that lies between
the two adherends, the medial curve. The curvatures of the
adherends are described by quadratic polynomials

qi xð Þ ¼ aix
2 þ bixþ ci; ð11Þ

where qi represents the curvature of adherend i, and ai, bi and
ci are the coefficients of the polynomial. The coefficients are
found by fitting the quadratic functions to the y coordinates of
the points in the least squares sense, such as qtop([x1,x3,
x5]

T)=[y1,y3,y5]
T and qbottom([x2,x4,x6]

T)=[y2,y4,y6]
T. In theo-

ry, qtop and qbottom would be strictly parallel and δs could be
calculated by projecting p3 to the bottom curve, or p4 to the top
curve. However, in practise, this is not verified and, thus, δs is
calculated by the projections of p3 and p4 into the medial curve
of the specimen. The medial curve, qmedial, is defined by av-
eraging the coefficients of the bottom and top curvatures,

qmedial xð Þ ¼ amedialx
2 þ bmedialxþ cmedial

¼ atop þ abottom
2

x2 þ btop þ bbottom
2

x

þ ctop þ cbottom
2

: ð12Þ

The projection of a point pi=(xi,yi) into the medial curve is
obtained by finding the line that is perpendicular to the medial
curve and that passes by pi. The perpendicular to the medial
curve at a given point is the line that is perpendicular to the
tangent of the curve at that point, which is given by the first
derivative of qmedial,

q0medial xð Þ ¼ 2amedialxþ bmedial: ð13Þ

The projection (xi’,yi’) of a given point (xi,yi) is found by
solving the system

anormal ¼ −
1

2amedialxi0 þ bmedial
bnormal ¼ yi

0−anormalxi0
yi ¼ anormalxi þ bnormal
yi
0 ¼ amedialxi

02 þ bmedialxi
0 þ cmedial

8>>>><
>>>>:

; ð14Þ

where the first two equations define the coefficients anormal
and bnormal of the line that is perpendicular to qmedial and that
passes by the projected point (xi’,yi’), the third equation forces
the perpendicular to pass by the original point (xi,yi), and
the forth equation forces the projected point to belong to
the medial curve. This non-linear system of equations is
numerically solved with the Matlab®’s vpasolve function,
and always returns a single solution in the real numbers
domain. Having p3’ and p4’, δs

p (the value of δs in pixels)
may be found by measuring the arc length of qmedial be-
tween these two points,

δs
p ¼

Zx4 0

x3 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dy

dx

� �2
s

dx ¼
Zx4 0

x3 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ amedialxþ bmedialð Þ2

q
dx: ð15Þ

δs
p is in image units (pixels) and needs to be converted to real

world units (e.g., millimeters). Since the length of the arcs
(p1, p5) and (p2, p6) is known to be d=20 mm, this is used to
find the pixel size and, thus, convert δs

p to millimeters,

δs
t ¼ δs

pd

2

Z
x1

x5 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ atopxþ btop

� �2q
dxþ

Z
x2

x6 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ abottomxþ bbottomð Þ2

q
dx

0
@

1
A

−1

:

ð16Þ

The pixel sizewas on average 0.011mmand, thus, the estimated
maximum error of the image acquisition process is ±0.006 mm.
Finally, δs can be defined as

δs ¼ δs
t−δs0 ð17Þ

where δs
0 is the initial value of δs

t.

Results

The ENF specimens were tested following the previously de-
scribed procedure. All specimens revealed cohesive failure of
the adhesive layer for the full extension of the crack, while the
adherends behaved elastically. This is mandatory for the correct
calculation ofGIIC and shear cohesive law of the adhesive layer.

GIIC Calculation by the Conventional Methods

TheGIIC values were estimated by the data reduction methods
mentioned in the Section “Conventional Methods”. The

p1

p2

pp3

p4

qbo

p5

p6

ottom

qtop

qmedial

Fig. 6 Illustration of the points taken by the optical method (p1 to p6), the
curves fitted to those points (qtop and qbottom) and the medial curve
(qmedial) where δs is measured
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experimental P-δ curves for each adhesive system revealed a
good agreement between specimens. Figure 7 gives the com-
parison of the P-δ curves for the adhesive Sikaforce® 7752 (δ
corresponds to the loading point displacement). The P-δ
curves were truncated at the region of crack attaining the
proximity of the loading cylinder, because here the GII mea-
surements lose validity. The CCM requires calculating dC/da
during the test and this is a very critical step, because of the
large effect on the outcome of the R-curve [15]. Figure 8
shows, as an example, the C=f(a) curve and 2nd degree poly-
nomial approximation for a specimen bonded with Araldite®
2015. The R-curves, which relateGII vs. a, are shown in Fig. 9
(considering one specimen for each adhesive type). As it can
be observed in Fig. 9(c), only the CBBM data reduction meth-
od was equated for the adhesive Sikaforce® 7752. Actually,
for this particular adhesive, and due to its ductility, the brittle
layer of white paint cracks before real crack growth, which
prevented the application of the other methods. For all adhe-
sive systems and data reduction techniques, the R-curve is
consistent with the theoretically steady-state value of GII that
should be obtained throughout the crack growth phase, al-
though with minor oscillations that are natural in experimental
data. On the other hand, this steady-state behaviour should
only span from the crack growth onset up to the vicinity of
the loading (i.e., middle) cylinder. At this point, the compres-
sion effects by this cylinder on the crack tip obstruct crack
growth, thus artificially increasing the measured value of
GII. The steady-state value of GII gives a measurement of
GIIC [34]. Another distinctive feature that is patent in Fig. 9
is the deviation to the right of the CBBM curves of the adhe-
sives Araldite® AV138 and 2015 relatively to the techniques
requiring ameasurement, which is justified by the inclusion of
the FPZ in aeq, thus rendering the real crack lengthier than the
measured one [15]. The values of a0 for the specimens of Fig. 9
are 69.31 mm (Araldite® AV138), 59.67 mm (Araldite® 2015)
and 49.92 mm (Sikaforce® 7752). These quantities agree with
the vertical increase of GII in the GII-a curves for the

techniques requiring measurement of a (CCM, DBT and
CBT). On the other hand, the corresponding aeq values are
74.13 mm, 69.66 mm and 74.40 mm (by the same order),
due to the consideration of the plastic zone. By comparing
the initial values of aeq with a0, an increasing difference is
found with the adhesive ductility, which can also be observed
in the R-curves of the Araldite® AV138 and 2015 in Fig. 9
(comparing the onset of the R-curves for the conventional
methods). By comparing the curves for the adhesives
Araldite® AV138 and 2015 by the different methods, the
CBT clearly under predicts the CCM, DBT and CBBM.
Table 2 summarizes the values of GIIC (N/mm) of all speci-
mens, considering the average GII value during the steady-
state portion of the curve, and respective average values and
deviation for each adhesive and data reduction technique.
From the complete set of tested specimens, few of these were
not valid. Furthermore, for some specimens (marked with a)
the CCM analysis was rendered unpractical because of diffi-
culties in obtaining dC/da. Between specimens of the same
adhesive and method, results agree quite well. Actually, for
each set adhesive/data reduction method, the standard devia-
tion is typically below 10 % of the GIIC average values.
Additionally, for each adhesive system, the results between
data reduction methods were consistent, except for the CBT.
Considering the CBBM values as reference, the CBT under
predicts these values by 17.7 % (Araldite® AV138) and
17.0 % (Araldite® 2015).

GIIC and CZM Law Calculation by the J-integral

The results presented here follow the direct method procedure
depicted in the Section “J-integral Method” for the shear co-
hesive law estimation of bonded joints. Initially, the value of δs
was obtained with 5 s intervals for each test specimen, follow-
ing the automatic data extraction procedure described in the
Section “Optical algorithm for parameter extraction – ENF
specimen”. Figure 10 gives a representative example of the
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variation of δs with the time elapsed since the beginning of the test
for each one of the tested adhesives. The raw curves from the
point tracking algorithm and the adjusted polynomial laws,
attained by making δs(testing time=0)=0, are presented in this
figure. The curves were truncated at crack initiation since, from
this point on, the data is no longer relevant for the directmethod. It
should bementioned that, depending on the specimen under anal-
ysis, different degree polynomials were selected in order to attain
the best correlation factor, R (which is also valid for the polyno-
mial to fit the GII-δs law, to be discussed further in this Section).
While the polynomial approximation is necessary to remove the

noise from the raw curve, the mentioned procedure to obtain the
adjusted polynomial laws was required on account of eventual
initial offsets while preparing the specimens that made the δs
value not to be nil at the beginning of each test. The evolution
of δs in Fig. 10 is exponential with the testing time, and this is
consistent with previous works. Leffler et al. [21] obtained an
exponentially increasing evolution of the shear deformation rate
of the ENF tests by using an extensometer attached to the both
adherends at the crack tip. Between adhesives, a clear difference
can be found in themaximum δs values, which closely follow the
adhesive ductility. Inclusively, δs at crack initiation for the

(b)(a)

(c)

0

0.2

0.4

0.6

0.8

60 70 80 90 100

G
II

[N
/m

m
]

a or aeq [mm]

CCM DBT CBT CBBM

0

1

2

3

4

50 60 70 80 90

G
II

[N
/m

m
]

a or aeq [mm]

CCM DBT CBT CBBM

0

1

2

3

4

5

6

7

50 60 70 80 90

G
II

[N
/m

m
]

aeq [mm]

Fig. 9 Comparison of representative R-curves for each of the adhesives: (a) Araldite® AV138, (b) Araldite® 2015 and (c) Sikaforce® 7752

Table 2 Values of GIIC [N/mm]
for the three adhesives obtained
by all methods

Adhesive Araldite® AV138 Araldite® 2015 Sikaforce®
7752

Specimen CCM DBT CBT CBBM CCM DBT CBT CBBM CBBM

1 0.469 0.566 0.440 0.572 3.029 3.083 2.644 3.420 5.825

2 a 0.709 0.566 0.712 – – – – 5.877

3 a 0.650 0.608 0.724 3.675 2.401 2.177 2.545 5.474

4 – – – – 3.214 2.916 2.544 2.943 4.813

5 a 0.578 0.519 0.594 2.812 2.741 2.476 2.801 5.676

6 0.568 0.579 0.487 0.562 3.357 3.088 2.644 3.136 5.648

7 0.605 0.581 0.478 0.576 2.696 2.831 2.624 2.901 5.619

8 0.603 0.583 0.481 0.585 3.008 2.952 2.512 3.025 –

Average 0.561 0.606 0.511 0.618 3.113 2.859 2.517 2.967 5.562

Deviation 0.064 0.053 0.058 0.069 0.334 0.238 0.164 0.273 0.356

a Polynomial fitting difficulties
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Araldite® AV138 is under 1/10 of a millimetre. After having
the δs-testing time plots, it was possible to estimate the GII-δs
relationship by direct application of equation (8). The GIIC

estimate is given by the steady-state value of GII in the
GII-δs curve, which corresponds to the onset of crack propa-
gation [25]. Figure 11 shows the GII-δs curve for the same
specimens of Fig. 10 and the selected polynomial approxima-
tions (the Araldite® AV138 curve is in secondary axis for
clarity). The shape of these curves is consistent with published
data in the literature [20, 35]. It can be found that, at the
beginning of the test, GII increases very slowly, but the rate
of improvement quickly increases and ultimately a steady-state
value is attained. As previously mentioned, this last stage
indicates the onset of crack growth and gives the GIIC esti-
mate. A clear difference is observed between the three adhe-
sives regarding the range of GII values up to attaining the
steady-state value corresponding to GIIC. Moreover, the hori-
zontal span of the curves also shows the difference in δs
previously discussed in Fig. 10. For the specimens depicted
in the figures, the measured values of GIIC [N/mm] are 0.479
(Araldite® AV138), 3.444 (Araldite® 2015) and 5.790
(Sikaforce® 7752). The overall GIIC results for all specimens

are presented in Table 3. These reveal a good repeatability,
with percentile deviations under 10 %, except for the
Araldite® AV138. The results are consistent with the CBBM
of Table 2, with a maximum deviation between average
values of 7.21 % for the Araldite® 2015.

It is also relevant to perform a comparison between the data
of Tables 2 and 3, and the GIIC values of these adhesives
predicted in previous works (Table 1). For the Araldite®
AV138, the average GIIC presented in this work by the J-inte-
gral is 52.6 % higher than that of Table 1. The data of Table 1
refers to a previous work [28] in which the values of GIC and
GIIC were determined by an inverse fitting method (i.e., GIIC

was not directly measured, but fitted to a given joint geome-
try). Thus, the procedure undertaken in the present work is
clearly more robust. In the case of the Araldite® 2015, the
data of Table 1 corresponds to using conventional GIIC data
reduction methods by ENF specimens with higher stiffness
(carbon-epoxy composite) than the aluminium used in the
present work. Previous works [36] showed that GIC increases
with the adherends’ stiffness because of the larger dimensions
of the FPZ ahead of the crack tip. In the authors’ opinion, this
is also valid forGIIC and is on the basis of the 32.3% reduction
found in GIIC in this work by the J-integral. The GIIC values
for the Sikaforce® 7752 in Table 1 pertain to the same exper-
imental ENF tests, although processed in a previous work
[29]. The small difference between the data of Table 1 and
Table 2/Table 3 is due to data processing being performed by
different individuals. A positive difference of 4.8 % was found
in this work by the J-integral, compared to the data of Table 1.

To apply the differentiation procedure represented by equa-
tion (10) and estimate the shear CZM laws, polynomial func-
tions were applied to the raw GII-δs data of each specimen.
Generally, it was possible to achieve a high degree of accuracy
between 4th and 6th degree functions (R varied between 0.96
and 0.99). Figure 12 shows the full set of ts-δs curves obtained
by the direct method for the three adhesives. The curves show
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Table 3 Values ofGIIC [N/mm] for the three adhesives obtained by the
J-integral

Specimen Araldite®
AV138

Araldite®
2015

Sikaforce®
7752

1 0.552 3.444 –

2 0.732 3.585 5.067

3 0.676 2.873 6.050

4 – 3.298 5.360

5 0.566 3.123 6.070

6 0.533 3.140 5.173

7 0.523 3.080 5.790

8 0.479 2.901 6.160

Average 0.580 3.181 5.667

Deviation 0.090 0.249 0.459
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identical ts
0 values between the Araldite® AV138 and 2015,

while the Sikaforce® 7752 gives smaller values. The value of
δsc also differs in accordance with the previously mentioned
difference discussed for Fig. 10. For all adhesives, a good
agreement was found between curves regarding the initial
stiffness of the curves, ts

0, descending part of the curves and
δsc. The average and deviation of the cohesive parameters
(with percentile deviation in parenthesis) were as follows.
Araldite® AV138: ts

0=15.6±1.39 MPa (8.9 %), δs
0=0.0167

±0.00163 mm (9.80 %) and δsc =0.0618±0.0214 mm
(34.6 %), Araldite® 2015: ts

0=15.5±0.683 MPa (4.4 %),
δs

0 = 0.0702± 0.0122 mm (17.4 %) and δsc = 0.372 ±
0.0246 mm (6.6 %) and Sikaforce® 7752: ts

0=11.8±
0.807 MPa (6.9 %), δs

0=0.328±0.0182 mm (5.5 %) and
δsc=0.781±0.107 mm (13.7 %). It can be considered that the
scatter between specimens of the same adhesive is acceptable
and shows a high correlation between specimens. The percen-
tile deviation was generally under 10 %, except a few cases in
which δs

0 or δsc exceeded this value. Figure 13 compares
typical CZM laws for each adhesive and the parametrized
CZM law that fits best each raw curve, either triangular or
trapezoidal. The brittle Araldite® AV138 is best modelled
by a triangular CZM law, while the other two adhesives are
represented with more accuracy with a trapezoidal CZM law.

However, the Araldite® 2015 could be modelled with a trian-
gular CZM law as well with some level of accuracy to the raw
curve. The obtained CZM laws pertain to the cohesive behav-
iour of the adhesive layer, thus clearly reflecting the adhe-
sives’ ductility. In the presence of interfacial rather than cohe-
sive failures, these are usually brittle because a lack of adhe-
sion occurs before the adhesive’s ductility is fully exploited
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[37]. Thus, predicted CZM laws without plastic behaviour are
expected. Moreover, the J-integral approach undertaken in this
work is continuum-based, i.e., it characterized the cohesive
behaviour of the adhesive as a whole. Thus, it is expected that
the CZM laws are tA and rate dependent [38] and that accurate
results in the strength prediction of generic joints are only ob-
tained in the presence of a similar tA value and if quasi-static
loading conditions are met. The results of Fig. 13 can also be
compared with the analysis of Constante et al. [39] relating to
the tensile CZM law estimation by the direct method consider-
ing the Araldite® AV138 and 2015, and a polyurethane with
similar characteristics to the Sikaforce® 7752 (the Sikaforce®
7888). In fact, under tension, the Araldite® AV138 also reveals
to be extremely brittle and a triangular law was proposed, while
the ductility of the Araldite® 2015 and Sikaforce® 7888 could
be reproduced by a trapezoidal CZM law.

Identically to GIIC, the obtained values of ts
0 patent in

Figs. 12 and 13 can also be compared to the data of Table 1.
By evaluating the previously mentioned average values by the
direct method against the shear failure strength (τf) of Table 1,
differences of −48.3 %, −13.4 % and +16.0 % were found for
the Araldite® AV138, Araldite® 2015 and Sikaforce® 7752,
respectively. This deviation between ts

0 and τf can be ex-
plained in light of the difference between a local quantity
(cohesive strength at the crack tip) and the overall response
of a bulk material, respectively. Actually, at the crack tip, the
strain constraining effects imposed by the adherends and the
typical mixed-mode crack propagation (oppositely to crack
growth orthogonally to the direction of maximum principal
stress in bulk materials), often lead to non-negligible varia-
tions between these two quantities [15].

Results Comparison with Another J-integral Technique

A nonlinear J-integral solution applied to the ENF specimen is
available in the work of Ouyang and Li [22] for GII and CZM

law estimation, generically developed for ENF specimens
with different adherends. A comparison is made regarding this
formulation and that proposed in this work with the same
purpose. The procedure for the Ouyang and Li method was
based on using the developed analytical expression for esti-
mating the GII-δs curve, followed by differentiation of a poly-
nomial fitting curve to produce the shear cohesive law. Only
one specimen was compared for each adhesive, and only the
results for the adhesives Araldite® AV138 and Sikaforce®
7752 are presented here, although the agreement between
methods is identical for the three adhesives. Figure 14 shows
the GII – δs comparison between the two methods (the
Araldite® AV138 curve is in secondary axis for a clearer vi-
sualization). The curves are practically overlapped for both
adhesives, with a difference in the steady-state values, which
provide the measurement of GIIC, of −1.4 % (Araldite®
AV138) and 0.9 % (Sikaforce® 7752). Figure 15 compares
the shear cohesive laws for the same specimens of Fig. 14,
considering the two methods. The CZM laws are virtually
indistinguishable, although with minor variations in ts

0

(−1.9 % for the Araldite® AV138 and 1.0 % for the
Sikaforce® 7752). It is thus concluded that the two methods
are quite similar in which regards to the output result.

Conclusions

This work addressed the calculation of GIIC of different types
of adhesives, considering the ENF test. The tested methods
were the CCM, DBT, CBT, CBBM and J-integral, with the
latter enabling the estimation of the shear CZM law of the
adhesives. All methods showed a good agreement between
specimens of a given adhesive. However, between methods
the CBTshowed smaller values ofGIIC (approximately 17%).
Comparing time requirements between methods, the CCM,
DBT and CBT need the measurement of a during the tests,
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oppositely to the CBBM. Apart from this, the CCM involves
fitting of the C=f(a) curves and derivation. Application of the
J-integral, although allowing the estimation of the CZM law
by differentiation of the GII=f(δs) curve, is based on the mea-
surement of δs, which requires a high-precision technique on
account of the very small values of this parameter up to crack
initiation. However, it has the big advantage of providing
complete data (in this case in shear) for strength prediction
by CZM modelling. The shear CZM laws of the adhesives
obtained by the J-integral confirmed the brittle behaviour of
the Araldite® AV138 in shear, which can be represented by a
triangular CZM law. The Araldite® 2015 and Sikaforce®
7752 revealed a much higher degree of ductility in shear.
Under these circumstances, the trapezoidal law enabled a very
good fit of the experimental data. Together with tensile char-
acterization data of these adhesives (the tensile laws for the
Araldite® AV138 and 2015 are available in reference [39])
and mixed-mode damage initiation and propagation criteria,
it is possible to predict the strength of bonded joints under
generic loading conditions by CZM modelling.
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