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Abstract In this study, we present a method to analyse
experimentally the deformation kinematics of a heteroge-
neous material using digital image correlation. The period-
icity of the microscopic deformation patterns is assessed
from the displacement measured along the edges of unit
cells. The first order macroscopic transformation gradient
is shown to enable capturing the deformation of the unit
cell even for large plastic strains. It is also shown that cells
along the boundary of the heterogeneous media have a non
periodic higher order kinematics.

Keywords Large strain · Multi-scale material · Digital
image correlation · Homogenization

Introduction

Materials, even more natural materials, are heterogeneous
at a certain observation scale. Homogenization techniques
which consist in the prediction of the properties at the
macroscopic scale directly from the properties of the
microstructure (geometries, phases and behaviours) are effi-
cient to predict the effective elastic properties of heteroge-
neous materials [1]. In presence of geometrically and physi-
cally nonlinear phenomena, it is clearly more difficult [2, 3].
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For many methods large deformation cannot easily be taken
into account because of the non linearities, for instance
evolution of the microstructure or strain localization which
often appear.

As an alternative, multi-scale methods, as for exam-
ple the FE2 technique, brings new perspectives to obtain
detailed information for structures with two scales [4,
5]. Contrary to homogenization techniques, the material
behaviour is enforced at the microscopic scale and the
macroscopic scale enforces the balance of the homoge-
nized stresses. The FE2 method consists in two nested
finite element problems with one Representative Volume
Element (RVE) at each integration point of the macroscopic
problem. This method is efficient for small strain but in
presence of large strain and failure, issues about the choice
and the existence of the RVE appear as presented by Git-
man [6]. This definition may not be reached when strongly
non-linear process or failure occurs at the macroscopic
scale. This is why some authors like Kouznetsova, Feyel,
Forest or Kaczmarczyk [7–10] use the theory of second gra-
dient or Cosserat continuum to model the macroscopic scale
whereas the microscopic continuum remains classical. The-
oretically, this improvement allows for taking into account
large strain and rotations of both scales with better accuracy.
Moreover the absolute scale separation is no more required
when the macroscopic deformation gradient and its gradient
are used to determine the boundary conditions applied to the
microscopic scale.

For now, the multiscale methods are in general vali-
dated by comparison with full field simulations. Multiscale
experimental methodologies based on digital image cor-
relation have recently appeared. The ductile failure of an
aluminium is studied by Ghahremaninezhad [11] with dis-
placement field measurements at the macroscopic scale
while microscopy are realised post-mortem to get the real
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strain to failure of the heterogeneity. Passieux in [12]
use two cameras to locally improve the resolution of the
measured macroscopic strain when it is needed by the
microstructure. The evolution of an architectured mate-
rial has been studied and analysed by Weck in [13] on
thin metallic sheets containing a significant number of
laser drilled holes. Tension tests have been carried out
in a scanning electron microscope but displacement field
measurements are not performed.

However, these techniques do not provide experimen-
tal data that could be exploited for the analysis of scale
transition schemes. In the papers listed above, the analy-
sis at the two scales are partially or even fully uncoupled.
The relationships between the kinematic fields at the two
scales cannot be investigated. There is thus a need for
dedicated experiments and post-processing techniques to
analyze quantitatively the deformation of multiscale materi-
als at two separate scales, the main difficulty being to obtain
the displacement fields at the two scales over the same
region of the sample. These data should allow for investigat-
ing the relationships between the measurements at these two
scales in the linear as well as in the non-linear regime. While
there are strong theoretical bases concerning these relations
in the elastic regime, the non-linear regime with large plas-
tic strains is much more difficult to study theoretically and
numerically. The usefulness of experimental data obtained
in this context is even more important.

This paper presents a multiscale structure which is loaded
in uniaxial tension to measure experimentally the kinemat-
ics of the RVE’s deformation. The structure is a stainless
steel sheet which has been perforated to construct a het-
erogeneous material. One unit cell is composed of a square
with a hole at the center. The number of unit cells is about
1900. As it will be shown, an efficient scale separation is
obtained. A high resolution camera (with a captor of 29 mil-
lion pixels) is used to take pictures along the deformation
process. The displacement fields are measured and strain
fields are deducted with Digital Image Correlation (DIC)
techniques [14, 15]. This high resolution allows to per-
form full field measurements at both scales of the structure
(the macroscopic as well as the microscopic one). Differ-
ent orientations of the unit cell keeping a fixed macroscopic
loading direction produce different solicitations into the
microstructure : uniaxial tension as well as mixed tension
and shear loadings. The aim of the paper is to produce exper-
imental data which allows to ensure or to invalidate the
usual hypothesis of two scale models and also to evaluate
the regions of the multiscale structure for which the use of a
second gradient approach is required. The linear regime as
well as the non-linear regime with large plastic strain will
be investigated.

The paper is organized as follows, in section
“Digital Image Correlation” the principle of DIC and

the proposed improvement for analysing the large strain
ultra-high resolution images are presented. Section
“Experiments” describes the experimental setup and the
results of DIC at macroscopic and microscopic scales.
These results, in terms of displacement fields, are then
analysed in section “Unit Cell Kinematics”.

Digital Image Correlation

General Settings and Notations

DIC is a full field measurement method which enables to
capture the displacement field at the surface of a struc-
ture. This method is based on the grey level conservation
between two images. Let us call the reference image f and
the deformed image g. The grey level of the two images is
supposed to be passively advected to find the displacement
field v at each pixel x:

f (x) = g(x + v(x)) − b(x), (1)

where b is the noise appearing between the images. The best
approximation of the displacement v is obtained by assum-
ing there is no noise, this approximation is called u. To
determine u one can solve this ill-posed inverse non-linear
problem over the region of interest (ROI) by minimizing the
least-squares functional φ2:

φ2(u) =
∫

ROI

[f (x) − g(x + u(x))]2dx. (2)

Following Besnard [15], we adopt a Finite Element dis-
cretization for the displacement field. The discretized dis-
placement field reads:

u(x) =
∑
i∈N

uiN
i
(x) = NU, (3)

where ui is the set of finite element degrees of freedom
(DOFs), and N

i
the finite element shape functions associ-

ated with the finite element mesh. A matrix form of this
equation is used: N is a matrix that collects the values of
the N vector shape functions at a given location x and U the
vector that collects the values of the displacement DOFs.
Note that N has N columns and as many lines as points
where the shape functions are evaluated. For clarity, the
positions of these evaluation points are omitted in the matrix
format.

Using a first order Taylor expansion, the functional φ2

becomes a quadratic form of solution increments du. The
minimization thus leads to a sequence of linear systems
written:[∫

ROI

[(∇g(x + u).N
j
(x))]T (∇g(x + u).N

i
(x))dx

]
dui

=
∫

ROI

[f (x) − g(x + u)(∇g(x + u).N
j
(x))]dx, (4)
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where ∇ denotes spatial derivation. This minimization is
equivalent in a matrix form as:

Mji.dui = Fj . (5)

In this equation, Mji , respectively Fj and dui , denotes
the component of the matrix, respectively right hand side
vector and displacement increment vector, of the resulting
linear system to solve. Other authors propose specific basis
function like Hild [16] for cantiliver beam kinematics or
Réthoré [17] with NURBS functions. Once the convergence
is reached, the calculated displacement field u is recon-
structed over the ROI. The correlation error is obtained by
comparing the reference image f to the deformed image g

advected with the displacement u:

η = |g(x + u(x)) − f (x)|. (6)

Large Strain Resolution

During the experiments, strongly heterogeneous strain
fields have to be captured. They are due to the strain concen-
tration resulting from the geometry of the model microstruc-
ture. Moreover the material has a ductile behaviour and very
large strain are obtained in the vicinity of the microstruc-
tural holes. When the deformation of one element becomes
large and/or when erratic deformation due to noise measure-
ment occurs, the element is distorted and convergence of the
DIC is lost around this element. To avoid this phenomena,
the gradient of the deformation of the elements is artificially
limited by adding locally (at the element level) a Tikhonov
regularization [18]. It consists in adding to the element cor-
relation matrix Mel

ij a contribution of the following form:

Rel
ji =

∫
el

(∇N
j
(x)) : (∇N

i
(x))dx (7)

This regularization term is then appropriately weighted
(compared to Mel

ij ) so that the wave length of the dis-
placement fluctuation is locally limited to a given length lc
(see [19] for a description of this formalism). In practice,
this cut-off wave length lc is set to the unit cell size. Con-
sequently, the amount of regularization is very limited and
as it is introduced locally, it does not introduce an arti-
ficial global smoothing of the strain field. It just allows
for maintaining convergence of the DIC alogorithm while
large element distortion are measured. Indeed, the criterion
for introducing the local regularization is that the determi-
nant of the Jacobian matrix of the element in the deformed
configuration becomes negative at one Gauss point. The
regularization enforces that the deformed elements keep a
geometrically admissible shape thus avoiding local conver-
gence problem. Note that if an element is regularized at a
given step of the analysis then the regularization is main-
tained up to the end of the analysis. This strategy allows to

avoid local convergence problem when strongly heteroge-
neous strain fields are searched for without artificial global
smoothing of the local variation of the displacement and
strain fields.

Experiments

Model Material

The tested structure is a plate, 1 mm thick, with holes dis-
tributed on a square grid delimited by a circle of 49 holes
in diameter at the specimen center : the total number of
holes is about 1950. The holes diameter is 0.5 mm whereas
the distance between their center, the grid step, is 1 mm.
The structure of the architectured material is presented in
Fig. 1(a) and is loaded in a tensile machine. The dimensions
of the entire specimen are given in Fig. 1(c), the width and
the length of the specimen being equal to 89 mm and 98 mm
respectively. The plate thickness being small compared to
the in plane dimensions, a plane stress assumption holds at
the macroscopic scale. However this hypothesis can be dis-
cussed locally as the holes diameter is half of the plate thick-
ness. The bulk material is a 304L stainless steel which has a
known elastic-plastic constitutive behaviour. The behaviour
of the material has been identified by Réthoré [20] with
DIC experiments. For the elastic regime, the parameters are
Young’s modulus E and Poisson’s ratio ν which values are
set to 198 GPa and 0.25, respectively. For the plastic regime,
a non-linear isotropic hardening is considered. The evolu-
tion of the yield stress σY as a function of the accumulated
plastic strain εp is parametrized as follows:

σY (εp) = Hεp + SY

(
1 + εp

ε0

)δ

, (8)

H being a linear hardening coefficient, SY the initial yield
stress, ε0 a scaling factor for the accumulated plastic strain
and δ the hardening exponent. These parameters are set to
1480 MPa, 284 MPa, 10−5 and 0.042 respectively.

Three different samples have been studied in this work
to load the heterogeneous zone in mixed loadings of tension
and shear. In addition to the sample described by Fig. 1(a),
two samples with a 30o and 45o hole network inclination
have been tested. The reference image of the non inclined
plate is also shown in the Fig. 1(b). To understand the rota-
tion of the network, zooms of reference images of the three
samples are shown in the Fig. 2.

In these two cases, a typical unit cell (a square with a
hole) is loaded with both tension and shear. The experimen-
tal equipment to obtain the digital images is a high resolu-
tion camera of 6576 × 4384 pixels -29 millions of pixels-
(Camera Vieworks : VN-29MC-M5A0-FM) mounted with
a 200 mm lens (Schneider Xenon Emerald). Thanks to this
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Fig. 1 (a) Geometry and
boundary conditions. (b)
Reference image and (c)
technical drawing of the sample
microstructure oriented at 0o
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Fig. 2 Close view of the hole lattice for the three different orienta-
tions: 0, 30 and 45o

high resolution device, we can perform DIC analysis at
the macroscopic scale as well as at the microscopic scale
over the whole sample surface. For the macroscopic scale,
a structured mesh of quadrangular square elements is used.
The mesh is constructed so that each element corresponds
to a unit cell of the hole network. Two unit cells of homoge-
neous material are added around the architectured material
to form the entire macroscopic mesh. For the microscopic
scale, an unstructured mesh of the unit cell is built (see
Fig. 3(b)). This unit cell mesh is then replicated over the
grid so that the microstructure region is entirely described
(plus two cells of the homogeneous material with a compat-
ible mesh). With the optical setup used in the experiments,
the unit cell size is 50 pixels. The pixel spatial resolu-
tion is then equal to 0.02 mm per pixel. The unit cell
mesh being constructed with 8 nodes per side the approxi-
mate element size is 7 pixels. These meshes are presented
in Fig. 3.

Macroscopic Responses

The load versus displacement curves are displayed in Fig. 4
for the three experiments. The displacement rate is set
to 0.1 mm per minute within an elongation range equal to
twice linear regime and then 1 mm per minute. To avoid
image bluring, the mechanical loading is stopped each time
an image is acquired. The displacement is maintained and
the force decreases due to relaxation. This produces ver-
tical lines in the load displacement curves represented in
Fig. 4. For the 0 degree case, a tensile mode is promoted
whereas 30o and 45o cases enable shear modes to develop.
This results, for the latter cases, in higher displacement (in
the macroscopic loading direction) to failure.

Strain Fields Measured by DIC

Strain fields measured at the macroscopic scale are plotted
in Fig. 5 for the three experiments. The same average strain
(corresponding to the vertical elongation) of the architec-
tured material is considered for the three cases and is equal
to 20 %. The value of the Von Mises strain field is plot-
ted. The architectured material has a higher strain than the
homogeneous material, it is due to the hole inside the unit
cell which concentrates the strain. The macroscopic kine-
matic is not able to capture the microscopic effects inside
the unit cells, the strain field is almost homogeneous over
the whole architectured material.

A close view of measured microscopic strain fields are
plotted in Fig. 6 for the zone represented inside the dashed
rectangle of the macroscopic field (Fig. 5). The value of
the Von Mises strain field is again plotted. The kinematic at
the microscopic scale is captured. For the three experiments
the strain concentration occur around the hole, it is due to
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Fig. 3 Meshes for the
macroscopic (left) and the
microscopic (right) correlation
analysis

the repetition of the unit cell geometry. For each experi-
ment, the strain distribution patterns seem to have very small
variations between the cells that are not on the boundary of
the architectured material.

For the 0 degree case (Fig. 6(a)), a shielding effect is
obtained: the strain is lower in the region between the holes
located over vertical lines (the holes shield the global load-
ing). On the contrary, higher strain level are obtained over
ligaments where shielding by the holes does not occur. One
observes that the most deformed unit cells are located on
both ends of the horizontal middle line of the architectured
zone. This will lead to crack initiation at this position. The
crack will then propagate towards the center of the plate and
finally through the homogeneous zone toward the sample
edges. In these two extreme cells, strain up to 100 % are
obtained before failure.

For the orientation of 45 degrees (Fig. 6(c)), the load-
ing is aligned with one diagonal of the unit cell square.
The strain field is then symmetric at the microscopic scale.
The shear component of the strain (which is not shown)
is negative for the couple of homologous edges of the
unit cell (left and right) whereas it is exactly the oppo-
site for the other couple of homologous edges (top and
bottom). A shielding effect is also observed in the verti-
cal zones between the holes which are protected from the
loading.

For the orientation of 30 degrees (Fig. 6(b)), the loading
has no symmetry for the cell square thus the strain field has
no symmetry. The shear strain component for the top and
bottom edges is higher than for the left and right edges.

Error Fields Obtained by DIC

The correlation error fields (measured at both scales) are
plotted in Fig. 7 for the non inclined experiment and for the
same load level than Figs. 5 and 6. The grey levels of the

images have a dynamic equal to 8 bits ([0 255]) and the
error field is plotted in the interval [0 10] grey level. Same
levels of errors are obtained for the two others experiments
which are not shown. The maximum of the error is concen-
trated in the vicinity of the holes. The error is higher for the
macroscopic DIC than for the microscopic DIC. This is due
to the fact that the macroscopic kinematic is not able to cap-
ture the heterogeneous strain field in the unit cell. Inside the
architectured material, the mean value of the error is similar
for both analysis although slightly higher for the macro-
scopic one : 7 % for the microscopic DIC and 8 % for the
macroscopic DIC.

Unit Cell Kinematics

From the analysis presented above, the displacement
measured along the boundary of each unit cell is extracted
in order to study the unit cell kinematics. The normal
displacement field along the edges of this unit cell is fit-
ted (in a least-squares sense) onto a third order polynomial
basis:

un = a + bs + cs2 + ds3. (9)

Fig. 4 Load versus displacement curve of the three experiments
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Fig. 5 Magnitude of measured Green-Lagrange strain fields at the
macroscopic scale for the three experiments

Fig. 6 Magnitude of measured Green-Lagrange strain fields at the
microscopic scale for the three experiments

In this equation, s is the curvilinear abscissa along the
edge, varying between −1 and 1, and un is the displace-
ment normal to the edge. This normal is defined in the
frame attached to the unit cell which orientation can be 0,
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Fig. 7 Magnitude of the error field at the macroscopic (top) and the
microscopic (bottom) scale for the non inclined experiment

30 or 45o as mentioned earlier. Rigid body translations are
first extracted then removed from the measured displace-
ment. The resulting displacement field is then projected
onto the third order polynomial basis. This choice of third
order polynomial basis is due to the different observed
deformation patterns and in particular to those resulting
from the shear deformation. As illustrated by Fig. 8 varying
the orientation of the unit cell network produces differ-
ent loading of the unit cell with different tension and
shear ratios.

The periodicity of the displacement field from one unit
cell to the next one will be analyzed from the projected dis-
placements. The transition zone between the homogeneous
zone and the central architectured part is studied in a second
step. It contains the cells close to the boundary of the archi-
tectured material. In the framework of a classical first order

periodic homogenization scheme, the displacement on the
boundary of the unit cell is written as:

u = F
M

.x + w, (10)

where F
M

is the transformation gradient at the macroscopic
scale, x is the vector defining the position of the current
point along the unit cell boundary and w is a periodic
displacement defined at the microscopic scale. Periodicity
conditions for the microscopic displacement w are defined
as:

wL(s) = wR(s) and wT (s) = wB(s). (11)

where, as defined in Fig. 9, L, B, R, T indices refer to
respectively, the left, bottom, right and top edge of the unit
cell. Accounting for these periodicity conditions, instead of
prescribing the displacement along each edge of the unit
cell, the difference between the displacement of opposite
edges, for example uT −uB is defined from the macroscopic
transformation gradient:

uT − uB = F
M

.(xT − xB) + wT − wB

= F
M

.(xT − xB)

= L.F
M

.NT

(12)

In the last equation, L is the size of the square unit cell
and NT is the unit normal of the top edge (combined
with the y axis). The same relation holds between right
and left edges. From the displacement measurements by
DIC, it is possible to extract the constant parameters in
equation (9). To check for the periodicity of the defor-
mation pattern of the unit cells the following quantity is
computed:

(uT − uB).NT = (aT − aB) + (bT − bB) s

+ (cT − cB) s2 + (dT − dB) s3

(uR − uL).NR = (aR − aL) + (bR − bL) s

+ (cR − cL) s2 + (dR − dL) s3 (13)

In the case of a first order scheme, a unit cell kinematic is
periodic if the contribution of the terms in order one (s),
two (s2) and three (s3) vanish : this means that bR − bL,
cR − cL and dR − dL as well as the same quantities for top
and bottom sides are all close to zero.

Analysis of cell Edges Kinematics

The evolution of the four (a, b, c and d) parameters are
plotted as functions of the average mean vertical elongation
of the zone of interest and for each of the three exper-
iments (using three different orientations of the unit cell
network with respect to the loading axis). Blue curves cor-
respond to the mean value parameters over all the cells and
the red curve to the standard deviation of the correspond-
ing parameter. Figures 10 and 11 show the results of the
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Fig. 8 (a), (c) and (e) :
deformation of the centred unit
cell boundary for the three
orientations. (b), (d) and (f) :
deformation of the unit cell
boundary placed at the extreme
right of the middle horizontal
line for the three orientations.
The initial unit cell contour in
red is compared to its deformed
shape by the macro DIC
analysis in blue and the micro
DIC analysis in black

top and right edge of the cell, respectively. When the cell
network is aligned with the loading direction (0o), cells are
mainly loaded in tension along the loading axis. The order
0 parameter is, as expected, predominant for the top edge

(aT ). For the right edge, aR has a negative mean value
corresponding to the Poisson effect due to uniaxial ten-
sion. An illustration of the unit cell kinematics is shown in
Fig. 8(a).

Fig. 9 Schematic picture of the
undeformed reference unit cell
for each orientation
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Fig. 10 Evolution of the four kinematic parameters aT , bT , cT and dT

for the three orientations. The mean value (blue curves) and the stan-
dard deviation (red curves) are plotted as functions of the vertical
elongation of the ZOI

Fig. 11 Evolution of the four kinematic parameters aR , bR , cR and dR

for the three orientations. The mean value (blue curves) and the stan-
dard deviation (red curves) are plotted as functions of the vertical
elongation of the ZOI
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For the orientation of 30o and 45o, the unit cells are
loaded in a mixed tensile/shearing mode as observed in
Figs. 10(b) and (c). In the case of 45o, the loading direction
is aligned with the diagonal of the initial square unit cell.
During the loading, the symmetry is maintained. Indeed, the
kinematic parameters of the edge deformation are similar
in amplitude for the top edge (Fig. 10(c)) and for the right
edge (Fig. 11(c)). It has to be noticed that the dominant term
corresponds to the first order. These terms correspond to a
rotation of the edges. Order 3 parameter is also predominant
compared to the second order. These terms are linked to a
shear deformation of the unit cell edges.

In the case of the 30o orientation, the unit cell has
no symmetry with respect to the loading axis. Then, the
behaviour obtained in Figs. 10(b) and 11(b) is different.
However, it is observed that for both cases, the domi-
nant terms are order 1 and 3. The first term is related
to a rotation of the edges whereas order 3 corresponds
to shear deformations. One can remark that the mean
value of order 3 is larger for the right side than for
the top side which is illustrated in the Fig. 8(c) The
top edge kinematic has also a significant order 0 con-
tribution. This contribution is smaller for the right edge
because their normals are nearly orthogonal to the loading
direction.

Periodicity

The fitting parameters are now extracted for the four edges
of each unit cell. The difference between the parameters
extracted for the right and left edges, respectively top and
bottom, are then computed. As illustrated by equation (13),
this allows for studying the periodicity and the contribu-
tion of the macroscopic deformation gradient to the unit cell
kinematics. The evolution of the four parameters are plotted
in Fig. 12 for the three orientations of the hole network and
for the top/bottom difference. For the top/bottom case dom-
inant terms are order 0. The mean values of the three other
parameters are of the same order of magnitude as their stan-
dard deviation, meaning that no relevant information can be
extracted. Fig. 13 shows the results for the left/right period-
icity analysis. As for top/bottom couple, the term of order 0
is dominant. Only for the 30o case (Fig. 13(b)) the four
terms are negligible. This analysis confirms that the unit cell
edges deformation is due to a constant macroscopic strain
gradient and a periodic displacement field accommodating
locally the effect of unit cell heterogeneity. This property
is well established for a linear behaviour of the material
within the cell. This experimental result confirms that for
this type of microstructure and this type of material first
order periodic homogenization can be also used for large
plastic strains.

Fig. 12 Evolution of the top/bottom periodicity for the four kinematic
parameters. For the three orientations, the mean value (in blue) and
the standard deviation (in red) are plotted as functions of the vertical
elongation of the ZOI
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Fig. 13 Evolution of the top/bottom periodicity for the four kinematic
parameters. For the three orientations, the mean value (in blue) and
the standard deviation (in red) are plotted as functions of the vertical
elongation of the ZOI

Homogenized Microscopic v.s. Macroscopic Strain

Using the observation of preceding section, one may extract
the homogenized macroscopic strain εm which is applied to
the unit cells. For the 0 degree case and for the group of 5x5
unit cells located in the center of the specimen, this measure
is obtained from:

εm
11 = aR − aL

2
and εm

22 = aT − aB

2
. (14)

This strain measure is compared to the macroscopic
strain εM obtained from the DIC at the macroscopic scale,
i.e. using a mesh with one quadrangular element per unit
cell. The longitudinal and the transverse components of
these strain tensors are respectively plotted in Fig. 14(a) for
the 0o case. In this case the longitudinal component of the
strain tensor is along the loading direction and the transverse
strain component is orthogonal to the loading direction.

For the two other cases, it is chosen to plot the longitudi-
nal and transverse strains in the coordinate frame associated
with the unit cell as defined in Fig. 9. In Figs. 14(b) and (c)
are respectively reported the results of the longitudinal and
transverse components for the 30o and 45o cases.

A good agreement between the two macroscopic strain
measures is obtained with a scatter of 1.5 % in average
(for the 0o case). It is thus shown that the macroscopic
strain extracted from the microscopic displacement mea-
surement is consistent with the direct measurement of the
macroscopic strain.

Non Periodic Unit Cells

Beside this mean behaviour, we will now try to investigate
the non periodic effects. A cell is considered to have a non
periodic behaviour, if one of the four periodicity parame-
ters (plotted in Figs. 12 and 13) has value outside the range
defined by the mean parameter value±1.5 times its standard
deviation. We will now illustrate the relative importance of
these non periodic cells. The standard deviation of the peri-
odicity parameters is now computed ignoring these cells.
The results are shown for the three orientation cases and
top/bottom periodicity in Fig. 15, respectively for left/right
periodicity in Fig. 16. The evolution of only one parameter
is presented for the sake of clarity: the first order parameter
for the non inclined experiment, the second order parameter
for the 30o case and the third order parameter for the 45o

case. The standard deviation for order 1, 2 and 3 is divided
by a factor of about 3. The standard deviation of the parame-
ters are now lower than their average, the only non vanishing
term being order 0. This means that this set of unit cells
(all the cells except those having one of the four periodic-
ity parameters with a value outside the range defined by its
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Fig. 14 Comparison of the strain measured directly from the macro
DIC analysis (in blue) and the strain extracted from the analysis of the
deformation of the unit cell boundary in the micro DIC analysis (in
red). The longitudinal and transverse components of the strain tensor in
the unit cell’s coordinate frame are plotted as functions of the vertical
elongation of the ZOI for the three cases (0o in (a), 30o in (b) and 45o

in (c))

Fig. 15 Evolution of the top/bottom periodicity for the second order
term of the contour deformation. For the three orientations, the mean
value (in blue) and the standard deviation (in red) with or without
excluding cells with non periodic behaviour are plotted as functions of
the vertical elongation of the ZOI
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Fig. 16 Evolution of the left/right periodicity for the second order
term of the contour deformation. For the three orientations, the mean
value (in blue) and the standard deviation (in red) with or without
excluding cells with non periodic behaviour are plotted as functions of
the vertical elongation of the ZOI
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Fig. 17 For the three orientations, the cells with non periodic
behaviour (top/bottom or left/right) are filled
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average ±1.5 times its standard deviation) is submitted to
periodic boundary kinematics (see the equation (13)).

Transition Zone Between the
Heterogeneous/Homogeneous Material

One shall now investigate the position of these non periodic
cells. The cells that have a non periodic behaviour along
the top/bottom direction or along the left/right direction are
represented with dots where each unit cell is representing
by a quadrangle (Fig. 17). All the non periodic cells are
located on one row along the boundary of the architectured
zone, except for some randomly placed cells in the bulk
of the heterogeneous zone. For these cells, non periodic-
ity is due to noisy measurements, all the non periodic cells
are located along the boundary of the architectured zone.
It may be said that all the cells along the boundary of the
architectured zone have a non periodic behaviour regard-
less of their position and the load orientation. To illustrate
non periodic effects, the deformed middle right unit cell is
plotted for the three orientations in Figs. 8(b), (d) and (f).
This cell has its left edge linked to another unit cell but
its three other edges are linked to the homogeneous mate-
rial. Compared to Fig. 8(c), the deformation of the cell is
completely different. Higher order effects are obtained espe-
cially for the 0o case. For the 30o and the 45o, the cell is
mainly loaded in tension, contrary to the cells in the bulk
of the architectured zone which are loaded in both ten-
sion and shear due to the lattice orientation with respect
to the loading direction. The edges cell kinematics is thus
very different.

Conclusions

In this paper, a specimen has been designed in order to
analyse the deformation of an architectured material based
on a periodic lattice and a square unit cell with a hole.
The effect of lattice orientation with respect to the uni-
axial loading direction is investigated. The deformation of
the specimen is measured by DIC using very high res-
olution images. These high resolution images enable to
perform from a unique data set a two scales DIC analy-
sis of the strain field: one at the microscopic scale giving
fine informations within each cell and one at macroscopic
scale. From the first analysis, the edges displacement of
each cell are analyzed through periodic and non periodic
homogenization schemes. The averaged cell strain that is
subsequently extracted agrees well with the macroscopic
DIC analysis values. A statistical analysis of the cell edges
kinematics is carried out. The edges displacement is pro-
jected onto a polynomial basis, and their distribution is
analysed. It is concluded that the cells edges kinematics fall

within the scope of first order periodic homogenization the-
ory. The non periodic effect are confined to one row of
cells along the boundary of the architectured zone. All the
cells along this boundary have a non periodic edge kine-
matics irrespective of the lattice orientation. The analysis
has been conducted for a wide range of strain including
large plastic deformation. These experimental results give
interesting indications for the homogenization strategies
to be used in computations in case of large elastoplastic
strains.
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