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Abstract A new shear-tension specimen (STS) is designed,
evaluated and tested quasi-statically and dynamically. The
specimen consists of a long cylinder having an inclined gauge
section created by two diametrically opposed semi-circular
slots which are machined at 45° with respect to the longitudi-
nal axis. The geometry imposes stress condition within the
gauge section which correspond to a Lode parameter of~
−0.5, between pure shear (0) and uniaxial tension (−1). It thus
provides a wider span of loading conditions for a material. A
thorough numerical study reveals that the stresses and strains
within the gauge are rather uniform, and the average Mises
stress and plastic strain on the mid-section of the gauge repre-
sent the material true stress–strain characteristics. The data
reduction technique to determine the stresses and strains is
presented. Quasi-static and dynamic tests at strain rate of 104

1/s were carried out on specimens made of 1020 cold-rolled
steel. No necking or softening was observed with this speci-
men, and the fracture location was always well within the
gauge. The obtained stress–strain curves and ductility were
validated numerically. The STS is a new specimen to study
the combined influence of tension and shear on the mechani-
cal characteristics of a material.

Keywords Shear-tension specimen . Large strain . Dynamic
load . Steel 1020 . Lode parameter . Triaxiality

Introduction

Numerical simulations are widely used in both industry and
research communities in the field of materials mechanics. The
accuracy of a simulation depends on the material properties
used, with emphasis on the true stress–strain curves and duc-
tility. These properties are usually strain-rate and temperature
dependent, and the researcher often needs to generate its own
data which is not available in the literature. Recent experi-
ments on metals [1–4] have shown that the hydrostatic stress
and the Lode parameter (the third invariant of the stress devi-
ator) influence these properties.While the hydrostatic pressure
has a significant effect on the ductility, and an insignificant
effect on the stress-plastic strain relationship, the Lode param-
eter has an opposite role. Therefore, for an accurate simula-
tion, the stress–strain curves and ductility should be known
over a wide range of strains, strain rates, temperatures, hydro-
static pressures and Lode parameters.

Tensile tests are usually used for elasto-plastic charac-
terization of metals. These tests provide information about
the mechanical properties of materials, including the mod-
ulus of elasticity, yield strength, tensile strength, elonga-
tion, and the true stress–strain relationship until necking
takes place. In other words, the equivalent von Mises
stress as a function of the equivalent plastic strain for a
given material [5]. In order to extend the range of stress–
strain curves, knowledge of the stress and strain distribu-
tions on the necked cross-section of the tensile specimens
is needed [6]. A correction for round cross-section tensile
specimens was suggested by Bridgman [7]. This correc-
tion might lead to material curves fraught by an error of
more than 10 %, while requiring a significant amount of
experimental work in order to measure the evolving cur-
vature radius of the necking profile at different stages of
each tensile test [5]. For non circular cross sections, there
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is no established method to determine the complete true
stress–strain relationship and an hybrid experimental –
numerical approach is needed [8–14]. The location of
the neck is not always predictable especially in dynamic
testing even if notches exit [15].

In this study a new shear-tension specimen (STS) is de-
signed, evaluated and tested quasi-statically and dynamically.
The specimen is similar to the known shear compression spec-
imen (SCS) which was introduced in [16] and was validated
numerically for static and dynamic loading and parabolic
hardening materials in [17–19]. The SCS was used in several
investigations [20–27] and was recently modified to have a
circular gauge [28]. The STS consists of a long cylinder hav-
ing an inclined gage section created by two diametrically op-
posed semi-circular slots which are machined at 45° with re-
spect to the longitudinal axis. While uniaxial tension test cor-
respond to Lode parameter of −1, the shear-tension test corre-
sponds to an approximately constant Lode parameter~−0.5
which is imposed by the geometry. No necking or softening
is observed with this specimen, and the fracture location is
known ahead of time, yielding reliable data on the stress–
strain curves and ductility.

Second section of this manuscript presents a thorough nu-
merical evaluation of the new specimen. Third section is di-
vided into two parts: quasi-static and dynamic. In the first part
the quasi static experimental results are detailed, followed by
numerical validation. In the second part the dynamic experi-
mental results are detailed followed by numerical validation.
Discussion and summary are given in the fourth section
followed by concluding remarks.

Numerical Evaluation of an STS

The numerical analyses were performed with the commercial
finite element software Abaqus standard and Abaqus explicit
6.14 [29]. The purpose of the numerical simulations is to
demonstrate that:

1) The field variables such as Mises stress (σM), hydrostatic
pressure (p) and equivalent plastic strain (εp) are evenly
distributed on the mid-section of the gauge during the
entire loading history.

2) The evolution of the average Mises stress ⌢σMð Þ and the
averaged equivalent plastic strain ⌢εp

� �
on the mid-

section of the gauge replicate the material property σt

−εpt (which is input into the simulation).
3) Develop a data reduction technique in which the mea-

sured P-d (load–displacement) curve of the specimen is
reduced into the averaged ⌢σMð Þ and ⌢εp

� �
on the mid-

section of the gauge, which accurately represent the ma-
terial property σt−εpt .

Geometry

The geometry of the STS specimen is shown in Fig. 1. The
front view of the STS is shown in Fig. 1(a), and a side view in
Fig. 1(b); A cut view perpendicular to the gauge is shown in
Fig. 1(c). The dimensions of the specimen are: L=120 mm,
D=10 mm, t=1.6 mm. The circular gauge has a radius of r=
1.5 mm. The gauge width isW=2r=3mm. The vertical height

of the gauges is h ¼ 2
ffiffiffi
2

p
r ¼ 4:24 mm. Lext represents the

distance between the locations of the reflecting tape stripes
used for optical laser extensometry.

Numerical Model, Mesh, Boundary Conditions
and Material Properties

Themeshed specimen is shown in Fig. 2. Due to its symmetry,
only half of the physical model is included in the numerical
model. The front and back views of the zoomed region adja-
cent to the gauge are shown in Fig. 2(b), (d) respectively,
while a side view is shown in Fig. 2(c).

The typical mesh shown in Fig. 2 comprises 215652 nodes
and 201670 linear hexahedral elements of type C3D8R. The
seed size within the gauge is 0.25 mm while within the whole
specimen 0.5 mm. A tensional vertical displacement of 1 mm
was applied on the upper face of the specimen (Fig. 2(a)).
Symmetry conditions were applied along the cut (Fig. 2(c))
and on the bottom face (Fig.2(a)). The center point of the
bottom face was fixed. When an explicit solution scheme

Fig. 1 A STS specimen with a circular gauge. (a). Front view (b). Side
view. (c). A cut view (A-A) perpendicular to the gauge inclination
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was used for static calculations, the displacement load was
applied “slowly” – during 0.002 s.

In the following numerical verifications, we modeled a
representative elasto-plastic material model with Mises plas-

ticity. The density is: 7870 Kg
m3 ; Young’s modulus: 210 GPa,

and Poisson’s ratio: 0.3. The flow stress versus equivalent
plastic strain is shown in Fig. 3.

Numerical Results

Real specimens vary slightly in their dimensions, hence the
applied experimental load–displacement curves can be differ-
ent for each specimen. In order to overcome this problem the
applied displacement and load curves are presented in the
sequel in a normalized form. Due to the normalization, the
obtained load–displacement curve depends mainly on the
specimen’s material properties. The applied displacement is
normalized by the vertical height of the gauge εap ¼ d

h and

the applied load by the vertical projection area of the gauge:
σap ¼ P

D⋅t.

The deformed specimen is shown in Figs. 4 and 5. The
deformation and distributions shown in Figs. 4 and 5 are typ-
ical for large plastic deformations, and correspond to an ap-
plied vertical displacement of d=1.0 mm, which in turn cor-
responds to normalized applied displacement of εap=0.24.

The distributions of the equivalent plastic strain and Mises
stress are shown in Fig. 4(a), (b), and (c) (d), respectively.

The results show that the Mises stress and the equivalent
plastic strain are distributed quite evenly over a wide part of
the mid-section. The equivalent plastic strain is slightly less
uniform - end effects (shown in Fig. 4(a), (b)) are noticeable
on the two edges of the gauge, in which the value of the
equivalent plastic strain is lower.

The Mises equivalent stress distribution is shown in
Fig. 5(a), the hydrostatic pressure distribution in Fig. 5(b),
and the equivalent plastic strain distribution in Fig. 5(c). It
can be observed that the Mises stress and the pressure are dis-
tributed evenly, while the equivalent plastic strain is less even. It
has its maximum value of ~1 (red) on the mid outer face while
at the region of the end effects (green) it reaches lower values
than 0.6. The average value on the mid section is 0.74.

A ductile failure criterion was added to the analyses of the
specimen. According to this failure criterion, an element failed
and was deleted when the equivalent plastic strain reached an
arbitrarily set value of εp

f =0.5. A vertical displacement of
1 mm was applied again on the top face of the specimens.
The evolution of the fracture in the gauge is shown in Fig. 6.
Only the gauge area (Fig. 2(a)) is shown.

The failure patterns of the STS specimens is different from
that of an SCS specimen [28, 30]. In the STS, a crack initiates at
the center of the gauge and propagates toward its ends, while in
SCS specimen the opposite happens, namely the crack starts at
the ends and propagates towards the center. It can be observed in
Figs. 5(c) and 6(a) that the equivalent plastic strain is higher at the
center of the gauge, causing fracture initiation in this area.

The average values ⌢εp; ⌢σM ;
⌢p

� �
on the mid-section were

estimated at each time interval by taking the average values of
all elements along the two paths shown in Fig. 5(a), namely
mid-section and edge of the gauge. Figure 7 shows the average
Mises stress ⌢σMð Þ against the averaged equivalent plastic
strain ⌢εp

� �
. These values are compared to Abaqus input

(Fig. 3) for the assumed material stress–strain curves. It can
be observed that the average values on the mid section replicate
very well the inputted material behavior (σt,εp

t ) used in the
analyses.

Figure 8 shows the applied load–displacement curves
(Δd,p) for the specimens. Δd (like d) is normalized by
the vertical height of the gauge h. As shown in Fig. 8, the
load has a maximum value at Δd/h≃0.05, and for Δd/h>
0.05 the load decreases.

Fig. 2 The meshed numerical model. (a). Front view of the whole
specimen. (b). Front view on the zoomed area. (c). Side view of the
specimen. (d). Back view of the zoomed area
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Fig. 3 The characteristic σt−εpt of a model material used for numerical
simulations
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One should note that this load evolution is different from
that typically observed with an SCS specimen, for which the
load increases monotonically with the applied displacements
[17, 19, 28] until fracture. It will be shown later that while the
macroscopic load decreases, the average Mises stress on the
mid-section keeps increasing, thus indicating a lack of mate-
rial softening effect.

The triaxiality (tr) and the Lode parameter (μ) are defined
by equations (1)–(2), respectively: ([31]):

tr ¼ p

σM
ð1Þ

μ ¼ 2σ2−σ1−σ3

σ1−σ3
ð2Þ

Where the hydrostatic pressure (p) and the equivalent Mises
stress (σM) are given in equations (3)–(5):

p ¼ −σm ¼ −
1

3
σii ¼ −

1

3
σ1 þ σ2 þ σ3ð Þ ð3Þ

σM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
si jsi j

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
σ1−σ2ð Þ2 þ σ2−σ3ð Þ2 þ σ3−σ1ð Þ2

h ir
ð4Þ

si j ¼ σi j−
1

3
σii ð5Þ

The stresses σ1, σ2 and σ3 are the principal stresses with
σ1>σ2>σ3.

(a) (b)

(c) (d)

end effect

Fig. 4 Distribution of εp and σM
at applied vertical displacement of
d=1.0 [mm]. (a). Front view of a
deformed specimen with color
maps of εp. (b). A cut view of a
deformed specimen with color
maps of εp. (c). Front view of a
deformed specimen with color
maps of σM. (d). A cut view of a
deformed specimen with color
maps of σM

(a)

(b)

(c)

end effect

Fig. 5 Stress and strain distribution along the mid-section of the circular
gauge specimen at vertical applied displacement of 1.0 mm. (a). Mises
stress distribution. (b). Hydrostatic pressure distribution. (c). Equivalent
plastic strain distribution
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Three special values of the Lode parameter are: −1,0 and 1,
which are for generalized tension, generalized shear and gen-
eralized compression, respectively.

These two parameters are important since they are known to
influence the flow behavior and ductility (equivalent plastic strain
to failure) of materials [1–4]. Figure 9 shows the variation of the
averaged triaxiality and Lode parameters ⌢tr;⌢μð Þ on the mid-
section of the gauge during the plastic deformation. The results
indicate that the averaged (over the gauge section) triaxiality ⌢trð Þ
on the mid-section during plastic deformation is rather constant,
in the range −0:39 < tr < −0:32 for the range of plastic defor-
mation 0 < ⌢εp < 0:38. The average of ⌢tr during the plastic

deformation is −0.36 and is shown as a horizontal line in
Fig. 9. The behavior of the averaged Lode parameter ⌢μð Þ is also
quite constant −0:48 < ⌢μ < −0:65. The average of μ during
the plastic deformation is −0.52 and is shown as an horizontal
line in Fig. 9.

Data Reduction Technique

During an experiment with the STS, the applied load (P) and
vertical displacement (Δd) are measured, as shown in Fig. 8
from numerical simulations. The goal of the data reduction
technique is to reduce the measured P−Δd curve into the char-
acteristic equivalent σt−εpt of the material. It was shown (Fig. 7)
that the averaged ⌢σM−⌢εp on the mid-section represents well
the true material properties σt−εpt . The mapping procedure of
the displacement into equivalent plastic strain is similar to what
is detailed in [16, 17, 19, 28]. First wemap the applied displace-
mentΔd into the averaged equivalent plastic strain⌢εp.We do it
for Δd>ΔdY where ΔdY is the applied displacement in which
the mid-section of the gauge yields.

(a) (b)

(c) (d)

cracks

complete 
fracture

no cracks

uncracked regions 

Fig. 6 Failure patterns of the specimen in gauge area (Fig. 2a). Color
map of the equivalent plastic strain. (a). The specimen just before failure.
(b). Two separate cracks appear at the center of the gauge at two different
heights. (c). Partial fracture: the cracks coalescence at the center and
propagate toward the ends of the gauge. (d). Complete fracture: the
crack propagate and cuts the ends of the gauge
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Fig. 7 Comparison of the averaged values σM ; εp
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along the mid-cut
section obtained by both types of specimens to the input material property
(σt,εp
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Yield point

Fig. 8 The applied normalized load–displacement curves for the
specimen
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Fig. 9 Variation of the averaged triaxiality and Lode parameter along the
mid-cut section during plastic deformation
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⌢εp ¼
XN
i¼1

kiþ1
Δd−ΔdY

h

� �i

f or Δd > ΔdY ð6Þ

The yield point on the normalized applied load–displacement
curve (σap−εap) is shown in Fig. 8.

Figure 10 shows the variation of the averaged plastic strain
⌢εp
� �

on the mid-section of the gauge, with the applied nor-

malized displacement εap ¼ Δd
h . It can be observed that the

dependence is almost linear, so that a first degree polynomial

approximation (equation (6)) of the type: ⌢εp ¼ k2
Δd−Δdy

h

where k2=3.7625 is sufficient for accurate mapping, as in
[16, 19, 21]).

Next, we map the applied load P for P>PY into the aver-
aged Mises stress by:

⌢σM ¼ k1
⌢εp

� � P ⌢εp
� �
D⋅t

f or P > PY ð7Þ

For the SCS k1 εp
� � ¼ K1 1−K2εp

� �
where K1 and K2 are

constants. This function is not suitable for the STS since the
applied load does not increase monotonically.
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Fig. 10 Variation of the averaged plastic strain εp
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in the mid-cut
section of the gauge with the applied normalized displacement Δd
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comparison to the characteristic
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In order to determine k1
⌢εp
� �

for the STS, the normalized

applied load P
D⋅t is plotted against the averaged plastic strain

⌢εp
on the mid section. This can also be done by application of
equation (6) to the experimental results of Fig. 8. The aver-
aged Mises stress on the mid section ⌢σM is plotted as well
against the plastic averaged plastic strain εp. These two curves
are shown in Fig. 11(a). It can be observed visually in
Fig. 11(a) that for εp>0.2 the normalized applied load de-
creases while the ⌢σM ¼ σt continues to increase. This indi-
cates that the decreasing applied load does not mean
softening. According to equation (7) the ratio between these
two curves is k1

⌢εp
� �

. This ratio is shown in Fig. 11(b). The

ratio is for the range 0 < ⌢εp < ⌢ε f p where ⌢ε f p is the aver-

aged fracture strain on the mid-section. The ratio k1
⌢εp
� �

can

be approximated by: k1
⌢εp
� � ¼ a*eb

* ⌢εp þ c*ed
* ⌢εp where: a∗=

0.0515, b∗=−156.5, c∗=0.9094 and d∗=0.2616 . The varia-
tion is quite even with 0:92 < k1

⌢εp
� �

< 1:01.

The total strain is: ⌢ε ¼ ⌢εp þ ⌢εe ¼ ⌢εp þ
⌢
σ
E. For most

metals the elastic strain is negligible in comparison with the
plastic strain ⌢εe << ⌢εp

� �
, hence using ⌢ε≃⌢εp is justified.

Experimental Results

The quasi-static tests and the dynamic tests are detailed in the
next two subsections.

Quasi-Static Tests

The quasi static tests include a comparison of the STS
results to test results obtained by using cylindrical spec-
imens in compression and dog-bone specimen in
tension.

Results and Data Reduction

All specimens were manufactured from 12 mm diameter cold
drawn round steel bars C22E (DIN) or 1020 (AISI/SAE), in
the as-received condition. Dog-bone, cylindrical and STS
specimens were machined.

The cylinders were sandwiched between loading rods and
compression was applied, while the dog-bone and the STS
specimens were tested in tension. All specimens were tested
quasi-statically on a servo-hydraulic with a crosshead speed of
1 [mm/min]. The vertical displacements were measured with
an optical laser extensometer, while the applied force by the
load cell of the machine. The tests stopped when the speci-
mens deformed drastically (in compression) or fractured. The
dimensions of the dog-bone type and cylinder type specimen
are shown in Fig. 12, and the dimensions of the circular gauge
STS are shown in Fig. 1 and detailed in “Geometry” section.

The normalized experimental results for 5 specimens are
shown in Fig. 13. The applied load on each specimen (i) is
normalized by its gauge’s vertical area projection (D⋅ti). The
applied displacement is normalized by the vertical height of
the gauge h. Each curve has a distinct apparent yield and
fracture strain. The averaged experimental curve is shown as
well. The average curve was obtained by first plotting the
experimental results of each specimen for the plastic region,

using translation: ε ið Þ ¼ Δd−Δd ið Þ
Y

h ; i ¼ 1:::5. Then the plastic
strain region was divided into N points and for each point j=

1...N the average of the applied stress was calculated by σ jð Þ

¼ 1
5 ∑

5

i¼1
σ ið Þ where σ ið Þ ¼ P ið Þ

D⋅t ið Þ. Figure 14 shows the translated

average stress–strain curve from yield (ΔdY) up to the fracture

strain (Δdf), as a function of
Δd−ΔdY

h . It can clearly be observed
that the experimental applied force has a maximum point at
~0.025 and for larger displacements the load is decreasing.
This phenomenon was predicted by the numerical simulations

Fig. 12 Geometry and dimensions of the cylindrical and dog-bone
specimens. All dimensions in mm
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Fig. 13 The five experimental results showing the normalized applied
load σ=P/(Dt) versus the normalized applied displacement Δd/h. Note
the average experimental curve
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shown in Figs. 8 and 12(a), and as mentioned does not mean
that strain-softening occurs, as is shown in Fig. 11(a) .

The data reduction technique (equations (6)–(7)) is applied
to the data of Fig. 14 to yield the characteristic ⌢σ−⌢εp curve of
the material (Fig. 15), together with the results of compression
cylinders and tension of dog-bone specimens [28]. The hard-
ening of the STS curve is similar, but lower to that of the
cylindrical specimens for the small plastic strain range. The
flow stress is ~50 MPa lower. This difference is probably due
to the effect of the third invariant of the deviator stress, i.e.,
Lode parameter [2]. Let us remind that in our compression tests,
μ=1, and in tension μ=−1, as opposed to the in shear-tension
test where μ=−0.52. Indeed, it can be found in the literature [3]
that the effect of the Lode parameter on the fracture strain is
negligible while its effect on the plastic flow is notable.

Using the STS, the 1020 steel could be characterized up to
εp=0.23 where fracture occurred, while dog-bone specimens
would allow to reach only up to εp=0.025, one order of mag-
nitude less than the STS.

It should be noticed that the average plastic strain on themid-
section at fracture is not the ductility (fracture strain) of the
material. This is understood by considering the fact that in

“Numerical evaluation of an STS” section we fixed the fail-
ure strain εp

f =0.5 but the calculations showed that the aver-

aged failure strain is smaller (see Fig. 7): ⌢ε f
p ¼ 0:38. It

means that the real fracture strain is higher by ~32 % from

the observed averaged fracture strain so that ε fp ¼ 1:32⌢ε fp .

This is the result of the strain distribution on the mid-section,
and its averaging, as compared to its maximum value on the
mid-section where fracture starts. Such a result suggests that
the averaged true failure strain will always be underestimated
to some extent, although, as discussed in the next section,
this point can be remedied.

Numerical Validation

In the first iteration, the STS characteristic curve of Fig. 15
was extrapolated to higher values of plastic strain as shown
in Fig. 16(a), and was then input into Abaqus (see
Numerical model, mesh, boundary conditions and material
properties). The red markers on the curves of Fig. 16(a)
indicate extrapolation while the characterized region is
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Fig. 14 The averaged normalized experimental results in the range of
displacements: ΔdY<ε<Δdf
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Fig. 15 The characteristic σt−εpt curve of steel 1020 obtained by STS in
comparison to those obtained by cylinders and dog-bone specimens [28]

Fig. 16 (a). The obtained (1st iteration) and modified (2nd iteration)
characteristic σ−εp curve of steel 1020 obtained by STS. (b).
Comparison of the experimental average P

D⋅t −
Δd
h curve to the numerical

ones obtained by using the characteristic curves of Fig. 17a. Note that the
three normalized load–displacement curves for the modified σ−εp in 17b
coincide until fracture
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indicated by green markers. The numerically obtained P
D⋅t −

Δd
h

curves of Fig. 16(a) are compared to the averaged experimental
curve in Fig. 16(b). Even though there is a good agreement, it can
be observed that the numerical curve is slightly lower than the

experimental one for Δd
h < 0:04 and is slightly higher for

Δd
h > 0:05. Hence the obtained characteristic curve was slightly
modified (2nd iteration) as shown in Fig. 16(a). The modified
curve of the 2nd iteration was once again input for another nu-
merical analysis. A very good agreement can be observed in

Fig. 16(b) between the experimental and numerical P
D⋅t −

Δd
h

curves for the modified characteristic curve. A ductile failure
criterion with damage evolution [32] was then added to the anal-

ysis. The P
D⋅t −

Δd
h curves for 3 values of the failure strain (0.35,

0.40 and 0.45) are shown in Fig. 16(b). The results clearly show
that the failure strain of steel 1020 is ~0.42 in quasi-static tension
for Lode parameter of −0.52 and triaxiality of −0.36.

Summary of Data Reduction and Validation Steps
for Quasi-Static Loading

The data reduction and validation steps for taking advantage
of the STS under quasi-static loading can be summarized as
follows:

1. Perform a numerical analysis of the specimen using the
best known stress–strain curve for the material (Numeri-
cal evaluation of an STS).

2. Obtain the numerical results for:

time ið Þ; Δd time ið Þ½ �; P time ið Þ½ �; σM time ið Þ½ �; εP time ið Þ½ �

where time is the solution time 0≤time(i)≤1 and i is the num-
ber of the time step during the numerical solution.
3. Plot⌢εp vs Δd

h and obtain by curve fitting the coefficients
for equation (6) (k2).

4. Plot P
D⋅t vs

⌢εp and ⌢σM vs ⌢εp on another figure and get the
ratio k1

⌢εp
� �

for equation (7).
5. Perform an experiment and obtain the curve: Pexp−Δdexp.
6. Identify\estimate on the obtained experimental curve of

step 5 the yield point (PY
exp,ΔdY

exp) and replot the translat-

ed normalized experimental curve: P
exp

D⋅t vs:
Δdexp−ΔdexpY

h for
Δdexp>ΔdY

exp.
7. Get a first estimation of σt−εpt by applying the data reduc-

tion equations (6)–(7) with the results of steps 3–4 on the
experimental curve of step 6.

8. Validate σt−εpt by substituting it into the analysis of step 1.
Make small adjustments to σt−εpt until a satisfactory

agreement between the experimental Pexp

D⋅t vs:
Δdexp−ΔdexpY

h

and the numerical ones is obtained.
9. Add a ductile failure criterion (fracture strain) to the anal-

ysis of step 8 and find the ductility by a trial and error

process while comparing the experimental Pexp

D⋅t vs:
Δdexp−ΔdexpY

h to the numerical one. (A rough estimation can
be obtained by multiplication the observed failure strain
of step 7 by 1.32).

Dynamic Tests

Experimental Results

Five specimen were tested using hardened C300 maraging
steel split Hopkinson tension bars (SHTB). The geometry of
the specimens is the same as for the quasi-static tests (Fig. 1)
with L=80 mm and D=8 mm. The only difference is an outer
thread ~11 mm long, as shown in Fig. 17(a), which allows for
specimen mounting into the bars.

A fast camera (Kirana, Specialized Imaging) recorded the
impact at 1,000,000 fps. Four characteristic frames are shown
in Fig. 17(b)-(e). The pictures were taken at 150, 175, 190 and
225 μs from trigger. Cracks can be observed at the ends of the
gauge and its center in Fig. 17(d), while Fig. 17(e) shows the
fully fractured gauge. The fracture pattern resembles the letter
Z and the fracture face is stepped. The 5 fractured specimens
are shown in Fig. 18.

The recorded pulses during the 5 tests are shown in Fig. 19.
All tests were performed with the same pressure within the air
tank: 3 bar and it can be observed that there is a good
repetability of the results (the “spike” is probably the result
of a shorted gauge wire).

Fig. 17 (a). The dynamic STS specimen. (b). During impact testing
before fracture. (c). During impact testing before fracture 25 μs after
18b (d). Fracture occur. (e). The fractured STS specimen
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Numerical Model, Mesh, Materials and Boundary Conditions

The numerical model included 3 parts: 1) Half of the incident
bar. 2) The SCS specimen. 3) The transmitted bar. The assem-
bly of these parts is shown in Fig. 20(a). Amagnified region of
the STS specimen is shown in Fig. 20(b). The front view on
top of Fig. 20(b) and the back view on the bottom of 20b. It
was assumed in the analysis that the STS specimen is perfectly
bonded to the incident and transmitted bars. The bonded area
can be seen in the back view. Because of symmetry only half
of the three merged parts were modeled, as shown in the cut
section of Fig. 20(c).

The model uses a total number of 386812 linear hexahedral
elements of type C3D8R. The mesh size in the SCS gauge
region is ~0.2 mm and on the bars ~1 mm.

Symmetry conditions were applied all along the assembly on
the face shown in Fig. 20(c). The load was applied at the right
end of the half incident bar. At that location in the experimental
setup, a strain gauge is used tomeasure the incident and reflected
pulses. The average of the measured incident strain pulses mul-
tiplied by the Young’s modulus of the bars was applied as a
negative pressure. The incident pulses are shown in Fig. 19.

An elastic material model was used for the SHPB bars
(Table 1). An elastic–plastic material model was used for the
1020 steel (Table 1). The stress-plastic strain curve was input
into Abaqus for the STS is shown in Fig. 16(a). A ductile
failure criterion with a displacement type damage evolution
[32] of 5 μm was used.. The purpose of the analyses is to
obtain and validate the stress–strain results in the dynamic
regime.

Numerical Results

The dynamic flow behavior and ductility of the STS is obtain-
ed by hybrid numerical-experimental technique using “trial
and error” procedure. As a first guess, we use the quasi-
static σt−εpt curve. The experimentally measured strain pulse
is applied as pressure (multiplied by Young’s modulus of the
bar) on the incident bar, and the reflected pulse is determined
at the location (Fig. 20(a)) of the strain gauge and compared to
experimentally measured transmitted pulse. The σt−εpt which
are input to numerical analyses is iteratively modified until a
good agreement is reached.

Likewise, the ductility is also found by trial and error pro-
cedure. Different values are tested until a good agreement is
reached between the experimental and numerical transmitted
pulses.

Fig. 18 The five dynamically fractured STS specimens

Fig. 19 The experimental
recorded pulses
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We show in Fig. 21(a) three σt−εpt curves. The lower curve
(a) is the quasi-static curve of Fig. 16(a). The middle curve (b)
is 50 MPa higher than curve (a). The upper curve (c) is
100 MPa higher than (a).

The results of 4 numerical analyses are shown in Fig. 21(b).
The first 3 correspond to using the σt−εpt curves (a)-(b)-(c)
with fracture strain of εp

f =0.5 and the 4th to the curve (b)
without any failure criterion. These four numerically obtained
transmitted pulses are compared to the average of the 5 exper-
imentally obtained transmitted pulses.

The experimental results do have a “ringing effect” due
to inertia [33]. This ringing effect is attenuated as the
plastic strain within the gauge increases. Hence, the nu-
merical results do not replicate the first experimental
(inertial) peak value, but it does replicate the next three
ones. Curve (a) coincides with the minimum of the 2nd
extreme value. Curve (c) coincides with the maximum of
the 3rd extreme value. Curve (b) seem to flatten the ring-
ing effect, and to be more similar to the experimental
pulse. It means that due to the strain-rate effect the mate-
rial hardens by~50 MPa. The strain rate is~10000 1/s and
is obtained by derivation of the numerical results for εp .
The 4th numerical pulse shows how would the transmitted
pulse behave if there was no fracture. The value of εp

f =0.5
seems adequate for simulating the fracture.

Fig. 20 The model assembly
which was used for the numerical
validation. (a). The assembly. (b).
Magnification of the specimen
area showing the connection to
the bars. (c). A cut section
through the model showing the
face on which symmetry
condition were applied

Table 1 Material properties

Steel 1020 C300 Maraging
steel

density ρ Kg
m3

7870 8000

Young’s modulus E GPa 205 190

Poison’s ratio ν 029 0.3

(a)
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Fig. 21 (a). Characteristic εp−σ curves which correspond to the quasi-
static curve (a) and an elevated stress by 50 and 100 MPa (b) and (c). (b).
The corresponding numerically obtained transmitted pulses due to the
characteristic curves in comparison to the experimental transmitted pulse
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Summary of Data Reduction and Validation Steps
for Dynamic Loading

The data reduction and validation steps for taking advantage
of the STS under dynamic loading can be summarized as
follows:

1. Perform an experiment on a SHTB and obtain the inci-
dent, reflected and transmitted strain pulses.

2. Apply a numerical analysis of the experimental setup
(similar to Numerical results section) in which the static
σt−εpt serves as a first guess for the true dynamic σt−εpt

and the experimentally measured incident pulse serve as
the applied load.

3. Monitor the numerically obtained transmitted strain pulse
and compare it to the experimental one. Apply changes to
the static σt−εpt until satisfactory agreement between the
numerical and experimental transmitted strain pulses.

4. Add a ductile failure criterion (fracture strain) to the anal-
ysis of step 2 and find the ductility by a trial and error
procedure by comparing the experimental transmitted
strain pulse to the numerical one (see Fig. 21(b)).

Summary and Conclusion

This paper introduces a new specimen that is capable of ap-
plying shear and tension simultaneously, namely the Shear
Tension Specimen (STS). This specimen is inspired by the
Shear Compression Specimen (SCS) with a modification
(rounding) of the gauge geometry that avoids unwanted stress
concentrations in the fillets. The application is due to its sim-
ple geometry and does not require special equipment as in (for
example) the investigation [31] who studied various ratios
between the shear and tension by application of torque and
tension simultaneously and keeping a constant ratio between
them during loading.

The paper has presented a thorough evaluation of the new
specimen in both the static and the dynamic regimes, in which
numerical simulations and experiments were combined.

The main characteristics of this specimen are:

& The uniformity of the plastic strains and stresses in the
gauge section

& The good uniformity and constancy of the stress triaxiality
and Lode parameters.

& The feasibility of the specimen for quasi-static and dynam-
ic tests alike.

With that, a detailed procedure for the reduction of the
applied loads and displacements into equivalent stress
and strain, respectively, was presented. This procedure

involves basic numerical simulation work. Keeping in
mind that there is no accepted specimen to investigate
shear under tension (Lode parameter: −1≤μ≤0), whose
availability might help to discover interesting properties
of materials. it is believed that the data reduction proce-
dure is reasonably straightforward and justifies the use of
the STS.
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