
GPU Accelerated Digital Volume Correlation

T. Wang1 & Z. Jiang2 & Q. Kemao1 & F. Lin1
& S.H. Soon1

Received: 17 March 2015 /Accepted: 28 August 2015 /Published online: 6 October 2015
Society for Experimental Mechanics 2015

Abstract A sub-voxel digital volume correlation (DVC)
method combining the 3D inverse compositional Gauss-
Newton (ICGN) algorithm with the 3D fast Fourier
transform-based cross correlation (FFT-CC) algorithm is pro-
posed to eliminate path-dependence in current iterative DVC
methods caused by the initial guess transfer scheme. The pro-
posed path-independent DVC method is implemented on
NVIDIA compute unified device architecture (CUDA) for
GPU devices. Powered by parallel computing technology,
the proposed DVC method achieves a significant improve-
ment in computation speed on a common desktop computer
equipped with a low-end graphics card containing 1536
CUDA cores, i.e., up to 23.3 times faster than the sequential
implementation and 3.7 times faster than the multithreaded
implementation of the same DVC method running on a 6-
core CPU. This speedup, which has no compromise with res-
olution, accuracy and precision, benefits from the coarse-
grained parallelism that the points of interest (POIs) are proc-
essed simultaneously and also from the fine-grained parallel-
ism that the calculation at each POI is performed with multiple
threads in GPU. The experimental study demonstrates the
superiority of the GPU-based parallel computing for acceler-
ation of DVC over the multi-core CPU-based one, in particu-
lar on a PC level computer.

Keywords Digital volume correlation . Parallel computing .

Compute unified device architecture . Graphics processing
unit . Inverse compositional Gauss-Newton algorithm . Fast
Fourier transform

Introduction

Digital volume correlation (DVC) has been adopted as an
effective technique for determining internal volumetric defor-
mation within solid materials since it was proposed by Bay
and Smith [1, 2]. The DVC technique tracks small motion of
points of interest (POIs) byminimizing the difference between
the POI-centric subvolumes in the reference (un-deformed)
volume image and the target (deformed) volume image ac-
quired using 3D imaging techniques such as X-ray computer
tomography (CT). This technique can be considered as a
straightforward extension of the well-established digital image
correlation (DIC) [3, 4] and shares its simplicity in principles
and effectiveness in applications. Nowadays, it has been ex-
tensively applied in the characterization of various materials
including bones [1, 5], soft materials [6, 7], wood [8] and sand
[9]. Compared with DIC, the computational burden of DVC is
much heavier. Thus high computation speed of DVC has be-
come one of main issues in this area that challenges re-
searchers in the past decade.

A DVC algorithm can be performed at two levels: integer-
voxel level and sub-voxel level. For integer-voxel displace-
ment estimation, fast Fourier transform based cross-
correlation (FFT-CC) algorithm [6, 10] is widely used as a
classic method, which benefits from the fact that cross-
correlation operation in space domain is equivalent to point-
wise multiplication in frequency domain. The algorithm can
be further accelerated by combining a fast sum-table approach
[7]. To achieve a sub-voxel level accuracy, various sub-voxel

* Z. Jiang
zhenyujiang@scut.edu.cn

* Q. Kemao
mkmqian@ntu.edu.sg

1 School of Computer Engineering, Nanyang Technological
University, Singapore 639798, Singapore

2 School of Civil Engineering and Transportation, South China
University of Technology, Guangzhou 510640, China

Experimental Mechanics (2016) 56:297–309
DOI 10.1007/s11340-015-0091-4

http://crossmark.crossref.org/dialog/?doi=10.1007/s11340-015-0091-4&domain=pdf

registration algorithms have been developed, including the
iterative algorithms derive fromNewton’s minimizationmeth-
od, e.g., Levenberg-Marquardt algorithm [1], Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm [2, 11, 10],
Newton–Raphson algorithm [7] and iterative least-squares al-
gorithm [12], and non-iterative algorithms such as the corre-
lation coefficients curve-fitting algorithm [6] and the gradient-
based algorithm [7]. Recently, Pan et al. introduced three ideas
to accelerate the computation of DVC effectively [13] : (1) an
inverse compositional Gauss-Newton (ICGN) algorithm [14]
was introduced to replace the conventional forward additive
Newton–Raphson algorithm for sub-voxel registration. This
algorithm eliminates the repeated updates of the Hessian ma-
trix during the iterative procedure; (2) a reliability-guided dis-
placement tracking strategy [15] was employed to provide fast
and accurate initial guess for the ICGN algorithm; (3) a global
look-up table of cubic interpolation coefficients [16] was pre-
established to eliminate the redundant calculation of sub-
voxel intensity interpolation coefficients for the construction
of warped target image during the iterative procedure. By
these means, the computation speed of DVC can surge up
from about 0.9 points of interest per second (POI/s) to 41.1
POI/s when using a 19×19×19 -voxel subvolume [13].

The computation speed of DVC could be substantially in-
creased further by processing POIs simultaneously on parallel
computing device. However, the application of parallel com-
puting technology requires the independence of calculation at
each POI, which conflicts with any path-dependent processing
strategy leading to a sequential computation scheme. To over-
come this difficulty, our preliminary research proposed a path-
independent DIC method [17], which estimated the initial
guess for the ICGN algorithm at each POI independently
using the FFT-CC algorithm. Elimination of path-
dependency allows the application of parallel computing tech-
nology to the proposed DIC method. It was found that the
parallel computing-powered DIC (paDIC) method, imple-
mented on NVIDIA compute unified device architecture
(CUDA) for graphics processing unit (GPU) devices, can
reach a speedup of nearly two orders of magnitude without
sacrificing high accuracy and precision [18].

Recently, effort has been made to accelerate DVC using
GPU devices. Bar-Kochba et al. [19] proposed a DVCmethod
that iteratively compares the reference volume image and the
target volume image through FFT-CC algorithm and then ad-
justs the two images until the displacement increment obtain-
ed in iteration reaches a sufficiently small value. In their im-
plementation, the FFT-CC computation at POIs can be per-
formed in parallel on GPU or sequentially on CPU. The GPU
implementation gained a speed improvement of about 5.5
times over its CPU counterpart. Gates et al. [10] combined
FFT-CC (for coarse search) and BFGS algorithm (for sub-
voxel registration), and provided an implementation of their
DVC method in a hybrid multi-core CPU and multiple GPU

mode. The GPUs were used to estimate the normalized cross-
correlation objective function and its gradient at POIs in a
refined parallel manner, and the multi-core CPU carries out
the BFGS iteration accordingly. In their experiments, the pro-
gram based on the collaboration of 3 GPUs and a 12-core
CPU can be eight times faster than the one running merely
on CPU. In addition, GPU was also employed to speed up the
computation for a voxel-based global DVC method [20], by
solving the resulting system including millions of degrees of
freedom.

In this paper, we extend the paDIC to the parallel
DVC (paDVC) on GPU devices and assess its perfor-
mance using computer simulated 3D speckle images.
The implementation of the proposed paDVC includes
coarse-grained and fine-grained parallelism for all the
three major parts, namely FFT-CC algorithm, ICGN al-
gorithm and the precomputation procedure which can
further accelerate the ICGN algorithm. The rest of the
paper is organized as follows. Section 2 briefly explains
the principle of the proposed path-independent DVC
algorithm. Subsequently, section 3 describes the imple-
mentation of the paDVC on NVIDIA CUDA. In section
4, the accuracy, precision and computational efficiency
of the paDVC are verified. Section 5 concludes the
paper.

Principle of the paDVC

DVC tracks the displacement from a POI P(x0, y0, z0) in the
reference volume image (Fig. 1(a)) to a point P′(x0

′ , y0
′ , z0

′) in
the target volume image (Fig. 1(b)). In order to avoid mis-
registration, a cubic subvolume centred at P(x0, y0, z0) is se-
lected as the basic matching unit.

The proposed paDVC can be summarized as a three-
step procedure, as illustrated in Fig. 2. The integer-
voxel registration is carried out using the 3D FFT-CC
algorithm at every POI. The obtained integer-voxel de-
formation vector p0=(u,0,0,0,v,0,0,0,w,0,0,0)

T is fed as
the initial guess into the 3D ICGN algorithm for the
sub-voxel registration. Prior to these two steps, the in-
verse of the Hessian matrix for each reference
subvolume is precomputed and a global look-up table
of tri-cubic interpolation coefficients for the target vol-
ume image is constructed. This precomputation step
helps to eliminate a large number of redundant calcula-
tions during iterations of the 3D ICGN algorithm.

Integer-Voxel Registration by the 3D FFT-CC Algorithm

Defining a POI-centric subvolume with N= (2M+
1)×(2M+1)×(2M+1) voxels, where N and M are inte-
gers, the displacement vector d=(u,v,w)T can be obtained

298 Exp Mech (2016) 56:297–309

by locating the peak of the zero-mean normalized cross-
correlation (ZNCC) coefficients:

CZNCC u; v;wð Þ ¼

X
i

Ri−Rmð Þ Ti−Tmð Þ
ffiX

i

Ri−Rmð Þ2
X

i

T i−Tmð Þ2
s ð1Þ

where Ri and Ti are the grey intensity values of the ith voxel in
the reference subvolume and the target subvolume, respectively;

Rm ¼ 1
N ∑

N−1

i¼0
Ri and Tm ¼ 1

N ∑
N−1

i¼0
Ti refer to the mean intensity

values within the two subvolumes. According to the Fourier

theory, the calculation of CZNCC(u,v,w) in space domain can

be performed as a simple point-wise multiplication in frequency

domain, i.e.,

CZNCC u; v;wð Þ ¼ FFT−1 FFT*
X

i

Ri−RmffiX
i

Ri−Rmð Þ2
s

2
66664

3
77775⋅FFT

X
i

T i−TmffiX
i

T i−Tmð Þ2
s

2
66664

3
77775

8>>>><
>>>>:

9>>>>=
>>>>;

ð2Þ

where FFT and FFT−1 are the fast Fourier transform
and inverse fast Fourier transform, respectively, and
the superscript B*^ denotes the complex conjugate.
The integer-voxel displacement vector d=(u,v,w)T is de-
termined from the peak of CZNCC(u,v,w) and then trans-
formed to an integer-voxel deformation vector p0=(u,0,
0,0,v,0,0,0,w,0,0,0)T.

Sub-Voxel Registration by the 3D ICGN Algorithm

Assuming that a pointQ(xi,yi,zi) in the reference subvolume R
deforms to a point Q′(xi

′,yi
′,zi

′) in the target subvolume T (see
Fig. 1), a first-order shape function is selected to describe the
relationship between Q and Q′ as

x
0
i ¼ xi þ uþ uxΔxþ uyΔyþ uzΔz
y
0
i ¼ yi þ vþ vxΔxþ vyΔyþ vzΔz
z
0
i ¼ zi þ wþ wxΔxþ wyΔyþ wzΔz

ð3Þ

where ux, uy, uz, vx, vy, vz, wx, wy and wz are gradients of u, v
and w with respect to x, y and z axis; Δx=xi−x0, Δy=yi−y0
and Δz=zi−z0 are the local coordinates of point Q with re-
spect to the position of POI P in the reference subvolume.
Equation (3) can be rewritten as

Q
0 ¼ PþW ξ; pð Þ ð4Þ

where W(ξ;p) is the warp function,

Fig. 1 Schematic illustration of the principle of DVC: the displacement vector d=(u,v,w)T from a POI P(x0, y0, z0) in the reference volume image to
P′(x0

′ , y0
′ , z0

′) in the target volume image is obtained by tracking the corresponding cubic subvolumes.Q(xi,yi,zi) andQ′(xi
′,yi

′,zi
′) indicate the points within

the reference subvolume and the target subvolume, respectively

Exp Mech (2016) 56:297–309 299

W ξ; pð Þ ¼
1þ ux uy uz u
vx 1þ vy vz v
wx wy 1þ wz w
0 0 0 1

2
664

3
775

Δx
Δy
Δz
1

2
664

3
775 ð5Þ

where ξ=(Δx,Δy,Δz,1)T represents the local coordinates of
pointQwithin the reference subvolume, and p=(u,ux,uy,uz,v,
vx,vy,vz,w,wx,wy,wz)

T represents the vector of deformation pa-
rameters. Besides, the incremental warp function W(ξ;Δp)
used to adjust the shape of the reference subvolume can be
written as

W ξ;Δpð Þ ¼
1þΔux Δuy Δuz Δu
Δvx 1þΔvy Δvz Δv
Δwx Δwy 1þΔwz Δw
0 0 0 1

2
664

3
775

Δx
Δy
Δz
1

2
664

3
775 ð6Þ

where Δp=(Δu,Δux,Δuy,Δuz,Δv,Δvx,Δvy,Δvz,Δw,

Δwx,Δwy,Δwz)
T is the incremental vector of deforma-

tion parameter. The incremental vector Δp can be de-

termined by the 3D ICGN algorithm which minimizes

the zero-mean normalized sum of squared difference

(ZNSSD) criterion,

Fig. 2 Flow chart of the
proposed paDVC, where R and T
refer to the reference subvolume
and target subvolume,
respectively, ξ is the local
coordinates of points within the
subvolume

300 Exp Mech (2016) 56:297–309

CZNSSD Δpð Þ ¼
X
ξ

R PþW ξ;Δpð Þ½ �−RmffiX
ξ

R PþW ξ;Δpð Þ½ �−Rmf g2
s −

T PþW ξ; pð Þ½ �−TmffiX
ξ

T PþW ξ; pð Þ½ �−Tmf g2
s

8>>>><
>>>>:

9>>>>=
>>>>;

2

ð7Þ

Then, Δp can be solved through

Δp ¼ H−1
12x12

X
ξ

∇R
∂W
∂p

� �T

12x1

ffiX
ξ

R PþW ξ;Δpð Þ½ �−Rmf g2
s

ffiX
ξ

T PþW ξ; pð Þ½ �−Tmf g2
s T PþW ξ; pð Þ½ �−Tmð Þ− R PþW ξ;Δpð Þ½ �−Rmð Þ

2
666664

3
777775

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
ð8Þ

where ∇R is the gradient within the reference subvolume,

∇R ¼ ∂R x; y; zð Þ
∂x

;
∂R x; y; zð Þ

∂y
;
∂R x; y; zð Þ

∂z

� �
ð9Þ

∂W
∂p is the Jacobian matrix of the warp function,

∂W
∂p

¼
1 Δx Δy Δz 0 0 0 0 0 0 0 0
0 0 0 0 1 Δx Δy Δz 0 0 0 0
0 0 0 0 0 0 0 0 1 Δx Δy Δz

2
4

3
5

ð10Þ
and H12×12

− 1 denotes the inverse of the 12×12 Hessian matrix
H,

H ¼
X
ξ

∇R
∂W
∂p

� �T

12�1

∇R
∂W
∂p

� �
1�12

" #()
ð11Þ

The obtainedΔp is then substituted back into equation (6)
to yield the incremental warp function W(ξ;Δp) which is
used to update the warp function W(ξ;p) according to

W ξ; pð Þ←W W−1 ξ;Δpð Þ;p� �¼W ξ; pð ÞW−1 ξ;Δpð Þ ð12Þ

where

W−1 ξ;Δpð Þ ¼
1þΔux Δuy Δuz Δu
Δvx 1þΔvy Δvz Δv
Δwx Δwy 1þΔwz Δw
0 0 0 1

2
664

3
775
−1 Δx

Δy
Δz
1

2
664

3
775

ð13Þ
represents the inverse of the incremental warping function.
This procedure is repeated until one of the following two
pre-imposed convergence conditions is satisfied, i.e.,

ffi
Δuð Þ2 þ Δvð Þ2 þ Δwð Þ2

q
< 0:001 or the maximum itera-

tion number reaches 20.
It is clear that the Hessian matrix H only depends on the

gradient ∇R in the reference subvolume and the Jacobian ma-
trix of the warp function ∂W

∂p , thus H and its inverse can be

precomputed, which makes the ICGN algorithm faster than
the traditional forward additive Newton–Raphson algorithm.

During the iterations, the reconstructed T[P+W(ξ;p)] in
equation (8) often locates at a sub-voxel location (see point
C in Fig. 3). Therefore, an interpolation scheme is applied to
estimate the intensity at sub-voxel locations. In DIC bicubic
spline interpolation is usually preferable to polynomial inter-
polation because it can give more accurate results [21].
However, Tri-cubic interpolation is chosen in the proposed
DVC for two reasons: i) The amount of computation in
DVC can be several orders of magnitude higher than that of

Fig. 3 Diagram of the tri-cubic interpolation at a sub-voxel position
surrounded by 8 voxels with integer coordinates

Exp Mech (2016) 56:297–309 301

DIC, which makes the computation speed a critical require-
ment. In this context, the significant speedup gained by using
more computationally efficient tri-cubic interpolation, which
in particular allows a precomputed global look-up table of
interpolation coefficients that can further reduce the interpo-
lation times by orders of magnitude [16], could be highly
beneficial to the proposed DVC method at a price of small
(sometimes imperceptible) loss of accuracy; ii) Based on our
preliminary of the path-independent DIC [17], the proposed
DIC method, using bicubic interpolation, gave an excellent
accuracy and precision, which is comparable with the
Newton–Raphson algorithm using bicubic spline interpola-
tion on similar speckle images reported in Ref. [22].
Moreover, it was found in real experiments that the difference
in the bias error of the Newton–Raphson algorithm using
quantic spline interpolation and bicubic interpolation can be
reduced to a negligible level if a proper Gaussian pre-filtering
is performed on the noise contaminated speckle images [23].
Therefore, a tri-cubic interpolation scheme with global look-
up table is considered as a good trade-off between computa-
tional efficiency and registration accuracy for the paDVC.

Implementation of the paDVC on CUDA

Mapping from CUDA Programming Model to NVIDIA
GPU Hardware

Figure 4 illustrates the mapping from the CUDA program-
ming model to NVIDIA GPU hardware. In the CUDA pro-
gramming model, a parallel problem is first split into coarse
sub-problems that can be solved independently by blocks, and

each sub-problem is further divided into finer pieces that can
be solved cooperatively by all the threads within the block. In
the architecture of NVIDIA GPU hardware, the blocks are
mapped as components on streaming multiprocessors (SMs).

Parallelization of Precomputation

The gradients ∇R and ∇T used in building the inverse of the
Hessian matrix in the reference subvolume and the global
look-up table of tri-cubic interpolation coefficients for the tar-
get volume image are calculated according to the central dif-
ferences approximation,

∂R x; y; zð Þ
∂x

¼ R xþ 1; y; zð Þ−R x−1; y; zð Þ
2

;
∂T x; y; zð Þ

∂x
¼ T xþ 1; y; zð Þ−T x−1; y; zð Þ

2
∂R x; y; zð Þ

∂y
¼ R x; yþ 1; zð Þ−R x; y−1; zð Þ

2
;

∂T x; y; zð Þ
∂y

¼ T x; yþ 1; zð Þ−T x; y−1; zð Þ
2

∂R x; y; zð Þ
∂z

¼ R x; y; zþ 1ð Þ−R x; y; z−1ð Þ
2

;
∂T x; y; zð Þ

∂z
¼ T x; y; zþ 1ð Þ−T x; y; z−1ð Þ

2

ð14Þ

Equation (14) indicates that the computation of the gradient
at a voxel involves the intensity values at 3×3×3 voxels. In
this work, instead of processing the gradient at each voxel
individually, we introduce a tiled algorithm [24] to calculate
the gradients in groups of 6×6×6 voxels using blocks con-
taining 8×8×8 threads. By this way, an optimal occupancy of
SMs can be achieved and the latency caused by intensive
accesses to global memory can be minimized. During the
precomputation of gradients for every 6×6×6 voxels, the in-
tensity values at 8×8×8 voxels are loaded into the shared

memory allocated to a block, as shown in Fig. 5. Then the
calculation of gradients at 216 voxels is performed by 216
threads in parallel according to equation (14). It is noteworthy
that 296 (=512–216) threads around the 216-thread tile are
only used to store the intensity values at the voxels along the
outer boundary and do not perform any calculation. In this
trade-space-for-time strategy, all the data required to calculate
the gradients at each voxel in the 6×6×6-voxel unit along the
three axes are loaded only once to minimize the access of
global memory, which is generally quite time consuming. As

Fig. 4 Mapping from the CUDA programming model to NVIDIA GPU
hardware

302 Exp Mech (2016) 56:297–309

the precomputation takes a very small portion of the overall
computation time (~3 %, according to Tables 2 and 3 in
Section 4.3), this waste of threads only leads to trivial loss
of computational efficiency.

The tri-cubic interpolation used in equation (8) is defined
as

T x; y; zð Þ ¼
X3

i¼0

X3

j¼0

X3

k¼0

αi jkx
iy jzk ð15Þ

where the 64 coefficients αijk are obtained according to the
intensity values at its eight surrounding integer voxels as well
as their gradients (see Fig. 3). A look-up table of interpolation
coefficients αijk can be computed using the similar Btiled^
strategy, in which each 8×8×8-thread block is assigned to
calculate the interpolation coefficients of a 7×7×7 eight-vox-
el-unit. The constructed look-up table is then stored in global
memory and will be accessed during the 3D ICGN algorithm.

Parallelization of 3D FFT-CC Algorithm

The 3D FFT-CC algorithm contains two steps: (a) calculating
CZNCC(u,v,w) using FFT; and (b) searching the peak of
CZNCC(u,v,w).

The calculation of cross correation is accelerated by CUDA
FFT (CUFFT) library [25]. To achieve high utilization effi-
ciency of GPU hardware, subvolumes are grouped in batches
before they are transferred to the processing line. Although it
is not guarenteed that all of the subvolumes are handled si-
multaneously due to hardware limitation, CUFFT automati-
cally ensures a maximum number of subvolumes being proc-
essed in parallel.

The peak searching within each subvolume is also acceler-
ated by parallel computing technology. First, the 3D voxel
matrix containing p3 voxels is transformed into a 1D array.
The 3D index (u,v,w) is coded as a 1D index i through

i ¼ w� pþ vð Þ � pþ u ð16Þ

which can be decoded according to

u ¼ i mod p; v ¼ i=pð Þmod p; w ¼ i=pð Þ=p ð17Þ

Second, a block containingm threads (m=256 in this work)
is assigned to handle the subvolume. As in most case p3 is
greater than the thread number in a block, the p3 Czncc values
and their 1D indices are divided into m groups. Each group is
processed by a thread within the block to find the maxium
Czncc value in the group through a simple maximum element
searching algorithm. Third, a classic parallel reduction algo-
rithm [26] is applied to locate the peak Czncc among the m
Czncc values obtained by the threads, as illustrated in Fig. 6.
In each reduction step, the first half of the threads compare
their Czncc values with those in the second half of the threads.
If the Czncc of any thread in the first half is smaller than that of
its counterpart in the second half, the two threads exchange
their data, viz. Czncc values and 1D indices. In the next reduc-
tion step, the comparison and data exchange only occur in the
active half of the threads that containing larger Czncc values.
This procedure continues until there remains only one active
thread. Finally, the 3D index of the peak Czncc in a subvolume
can be located by decoding the remained 1D index according
to equation (17).

Compared with the sequential searching algorithm, which
results in a computation complexity of O(p3) for a (p×p×p)-
voxel subvolume, the parallel reduction algorithm lowers the
computation complexity down to O(p3/m).

Parallelization of the 3D ICGN Algorithm

Figure 7 illustrates the parallelization of the 3D ICGN algo-
rithm. The computation at each POI is carried out by a block
containing m threads (m=256 in this work). Initially, the
integer-voxel deformation vector estimated using the 3D
FFT-CC algorithm is loaded into the shared memory of the
block by one thread. Then, all the N threads within the block
participate in the construction of the warped target subvolume

Fig. 5 Illustration of the tiled
computation for volume image
gradients

Exp Mech (2016) 56:297–309 303

T[P+W(ξ;p)], referring to the look-up table of tri-cubic inter-
polation coefficients. Afterwards, 12 threads are involved in
updating the warp function W(ξ;p) according to equation
(12), while the other threads become inactive. Finally, one
thread remains active to check whether any of the two conver-
gence conditions is satisfied and output the sub-voxel defor-
mation in case the iteration is completed.

Batch Processing Mechanism

It would be ideal that all the POIs can be processed
simultaneously on GPU. However, the degree of paral-
lelism is restricted in practice due to the limited hard-
ware capability, namely limited computing cores and
memory on a GPU device. In particular, for a middle
size volume image containing 512×512×512 voxels, the
data generated during the DVC method can be tens of
gigabytes, which is even far more than the primary
memory equipped in a desktop computer. The paDVC,
therefore, is implemented in a batch processing manner.
It means that the volume images are first divided into
cubes. And then the cubes are processed in turn, namely
the POIs distributed in the whole volume image are
processed in batches of a certain number. The batch size

(or cube size) is variable, depending on the spatial sam-
pling rate (viz. number of POIs within the cube) and the
size of subvolume configured in the experiment. A basic
rule in the batch planning is to achieve a full use of the
available global memory on graphics card, and to ensure
all the data required during the computation for a batch
of POIs can be loaded into the global memory only
once. In this work, the batch size is roughly estimated
and set in the program. A dynamic and precise batch
planning will be developed in the future. It is notewor-
thy that within the cube the calculation at POIs is also
carried out in batches of an integer N, where N is de-
pendent on the available blocks for the parallel compu-
tation in a GPU (see Fig. 4).

Obviously, the efficiency of the paDVC may be in-
fluenced to some extent by this batch processing mech-
anism due to more exchange of data between the global
memory on graphics card and the primary memory on
mainboard, and slightly redundant computation to treat
the voxels along the boundary of cubes. However, this
mechanism offers the paDVC a good adaptability to
large scale of data and flexible computing power of
GPU devices. An immediate boost of performance can
be achieved by increasing the POI number in each batch

Fig. 6 Flow chart of the parallel reduction algorithm within an individual block

304 Exp Mech (2016) 56:297–309

when using a high-end graphics card equipped with
more computing cores and memory.

Experimental Verification

Experimental Specification

The proposed paDVC method is programmed on CUDA 6.5
using C++ language, and tested on a desktop computer
equipped with an Intel® Xeon® CPU E5-1650 (6 cores,
3.20 GHz main frequency), 16.0 GB RAM and a NVIDIA
GeForce GTX 680 graphics card (8 SMs with 1536 CUDA
cores and 2GB 256-bit RAM). It is worth mentioning that,
although a low-end GPU is used in this work, the paDVC is
applicable to any platforms supporting CUDA, and higher
performance in terms of computation speed can be expected
on more powerful platforms.

In order to quantitatively evaluate the accuracy and precision
of the paDVC method, an 8-bit grayscale reference volume
image R(x,y,z) (see Fig. 8) is generated according to Ref. [13]:

R x; y; zð Þ ¼ round
Xs

i¼1

I iexp −
x−xið Þ2 þ y−yið Þ2 þ z−zið Þ2

r2

" #()

ð18Þ
where s represents the total number of speckles, Ii and (xi,yi,zi)
represents the random peak intensity value of the ith speckle
and its center position, respectively. r is the radius of the speck-
le. Function round(x) returns the nearest integer to x.
Afterwards, ten target volume images are generated by trans-
lating R(x,y,z) in the Fourier domain according to the shift
theorem [21], with pre-set sub-voxel displacement along z-axis
ranging from 0 to 1 voxel. The step between every two succes-
sive images is set to be 0.1 voxels. To simulate the influence of
noise in real experiments, a white Gaussian noise field with a
zero mean value and a variance of 4 gray levels is then

Fig. 7 Schematic flow chart of
the computation procedure within
one thread block of the 3D ICGN
algorithm in the paDVC

Exp Mech (2016) 56:297–309 305

superposed on these volume images. In this work, 11 volume
images with a dimension of 512×512×512 voxels were gener-
ated, each of which contains approximately 1.5×106 speckles.
In each volume image 7.29×105 (=90×90×90) POIs are even-
ly distributed with a space of 5 voxels between the
neighbouring POIs. Three kinds of subvolumes with different
sizes are selected to carry out the DVC calculation, namely 17×
17×17 voxels, 25×25×25 voxels and 33×33×33 voxels.

Verification of the Accuracy and Precision

The accuracy and precision of the paDVC are studied accord-
ing to two performance indicators: mean bias error and stan-
dard deviation. The mean bias error of the w-component in z-
direction is expressed by

ew ¼ 1

N

XN
i¼1

wi−wsetð Þ ð19Þ

where N is the number of POIs, wi is the calculated displace-
ment at the ith POI and wset denotes the pre-set sub-voxel
displacement. The standard deviation of the measured dis-
placement is defined as

σw ¼

ffi
1

N−1

XN
i¼1

�
wi−w

�
2

vuut ð20Þ

where w ¼ 1
N ∑

N

i¼1
wi denotes the expectation of the measured

w-component.
Figure 9 shows the mean bias errors and standard

deviations of sub-voxel displacement calculated by the
paDVC using the three kinds of subvolumes, respective-
ly. It can be seen in Fig. 9(a) that the mean bias error
of the calculated w-component falls in a narrow band
from −0.43×10−3 to 0.29×10−3 voxels. The accuracy of

the paDVC seems not sensitive to the variation of
subvolume size in a certain range. In Fig. 9(b), the
standard deviations of the measured w-component are
below 1.42×10−3 voxels. A larger subvolume size leads

Fig. 9 (a) Mean bias errors and (b) standard deviation of the measured
w-components on a series of noise-contaminated volume images,
calculated using different subvolume sizes

Fig. 8 Computer simulated reference volume image R(x, y, z) and the 10 translated target volume images from T1(x, y, z) to T10(x, y, z)

306 Exp Mech (2016) 56:297–309

to a smaller standard deviation for the measurement of
sub-voxel displacements, but at a price of significantly
increased computation time, as will be discussed in the
next subsection. Figure 10 gives the mean bias errors
and standard deviations calculated on the same series of
volume images without noises. Comparing the results in
the two figures, it can be found that the white Gaussian
noises reduce the accuracy and precision of the pro-
posed paDVC method. But this adverse effect remains
at an insignificant level.

Verification of the Computational Efficiency

To assess the computational efficiency of the proposed
paDVC, the same DVC algorithm with sequential implemen-
tation (seDVC) and multithreaded implementation (muDVC)
based on OpenMP [27] running merely on CPU are used as
benchmarks.

In the seDVC, the POIs are processed one by one. The
FFTW library [28] is employed to perform the fast
Fourier transform, and the peak Czncc as well as its index
are obtained by a simple maximum element searching
algorithm. The implementation of muDVC is almost iden-
tical to the seDVC except that a coarse-grained
parallelization is applied. The number of threads is set
to be equal to twice the number of physical CPU cores,
since the Intel hyper-threading technology allows each
CPU core operates at most two simultaneous threads. It
is found that a larger thread number does not increase the
computation speed further, because these threads actually
share the time slices of up to 6 CPU cores. The batch
processing scheme is also adopted in the seDVC and the
muDVC due to the huge amount of data. To make the
comparison fair, the three DVC programs use the same
batch size during the experimental study. The Intel single
instruction multiple data (SIMD) instruction is enabled for
the compiling of all the programs.

Table 1 compares the computation time and computa-
tion speed among the paDVC, the muDVC and the
seDVC with different subvolume sizes. The paDVC
achieves a significant speedup, approximately 3.0×~3.7×
over the muDVC and 18.3×~23.3× over the seDVC.
Compared with another sequential implementation of
ICGN algorithm-based DVC with path-dependent strate-
gy, which was run on a desk computer equipped with
similar grade CPU [13], the paDVC also demonstrates
its clear advantage in computational efficiency. It can be
observed that the increase in subvolume size effectively
reduces the iteration number required by the 3D ICGN
algorithm. However, a larger subvolume does not lead to
a higher computation speed. The computation time taken
by all the three DVC programs is substantially increased
due to the surge of voxel number involved in calculation.

Table 1 Comparison of the average computation time and speed among the paDVC, the muDVC and the seDVC

Subvolume [voxel] Average consumed time [s] Average iteration number Average computation speed [POI/s]

paDVC muDVC seDVC paDVC muDVC seDVC paDVC muDVC seDVC

17×17×17 416.5 1261.5 7617.5 4.12 4.12 4.12 1750.4 577.9 95.7

25×25×25 861.9 2887.9 17862.6 2.91 2.91 2.91 845.8 252.4 40.8

33×33×33 1641.4 6061.0 38186.6 2.64 2.64 2.64 444.1 120.3 19.1

Fig. 10 (a) Mean bias errors and (b) standard deviation of the measured
w-components on a series of noise-free volume images, calculated using
different subvolume sizes

Exp Mech (2016) 56:297–309 307

Table 2 further explore the average time per batch con-
sumed by the the three DVC programs in the precomputation
stage. The paDVC is approximately 9.8× and 54.9× faster
than the muDVC and the seDVC, respectively.

Table 3 gives comparisons of average computation
time per POI in the stage 2 (3D FFT-CC) and stage 3
(3D ICGN) among the three programs. The calculation
of the 3D FFT-CC powered by GPU leads to a speedup
ranging from 4.6× to 22.0× over the two CPU-based
implementations. And the GPU accelerates the operation
of 3D ICGN algorithm in the paDVC for about 3.2 times
to 19.8 times, as compared with the muDVC and seDVC.
According to the results, it can be found that the most
remarkable acceleration of the paDVC is achieved in the
precomputation step, which is performed in a highly par-
allel manner. In the paDVC, each CUDA block can cal-
culate the gradients at 216 voxels and the interpolation
coefficients for 147 eight-voxel-units simultaneously,
whereas the degree of parallel computing in the muDVC
is 12 at most. In the other two steps, the speedup ratios
achieved by the paDVC decrease markedly due to the
limited CUDA cores in the GPU used in this work, which
may allow only a couple of POIs to be processed in par-
allel. However, the fine-grained parallel computing ap-
plied in the calculation at each POI makes the paDVC
demonstrate considerably superior computational efficien-
cy over the muDVC.

Conclusion

In this work, a parallel digital volume correlation
(paDVC) method is proposed and implemented on GPU
devices. The path-dependence of the conventional reliable
initial guess transferring schemes widely used in iterative
DVC algorithms is eliminated in the proposed paDVC
method by introducing the 3D FFT-CC algorithm to esti-
mate the integer-voxel initial guess for the 3D ICGN al-
gorithm at each POI independently. Then a GPU-based
parallel implementation of the proposed DVC method
has been developed on CUDA. The proposed paDVC em-
ploys a variety of techniques and strategies to combine
parallel computing and batch processing at coarse-
grained and fine-grained level, and demonstrates a signif-
icantly enhanced computational efficiency more than 20
times higher than the CPU-based sequential implementa-
tion of the same DVC method, without sacrificing accu-
racy and precision. In comparison with the multithreaded
implementation on multi-core CPU, the paDVC also gains
an approximately 3× improvement in speed. Therefore,
one may reach a conclusion that GPU-based parallel com-
puting could be a superior option to accelerate DVC over
the parallel computing based on current multi-core CPU,
unless an explosive increase of CPU cores is realized.
Moreover, since a high-end CPU with more than 8 cores
is still quite expensive, the paDVC provides the end-users
the possibility to carry out large scale DVC computation
efficiently on their desktop computers equipped with low
or medium level graphics cards for measurement or re-
search work.

Acknowledgments The work is partially supported by a grant,
MOE2011-T2-2-037 (ARC 4/12), Ministry of Education, Singapore,
the Multi-plAtform Game Innovation Centre (MAGIC) funded by the
Singapore National Research Foundation under its IDM Futures
Funding Initiative and administered by the Interactive & Digital Me-
dia Programme Office, Media Development Authority, and National
Natural Science Foundation of China (NSFC Nos. 11202081 and
11272124). Z Jiang would acknowledge the support of the Project
sponsored by the Scientific Research Foundation for the Returned
Overseas Chinese Scholars, State Education Ministry.

Table 3 Comparison of computation efficiency for the 3D FFT-CC
algorithm and the 3D ICGN algorithm among the paDVC, the muDVC
and the seDVC

Subvolume
[voxel]

Average computation time
consumed per POI by the
3D FFT-CC algorithm [ms/
POI]

Average computation time
consumed per POI by the
3D ICGN algorithm [ms/
POI]

paDVC muDVC seDVC paDVC muDVC seDVC

17×17×17 0.005 0.030 0.088 0.501 1.55 9.02

25×25×25 0.025 0.114 0.550 1.104 3.40 21.18

33×33×33 0.042 0.235 0.740 2.146 7.31 47.75

Table 2 Comparison of the average computation time consumed per batch in the precomputation step among the paDVC, the muDVC and the
seDVC. Batch size means the number of POIs processed in one batch (or in a cube)

Subvolume [voxel] Cube Size [voxel] Batch size Average time consumed in the precomputation step [ms/batch]

paDVC muDVC seDVC

17×17×17 92×92×92 3375 52.33 498.84 2776.43

25×25×25 75×75×75 1000 26.75 261.28 1482.43

33×33×33 63×63×63 216 15.31 152.95 862.77

308 Exp Mech (2016) 56:297–309

References

1. Bay BK, Smith TS, Fyhrie DP, Saad M (1999) Digital volume
correlation: three-dimensional strain mapping using X-ray tomog-
raphy. Exp Mech 39(3):217–226

2. Smith TS, Bay BK, Rashid MM (2002) Digital volume correlation
including rotational degrees of freedom during minimization. Exp
Mech 42(3):272–278

3. Peters WH, Ranson WF (1982) Digital imaging techniques in ex-
perimental stress analysis. Opt Eng 21(3):427–431

4. Sutton MA, Orteu JJ, Schreier H (2009) Image correlation for
shape, motion and deformation measurements: basic concepts, the-
ory and applications. Springer, New York

5. Zauel R, Yeni Y, Bay B, Dong X, Fyhrie D (2006) Comparison of
the linear finite element prediction of deformation and strain of
human cancellous bone to 3D digital volume correlation measure-
ments. J Biomech Eng 128(1):1–6

6. Franck C, Hong S,Maskarinec S, Tirrell D, Ravichandran G (2007)
Three-dimensional full-field measurements of large deformations in
soft materials using confocal microscopy and digital volume corre-
lation. Exp Mech 47(3):427–438

7. Huang J, Pan X, Li S, Peng X, Xiong C, Fang J (2011) A digital
volume correlation technique for 3-D deformationmeasurements of
soft gels. Int J Appl Mech 3(2):335–354

8. Forsberg F, Sjödahl M, Mooser R, Hack E, Wyss P (2010) Full
three-dimensional strain measurements on wood exposed to three-
point bending: analysis by use of digital volume correlation applied
to synchrotron radiation micro-computed tomography image data.
Strain 46(1):47–60

9. Hall S, Bornert M, Desrues J, Pannier Y, Lenoir N, Viggiani G,
Bésuelle P (2010) Discrete and continuum analysis of localised
deformation in sand using X-ray μCTand volumetric digital image
correlation. Geotechnique 60(5):315–322

10. Gates M, Heath MT, Lambros J (2015) High-performance hybrid
CPU and GPU parallel algorithm for digital volume correlation. Int
J High Perform Comput Appl 29(1):92–106

11. Gates M, Lambros J, Heath M (2011) Towards high performance
digital volume correlation. Exp Mech 51(4):491–507

12. Pan B, Wu D, Wang Z (2012) Internal displacement and strain
measurement using digital volume correlation: a least-squares
framework. Meas Sci Technol 23(4):045002

13. Pan B, Wang B, Wu D, Lubineau G (2014) An efficient and accu-
rate 3D displacements tracking strategy for digital volume correla-
tion. Opt Laser Eng 58:126–135

14. Baker S, Matthews I (2004) Lucas-kanade 20 years on: a unifying
framework. Int J Comput Vision 56(3):221–255

15. Pan B (2009) Reliability-guided digital image correlation for image
deformation measurement. Appl Optics 48(8):1535–1542

16. Pan B, Li K (2011) A fast digital image correlation method for
deformation measurement. Opt Laser Eng 49(7):841–847

17. Jiang Z, Kemao Q, Miao H, Yang J, Tang L (2015) Path-
independent digital image correlation with high accuracy, speed
and robustness. Opt Laser Eng 65:93–102

18. Zhang L, Wang T, Jiang Z, Kemao Q, Liu Y, Liu Z, Tang L,
Dong S (2015) High accuracy digital image correlation
powered by GPU-based parallel computing. Opt Laser Eng
69:7–12

19. Bar-Kochba E, Toyjanova J, Andrews E, Kim K-S, Franck C
(2015) A fast iterative digital volume correlation algorithm for large
deformations. Exp Mech 55(1):261–274

20. Leclerc H, Périé J-N, Hild F, Roux S (2012) Digital volume corre-
lation: what are the limits to the spatial resolution? Mechanics
Industry 13(6):361–371

21. Schreier HW, Braasch JR, Sutton MA (2000) Systematic errors in
digital image correlation caused by intensity interpolation. Opt Eng
39(11):2915–2921

22. Pan B, Xie H, Xu B, Dai F (2006) Performance of sub-pixel regis-
tration algorithms in digital image correlation. Meas Sci Technol
17(6):1615–1621

23. Pan B (2013) Bias error reduction of digital image correlation
using Gaussian pre-filtering. Opt Laser Eng 51(10):1161–
1167

24. Iwamura M, Hondo T, Noguchi K, Kise K (2007) An attempt of
CUDA implementation of PCA-SIFT (International Session 6).
Technical Report IEICE PRMU 107(281):149–154

25. http://docs.nvidia.com/cuda/cufft/
26. Cook S (2013) CUDA programming: a developer’s guide to paral-

lel computing with GPUs. Applications of GPU Computing.
Morgan Kaufmann, Waltham

27. http://www.openmp.org/
28. Frigo M, Johnson SG (2005) The design and implementation of

FFTW3. Proc IEEE 93(2):216–231

Exp Mech (2016) 56:297–309 309

http://docs.nvidia.com/cuda/cufft/
http://www.openmp.org/

	GPU Accelerated Digital Volume Correlation
	Abstract
	Introduction
	Principle of the paDVC
	Integer-Voxel Registration by the 3D FFT-CC Algorithm
	Sub-Voxel Registration by the 3D ICGN Algorithm

	Implementation of the paDVC on CUDA
	Mapping from CUDA Programming Model to NVIDIA GPU Hardware
	Parallelization of Precomputation
	Parallelization of 3D FFT-CC Algorithm
	Parallelization of the 3D ICGN Algorithm
	Batch Processing Mechanism

	Experimental Verification
	Experimental Specification
	Verification of the Accuracy and Precision
	Verification of the Computational Efficiency

	Conclusion
	References

