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Abstract An experimental method was developed to deter-
mine the through thickness elastic modulus profile of a multi-
layered functionally graded material. The method consists of
two sets of mechanical experiments, a tensile test and a four-
point bend test, from which the strains at two locations on
either surfaces of the beam are measured for known applied
loads. A one-dimensional version of classical laminate theory
is then used to calculate the beam stiffness coefficients from
the experimentally obtained data. Finally, an inverse analysis
is performed in which a minimization scheme using Genetic
Algorithm is utilized to determine the elastic modulus of each
layer. The applicability of such method is demonstrated for a
seven-layered ceramic/metal functionally graded structure
with layers ranging from pure Ti to 85 % TiB-15 % Ti on
the ceramic-rich side. The elastic modulus of each layer within
the examined material is back calculated based on the pro-
posed inverse analysis. The results indicate that the proposed
method can be used to obtain the through thickness elastic
modulus profile of discretely gradedmaterials with reasonable
accuracy.
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Introduction

Functionally graded materials (FGMs) are non-homogeneous
composites having discrete or continuous variation of material
composition involving two or more material systems over a
definable geometrical length. This variation in composition
along the gradient direction can result in gradually varying
physical, mechanical or thermal behavior of such material
systems. The principal concept behind the design of FGMs
is their ability to utilize multiple functionalities in an integrat-
ed material systemwhich can provide a balanced performance
in several applications [1, 2]. The progressive spatial variation
of material properties in FGMs is their key difference com-
pared with common homogeneous materials or traditional
laminated composites.

Depending on the application and fabrication process, the
material gradation could be either through thickness or along a
direction in the plane of an FGM plate. The elastic properties
and the fracture response of FGMs with in-plane material
gradation have been studied extensively [3–6]. These studies
report that the nature and extent of the elastic modulus varia-
tion affects the stress intensity factor significantly. On the
other hand, there are only few studies on FGMs with through
thickness gradation [7–12]. It was documented that the elastic
properties of FGMs substantially control the deformation and
fracture response under different loading and temperature con-
ditions during their service. In fact, knowing the through
thickness elastic properties of FGMs is essential for under-
standing the behavior of these materials under different load-
ing conditions.

So far, a large number of studies have been reported focus-
ing on micromechanical approaches to estimate the properties
of FGMs [13–17]. For instance,Weissenbeck et al. [13] used a
micromechanics approach based on Mori-Tanaka method and
proposed a rule-of-mixture model to calculate the material
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properties of ceramic/metal graded systems. Recently, Yu and
Kidane [14] employed a micromechanics modeling procedure
to obtain the variation of elastic properties of through thick-
ness graded ceramic/metal FGMs containing various hetero-
geneities. In their work, the influence of filler geometry and
size on the effective elastic properties of through thickness
graded materials was presented. Micromechanical approaches
have also been used by Gasik [15] and Rahman and
Chakraborty [16] to determine the physical and mechanical
properties of functionally graded structures. Although these
approaches are great tools to estimate the elastic and thermal
properties of such material systems, the accuracy of the
models is highly dependent on many simplifying
assumptions.

On the other hand, indentation technique has been utilized
as an experimental methodology to determine the through
thickness material properties of FGMs. Researchers have used
this technique to determine the nonlinear or elastic–plastic
mechanical behavior of FGMs [18–20]. This technique is
cumbersome in terms of number of tests and data collection
if the thickness of each layer is large, and is practically limited
to FGM coatings having smaller thickness. The elastic char-
acterization of bulk graded materials differs from homoge-
neous materials and conventional composites. For example,
homogeneous materials are characterized by a single value of
elastic modulus. Though laminated composites have several
layers, once the elastic constants of a single lamina are char-
acterized, the overall elastic behavior of the laminate can be
arrived at by using appropriate laminate theory. Contrary to
this, in a graded laminate, the elastic constants of each layer
should be known, or the elastic property profile which pro-
vides the variation of the elastic constants along the laminate
thickness has to be determined. Though the layers can be
individually tested to evaluate their elastic properties, when
a large number of layers are involved, this procedure can be-
come inefficient. A quick, simple and efficient method of
obtaining the elastic property profile of graded plates will be
highly useful to evaluate the material in the development stage
itself.

Butcher et al. [21] used ultrasonic pulse echo method to
measure the wave speed at different locations along the gra-
dient and from this information generated the elastic modulus
profile. The direction of wave propagation was chosen in such
a manner that the elastic constants do not change along that
direction. Marur and Tippur [22] determined the elastic mod-
ulus profile of a continuously graded plate using a novel min-
iature drop weight test, wherein an instrumented ball was
dropped at different locations along the gradient and the elas-
tic modulus was determined from the force-time history.

There are also attempts at determining the property profile
of FGMs using inverse techniques [18, 23–29]. Using an in-
verse analysis and the instrumented indentation technique,
Nakamura et al. [18] have measured the elastic property

profile of FGM coatings. This approach involves determining
the FGM parameters by matching the load-depth data from
finite element analysis (FEA) of the indentation test with the
experimentally obtained load-depth data. Liu et al. [23] used
elastic waves and an inverse procedure to characterize the
elastic profile of FGM plates. Their method involves exciting
the FGMplate on one surface and measuring the displacement
response on the other surface. The forward problem of wave
propagation in the FGM plate is solved with assumed elastic
profile and this profile is revised until the measured response
and the response from forward problem are in close agree-
ment. The error minimization can be performed using gradient
search methods, genetic algorithms (GA), neural networks,
non-linear least squares method or a combination of either of
these [23–26]. Yu and Wu [27] proposed an inverse approach
using the guided circumferential dispersion characteristics as
the signature along with artificial neural network to measure
the material properties of functionally graded pipes. Very
complex analytical or computational procedures and/or state
of the art equipment are usually required in the studies listed
above. Further demonstration of the proposed approach
through experimental determination of the elastic profile is
not reported in these investigations. On the other hand, the
inverse analyses performed based on full-field measurements
have successfully been practiced in recent years to identify the
deformation of nonhomogeneous materials under rather
complex loading conditions [28, 29]. Although these
methods seem to offer high levels of accuracy, identifi-
cation of the material parameters using such methods
requires state of the art experimental apparatus as well
as precise computational strategies to facilitate the anal-
ysis of the experimental data.

The focus of the present work is towards the development
of a simple yet sufficiently accurate method to obtain the elas-
tic modulus profile of a through thickness graded FGM. Ac-
cordingly, two independent simple experiments, a four-point
bend and a tensile test, are carried out and the axial load,
bending moment, strain and curvatures are measured. Strain
gages are used to measure the strains on the samples surfaces.
Using the measured data along with classical laminate theory,
the elastic modulus profile of the graded structure through its
gradient direction is obtained using a minimization procedure
based on GA. To demonstrate the efficacy of the proposed
method, the elastic modulus profile of a through-thickness
graded Ti/TiB material is evaluated using the proposed meth-
od and the results thus obtained are compared with available
literature data.

Modified Classical Laminate Theory for FGMs

Consider a functionally graded plate in the Cartesian coordi-
nate system, graded in z-direction, as shown in Fig. 1.
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Classical laminate theory (CLT) [30] was utilized to
study the deformation response of the examined FGM.
As opposed to laminated composites, the layers of the
graded plate in this study are isotropic. Further, since
the width of the FGM considered in the present work is
much smaller than the length, the plane-stress assump-
tion can be further relaxed and a one-dimensional
equivalent of CLT can be utilized [30].

The following basic assumptions are considered in the
mathematical calculations in the present work:

& Each layer of the FGM is assumed to be isotropic
& Each layer is sufficiently thin compared to its lateral

dimensions
& Plane stress condition is dominant
& Displacements are small compared to the laminate thick-

ness, and are continuous throughout the laminate
& The bonding between layers is perfect and infinites-

imally small and no gaps or flaws exist between
layers

& The magnitudes of the inter-lamina shear stresses are as-
sumed to be much smaller than the axial stress.

The Lamina Strain–Displacement Relationship

Defining the displacement components in x, y and z directions
to be u, v andw, respectively, (as shown in Fig. 1) the slopes of
a bent plate are given by:

∂w
∂x

in the x−z plane ð1aÞ
∂w
∂y

in the y−z plane ð1bÞ

The total in-plane displacement at any given point
within the plate would be the sum of normal displace-
ment component and the displacement induced by

bending. Designating the displacement on the mid-
plane of the plate in x and y-directions as u0 and v0,
respectively, the total displacement components at any
given position along z-direction (thickness) can be
expressed as:

u ¼ u0− z
∂w
∂x

; v ¼ v0− z
∂w
∂y

ð2Þ

Assuming that no strain is applied in the thickness direction
and using the small strain definition, the strain components
can be written as:

εx ¼ ∂u
∂x

¼ ∂u0
∂x

− z
∂2w
∂x2

� �
ð3aÞ

εy ¼ ∂v
∂y

¼ ∂v0
∂y

− z
∂2w
∂y2

� �
ð3bÞ

γxy ¼
∂u
∂y

þ ∂v
∂x

� �
¼ ∂u0

∂y
þ ∂v0

∂x
−2z

∂2w
∂x∂y

ð3cÞ

where εx, εy and γxy are in-plane strain components. At this
point, the mid-plane strains, εi

0, and curvatures, κi, (i=x, y, xy)
can be defined as:

ε0x ≡
∂u0
∂x

ε0y ≡
∂v0
∂y

γ0xy≡
∂u0
∂y

þ ∂v0
∂x

ð4aÞ

κx ≡ −
∂2w
∂x2

κy ≡ −
∂2w
∂y2

κxy ≡ −2
∂2w
∂x∂y

ð4bÞ

This results in the following matrix form description of
strains:

εx
εy
γxy

2
4

3
5 ¼

ε0x
ε0y
γ0xy

2
64

3
75þ z

κx

κy

κxy

2
4

3
5 ð5Þ

The Lamina Constitutive Relationship

The stress–strain relation for an isotropic layer under
plane-stress condition can be written based on the Voigt
convention as:

σx
σy

τ xy

8<
:

9=
; ¼

Q11 Q11 0
Q21 Q22 0
0 0 Q66

2
4

3
5 ε0x

ε0y
γ0xy

2
64

3
75þ z

κx

κy

κxy

2
4

3
5

8><
>:

9>=
>; ð6Þ

where Qij’s are the components of the material’s stiff-
ness matrix, and only depend on two independentFig. 1 Stress and the resultant force representation
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elastic constants, since the layers are assumed to be
isotropic. Qij’s are defined for an isotropic layer as:

Q11 ¼ Q22 ¼
E

1−υ2
Q12 ¼ Q21 ¼ υQ11 Q66 ¼

E

2 1þ υð Þ ð7Þ

with E and υ being the elastic modulus and Poisson’s
ratio of the layer, respectively.

Since the stress components vary through the thick-
ness of the beam, it will be convenient to define stress-
es in terms of equivalent forces acting on the middle
plane. As illustrated in Fig. 1, the stresses acting on
each edge can be integrated to give the resulting forces
per unit width applied on the edge as:

Nx≡
Z h=2

−h=2
σxdz Ny≡

Z h=2

−h=2
σydz Nxy≡

Z h=2

−h=2
τxydz ð8Þ

where h is the thickness of each layer, and Ni denotes
the resultant force/unit width applied in i-direction. Sim-
ilarly, the moments per unit width (Mi) applied on the
beam can be expressed as:

Mx≡
Z h=2

−h=2
σxzdz My≡

Z h=2

−h=2
σyzdz Mxy≡

Z h=2

−h=2
τxyzdz ð9Þ

The summation of forces and moments over the whole
thickness of the FGM plate will result in the following matrix
equations:

Nx

Ny

Nxy

2
4

3
5 ¼

Xn

k¼1

Z hk

hk−1

Q11 Q12 0
Q21 Q22 0
0 0 Q66

2
4

3
5 ε0x

ε0y
γ0xy

8<
:

9=
;dz

þ
Z hk

hk−1

Q11 Q12 0
Q21 Q22 0
0 0 Q66

2
4

3
5 κx

κy

κxy

8<
:

9=
;zdz

(10a)

Mx

My

Mxy

2
4

3
5 ¼

Xn

k¼1

Z hk

hk−1

Q11 Q12 0
Q21 Q22 0
0 0 Q66

2
4

3
5 ε0x

ε0y
γ0xy

8<
:

9=
;zdz

þ
Z hk

hk−1

Q11 Q12 0
Q21 Q22 0
0 0 Q66

2
4

3
5 κx

κy

κxy

8<
:

9=
;z2dz

ð10bÞ

With n being the total number of layers. Integrating these
equations and combining the resultant matrices into a single
one, the following equation is obtained:

Nx

Ny

Nxy

Mx

My

Mxy

2
6666664

3
7777775
¼

A11 A12 0
A21 A22 0
0 0 A66

B11 B12 0
B21 B22 0
0 0 B66

B11 B12 0
B21 B22 0
0 0 B66

D11 D12 0
D21 D22 0
0 0 D66

2
666664

3
777775

ε0x
ε0y
γ0xy
κx

κy

κxy

2
6666664

3
7777775

ð11Þ
where,

Ai j ¼
Xn

k¼1

Qi j

h i
k
hk−hk−1ð Þ ð12aÞ

Bi j ¼ 1

2

Xn

k¼1

Qi j

h i
k
h2k−h

2
k−1

� � ð12bÞ

Di j ¼ 1

3

Xn

k¼1

Qi j

h i
k
h3k−h

3
k−1

� � ð12cÞ

In the above equations, k denotes the layer number and hk
denotes the position of kth layer. The load vector on the left
side of equation (11) can be determined if the strains and
curvature values given on the right side of equation (11) are
known, and vice versa. When testing layered beams, it is rea-
sonable to assume that each layer is in a state of one dimen-
sional stress, particularly when the width of each layer is suf-
ficiently small compared to its length. In such conditions, the
stress components σy and τxy can be assumed to be zero, and
equation (11) can be further reduced to the following form:

Nx

Mx

� �
¼ A B

B D

� �
ε0x
κx

� �
ð13Þ

with,

A ¼
Xn

k¼1

Ek

1−υ2k
hk−hk−1ð Þ ð14aÞ

B ¼ 1

2

Xn

k¼1

Ek

1−υ2k
h2k−h

2
k−1

� � ð14bÞ

D ¼ 1

3

Xn

k¼1

Ek

1−υ2k
h3k−h

3
k−1

� � ð14cÞ

where Ek and υk are the elastic modulus and Poisson’s ratio of
layer k and n denotes the total number of layers.

When the applied forces and moments are known and the
strain and curvature are measured, the stiffness matrix can be
calculated based on an inverse method, from which the elastic
constants can be extracted. The ideal procedure would be
conducting two independent experiments, a four-point bend
test to measure moment and curvature, and a tensile test to
measure axial load and strain. In the next section, further ex-
planations are provided on the performed experimental
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procedure and the inverse calculations used to extract the elas-
tic constants of the examined material.

Experimental Procedure

Material and Specimen Geometry

Although the present method can be applied to general
through thickness stepwise graded materials, a seven-
layer graded Ti/TiB material system is employed in the
present work. The 3.175 mm thick discretely graded
plate having 7 layers with composition ranging from
pure titanium on one side to 85 % TiB (15 % Ti) on
the other is used to demonstrate the technique. The
graded plates were manufactured by BAE systems Inc.
through a powder metallurgy processing route. The
FGM plates were fabricated from Ti and TiB2 powders
as 150×150 mm size plate form through a hot press
sintering process at 1578 K and 13.8 MPa pressure in
vacuum conditions. In order to facilitate the densifica-
tion, as well as to minimize the amount of residual
TiB2, a nickel-based powder has been reported as the
sintering aid, added to the powder mixture prior to the
sintering process [31]. In this manner, a through thick-
ness graded material system with 7 discrete homogenous
layers were fabricated. More details on the processing
method of the material can be found elsewhere [31, 32].

Since the boundaries of the layers could not be clearly
distinguished through microstructural observations, micro-
hardness testing was performed along the thickness direction
to obtain the thickness of each layer. To do this, the hardness
profile across the thickness obtained using a 10 N indentation
force was plotted and the boundaries of the layers were iden-
tified by tracking the stepwise changes in the hardness value
across the thickness. The thickness of each of the 7 layers
within the material was obtained using this method and the
results were compared to the data provided by the
manufacturer.

Rectangular coupons of 100×15×3.175 (mm3) were pre-
pared for the bending and tensile experiments. The coupons
were extracted from the as-manufactured plates using Electron
Discharge Machine (EDM) with 0.07 mm diameter wire. To
minimize the development of residual stresses during EDM
cutting, the specimens were fully immersed in the coolant
during the entire wire cutting process [31].

Four-Point Bend Test

A four-point bend test setup, as shown in Fig. 2, made of
hardened steel (manufactured by Wyoming Test Fixtures
Inc.) affixed into a 5 kN load-cell universal testing machine,
was used to apply a pure bending moment (Mb) at the mid-

section of the specimen described above. Due to its very brittle
nature, the TiB-rich side was chosen to be on the top, on which
compressive stress is dominant. In this manner, any possibility
of cracking due to the applied tensile stress on the TiB-rich
side can be eliminated.

Two strain gauges were placed at the center of each
side of the specimen to measure the strains along x-
direction on each surface. Note that the x-direction de-
notes the direction along the length of the specimen in
this case. Load was applied at a rate of 0.1 mm/min
under displacement control and the load data acquisition
was synchronized with the output from strain gauges
through a DAQ system. The bending moment on the
specimen was calculated from the recorded load, facili-
tating the calculation of the moment-strain curves on the
Ti side and TiB-rich sides of the specimen.

Tensile Test

The tensile test was performed on the same specimen used for
the bending experiment, in a 220 kN universal tensile machine
shown in Fig. 3(a). To prevent any damage caused by the
hardened hydraulic grips, 1 mm thick aluminum tabs of 15×
15 mm2 (width × length) were epoxied at specimen ends on
each side of the specimen as shown in Fig. 3(b). The axial
stress values in this case were simply calculated by dividing
the recorded load by the cross sectional area of the specimen.
Attempts were made not to exceed the yield strength of the
weaker component of the FGM, i.e. titanium; such that the
experiment would remain in the elastic region and to assure
the validity of the analyses.

In order to study the deformation of the examined
FGM under tension, two different methods were
regarded. First, similar to the bending experiment, a
single strain gage was attached to the center point at
each side of the specimen to measure the strain on two
sides from which the curvature can be obtained. The
specimen was inserted into the grips, and loaded to
about 5000 N in tension at a rate of 0.1 mm/min in
displacement control mode. The load and strain mea-
surements were synchronized through a data acquisition
system.

Digital image correlation (DIC) was also used during
the tensile testing to obtain the strains on each side of
the specimen, i.e. Ti side and TiB-rich side. Note that
the intention for using full-field DIC observation was to
verify whether the strains developed on both sides of
the specimen are fairly uniform over the examined re-
gion of interest or not. In the case of the graded sam-
ple, due to the asymmetry in the property variation
along the thickness, one could envisage a coupling of
deformation. A tensile load can induce a curvature. This
curvature may or may not develop freely, depending on
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the grip stiffness. Due to this the strains may not be
homogeneous along the length of the specimen. To ver-
ify this, one has to use full-field methods and DIC is a
very well established technique for this purpose. To
perform the DIC measurements, the middle section of
the specimen was coated with a thin layer of white
paint on both sides. A fine black speckle pattern was
then applied on top of the white layer using an air
brush. Typical speckle pattern applied on the specimen

with its corresponding grey-scale intensity can be seen
in Fig. 3(c) and (d), respectively. A pair of 5 megapixel
Point Grey cameras equipped with 60 mm Nikon lenses
was used to capture images of the specimen surfaces
during the loading. Full-field images with 2448×
2048 pixel resolution were taken during the tensile load-
ing at a rate of 1 fps. In this case also, the imaging
frequency was synchronized with the load data acquisi-
tion to facilitate the calculation of load-strain curves.

Fig. 2 The four-point bending
experiment setup along with the
specimen shown on the left. A
schematic view of the specimen is
illustrated on the right

Fig. 3 (a) The tensile frame with
the specimen mounted on, along
with the cameras and lighting
system, (b) the tensile specimen
showing the aluminum tabs
attached to the ends, (c) a close up
view of the speckled section with
the grey-scale pattern shown in
(d)
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Inverse Analysis to Obtain Elastic Properties

Calculation of the Constants A, B and D from Test Data

Unlike homogeneous materials, for the case of a graded lam-
inate, due to asymmetrical variation of the elastic modulus
along the thickness, a pure bending moment can result in an
in-plane strain at the mid-plane, while a pure in-plane load can
result in a curvature. Applying a pure bending moment in the
four-point bend test is quite straight forward, as the in-plane
load (Nb) can be assumed zero at mid-span, the location at
which the strains are recorded. In the tensile test, however,
the section of the beam at which the strains are measured will
be subjected to both an in-plane load (Nt) and a bending mo-
ment (Mt). Due to the asymmetric variation of the elastic mod-
ulus, the curvature developed under the tensile load will be
partially restrained by the grips, resulting in a moment to be
developed within the tensile specimen. Further, any curvature
developed during loading in the tensile specimen will induce
an eccentricity in the load line at the mid-length of the speci-
men, resulting in a bending moment (Mt). This moment can-
not be measured, however, can be calculated from the test
data, as explained later.

The curvature of the beam and the mid-plane strain for both
experiments can be calculated as:

κx ¼ εTix −εTiBx

t

ε0 ¼ εTix þ εTiBx

2

ð15Þ

where, κx represents the curvature, t is the overall thickness of
the beam (=3.175 mm), and εx

i denotes the measured in-plane
strain in x-direction on each side of the specimen (i=Ti, TiB).
It should again be emphasized that the x-direction denotes the
length direction in both four-point bend and tensile tests in this
work. As explained earlier in Modified Classical Laminate
Theory for FGMs section, the relation between the measured
strains, curvature, loads and moments can be written for both
tensile and four-point bend tests as:

Nt

Mt

� 	
¼ Ae Be

Be De

� �
ε0x
κx

� 	
tensile

for tensile test ð16Þ

0
Mb

� 	
¼ Ae Be

Be De

� �
ε0x
κx

� 	
bending

for four−point bend test

ð17Þ
With subscript “e” denoting that the constants A, B and D are
determined from the “experiments” in this case.

Having known the values Nt, Mb, εx
0 and κx from both sets

of experiments, the unknown parametersAe, Be,De andMt can
be calculated using the following expressions:

Ae ¼ −κbending
x N tð Þ

ε0x



bending

� �
κtensile
x − ε0x




tensile

� �
κbending
x

ð18Þ

Be ¼
Nt ε0x




bending

� �
ε0x



bending

� �
κtensile
x − ε0x




tensile

� �
κbending
x

ð19Þ

De ¼
Mb−Be ε0x




bending

� �
κbending
x

ð20Þ

Mt ¼
κtensile
x

� �
Mbð Þ− Ntð Þ ε0x




bending

� �
κbending
x

ð21Þ

Table 1 Parameters used in the GA optimization in this work

Parameter Setting

Population type Double vector

Selection Roulette

Mutation Uniform (rate: 0.01)

Crossover Scattered

Stopping criterion (generation) 500

Fig. 4 The flow chart showing the steps of the inverse analysis followed
in this work
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Determination of the Elastic Moduli of the Layers

Using equation (14) and the known stiffness parameters (Ae,
Be and De) obtained from equations (18) to (20), the elastic
modulus of each layer (Ek) is determined following an error
minimization scheme. The error function is defined here as:

er ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

Ae
−1

� �2

þ B

Be
−1

� �2

þ D

De
−1

� �2
s

ð22Þ

where ‘er’ denotes the dimensionless error magnitude, Ae, Be
and De are the experimentally obtained stiffness coefficients,
and A, B and D are stiffness coefficients calculated at each
iteration during the error minimization. Plugging equation
(14) into equation (22), the error function ‘er’ would turn into
an explicit function of the layers’ elastic moduli, as:

er ¼



k¼1

Ek

1−υ2k

� �
hk−hk−1ð Þ

Ae
−1

0
BBBB@

1
CCCCA

2

þ

Xn

k¼1

Ek

1−υ2k

� �
h2k−h

2
k−1

� �
2Be

−1

0
BBBB@

1
CCCCA

2

þ

Xn

k¼1

Ek

1−υ2k

� �
h3k−h

3
k−1

� �
3De

−1

0
BBBB@

1
CCCCA

2
vuuuuuuut ð23Þ

with n denoting the total number of layers in a layered FGM.
To solve the minimization problem given by equation (23) and
extract the elastic moduli of the layers, an optimization code
based on the Genetic Algorithm (GA) optimization method
was utilized. The GA optimization procedure used in this
work was performed using the MATLAB® GA toolbox. A
simple flow chart showing the analysis procedure followed
in this work is shown in Fig. 4. Also, the details of the param-
eters used in the GA are listed in Table 1. The results from 15
independent attempts were averaged and reported as the
values of the elastic modulus of each layer of the graded ma-
terial considered. These values were compared to those report-
ed by the manufacturer as well as the results obtained from a
recent micromechanical model [14, 32].

A GA is basically an optimization method in which the
evolutionary principles and chromosal processing in natural
genetics are mimicked. Genetic Algorithms have recently

found many applications in the field of engineering, mainly
due to their computationally efficient nature as well as the

Fig. 5 A schematic view of the
location on which micro-hardness
testing has been performed

Table 2 The thickness of the layers in the examined FGM plate

Layer # Vol % Ti Vol % TiB Thickness (mm)

Reported in [31] Obtained in this work

1 100 0 0.2032 0.3210

2 85 15 0.3810 0.3200

3 70 30 0.3810 0.4200

4 55 45 0.3810 0.2850

5 40 60 0.3810 0.3810

6 25 75 0.3810 0.3810

7 15 85 1.0668 1.0668
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reduced running times [33–35]. A GA optimization process
begins with generating a random population of the individ-
uals, in this case a total number of n=7 elastic moduli, corre-
sponding to the actual seven layers within the material. The
algorithm systematically analyzes each group of the individ-
uals according to the specifications set by the designer. Each
analyzed set of individuals is then assigned a fitness rating,
which reflects the designated criterion, in this case the magni-
tude of the error ‘er’. The fitness ratings obtained for all the
random sets are then used to identify which set of individuals
have satisfied the acceptance criterion better than the others,

thereby enabling the algorithm to eliminate the weaker selec-
tions of the individuals. The remaining selections of the better
sets are then used to produce the next generation of the pop-
ulation. This process is iterated over many generations of the
population to result in the optimized set of individuals.

Note that a solution obtained from GA is not a unique one.
Therefore, certain practical guidelines need to be considered
to eliminate unacceptable solutions. Owing to the unbound
choices existing at the population generation stage, Genetic
Algorithms usually take into account specific constraints as
for the optimization guidelines. For instance, in the present

Fig. 6 (a) Variation of surface
strain on Ti and TiB-rich sides
with respect to the applied bend-
ing moment and (b) bending mo-
ment vs. developed curvature in
the four-point bend test

Fig. 7 The vertical displacment component, v, on (a) Ti side and (b) TiB-rich side and the axial strain component, εyy, on (c) Ti side and (d) TiB-rich side
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work, the elastic moduli (population) generated in GA opti-
mization cannot take zero or negative values. Also, the range
of the individual elastic moduli has to be bound, e.g. maxi-
mum effective elastic modulus present across the thickness
may not possess a value greater than 500 GPa. Such con-
straints are usually specified considering the physical nature
of the problem to be handled. Further, the fact that the moduli
vary progressively (monotonically) from layer to layer can
also be used as additional constraints. In this work, the follow-
ing constraints were used in the algorithm:

& The sum of all the elastic moduli is bound with the mini-
mum and maximum values of 560 GPa and 2100 GPa,

respectively, i.e. 560≤ ∑
7

k¼1
Ek ≤2100 (GPa). Note that this

criterion does not have a physical meaning. Rather, it was
only used as a constraint to limit the lower and upper
bound solutions. The lower and upper bound constraints
were considered assuming conditions in which all the Ei
values take 80 GPa (lower limit) and 300 GPa (upper
limit), respectively.

& The start point to generate population was chosen as the
condition in which all the layers have an elastic modulus
of 80 GPa, i.e. E1=E2=⋯=E7=80 (GPa)

Finally, it must be stated that the GA-based method used in
this work was initially tested for accuracy and effectiveness by
comparing the elastic profile of a known epoxy/glass bead

FGM with the results obtained from the proposed method
[36]. Once the agreement between the two sets of results
was confirmed (see Elastic Modulus Profile section), the pro-
posed method was utilized to identify the elastic modulus of
the Ti/TiB graded material.

Results and Discussion

Determining the Thickness of the Layers

The Vickers hardness profile across the gradient direction in
Ti/TiB FGMs has been utilized and demonstrated to be an
applicable method in determining the thickness of each layer
[37]. It should be noted that the resolution of the micro-

Fig. 8 (a) Variation of surface
strain on Ti and TiB-rich sides
with respect to the applied axial
load and (b) axial load vs. devel-
oped curvature in the tensile test

Table 3 Average value of stiffness constants calculated based on the
experimental data points obtained from tensile and bending experiments

Ae (N) Be (N.m) De (N.m
2)

14.34 (±0.01)×106 32.15 (±0.01)×103 85.36 (±0.02) Fig. 9 Evolution of the moment developed within the tensile sample
with respect to the axial load
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hardness measurement is limited by the size of the indentation
marks on specimen surface. To overcome this limitation and
have a better resolution of the measurements, particularly
within Ti-rich layers where the indentation marks would be
larger in size due to lower hardness, the testing was conducted
by carefully varying the position of indentation along x-direc-
tion as shown in Fig. 5. In this case, since the layers’ compo-
sition and properties remain the same along x-direction, the
resolution of the hardness measurements can be further im-
proved and the thickness of each layer can be captured with
better accuracy, particularly in the case of thinner layers. The
hardness value increases with increasing the volume fraction
of TiB in the layers. The minimum and maximum hardness
values of 247 and 1549 kg/mm2 were measured on pure Ti
and 85%TiB-15%Ti layers, respectively. The jumps observed
in the layer-to-layer hardness value were large enough to fa-
cilitate the measurement of the layer thickness within the ma-
terial. Accordingly, the thickness of each layer was deter-
mined and compared to the data reported by the manufacturer
[31]. A comparison between two sets of data can be found in
Table 2. Note that the thickness values obtained in this work
were used in the inverse analysis.

Mechanical Test Results

Figure 6(a) demonstrates the variation of in-plane strains on Ti
and TiB-rich sides of the specimen as a function of the applied
moment. The strain-moment relation is linear, with compres-
sive and tensile strains developed on the TiB-rich and Ti sides
of the specimen, respectively. Considering the moment-strain
curves shown in Fig. 6(a), it is indicated that the value of the
strain on two surfaces are not equal in magnitude, in contrast

to the case of homogenous beams subjected to pure
bending. The absolute magnitude of the strain devel-
oped on the TiB-rich side is about 79 % of the strain
developed on Ti-side at any given moment. According-
ly, a perfectly linear response is observed, leading to a
linear moment-curvature relation, as shown in Fig. 6(b).

Fig. 10 Comparison of the elastic modulus profile of a seven layer
epoxy/glass bead FGM, obtained using the proposed method with that
obtained by measuring the elastic modulus of individual layers

Fig. 11 The evolution of (a) population and (b) ‘er’ function value, with
respect to generation. E(i) represents the elastic modulus of the ith layer,
with i=1 denoting the pure Ti layer and i=7 showing the TiB-rich side

Exp Mech (2015) 55:1427–1440 1437



For the case of tensile experiments, the axial strain on either
side of the specimen was extracted from strain gages. As men-
tioned earlier, the camera system was also synchronized with
the load-cell, assuring that the correct deformation response is
captured using DIC. Typical DIC contours showing the axial
displacement, v, and axial strain component, εyy, at a far-field
tensile load of 5000 N are shown in Fig. 7. It can be observed
from Fig. 7(c) and (d) that the strain is distributed fairly uni-
form in the areas studied. The grips we have used are suffi-
ciently rigid to prevent the curvature due to asymmetry
resulting in a homogeneous strain field. Variation of the axial
strains, extracted from strain gages, as a function of the applied

tensile load on Ti and TiB-rich sides of the specimen is shown
in Fig. 8(a). A slight difference can be witnessed between the
magnitude of strains measured on Ti and TiB-rich sides of the
specimen. The difference between these strains results in a cur-
vature to be developed during uniaxial tensile test. This curva-
ture is calculated from the strains measured by the strain
gauges using equation (15) and plotted as a function of tensile

Table 4 The GA optimization
results from 15 attempts, with
their average and standard
deviation shown at the bottom

Layer #1 Layer #2 Layer #3 Layer #4 Layer #5 Layer #6 Layer #7

Run 1 119.97 147.81 189.92 229.98 249.96 293.57 349.99

Run 2 119.98 113.25 189.99 222.10 249.98 319.99 349.99

Run 3 119.89 149.45 189.69 188.01 249.99 319.92 349.68

Run 4 119.97 137.83 189.77 229.95 210.79 319.66 349.93

Run 5 119.99 149.98 189.98 229.99 249.99 319.99 349.91

Run 6 118.24 149.89 185.49 229.94 208.02 298.21 349.98

Run 7 119.94 147.02 189.94 228.74 249.14 309.51 349.96

Run 8 119.97 149.89 189.97 229.99 225.27 319.99 349.96

Run 9 109.34 132.71 189.97 208.34 249.94 319.93 349.94

Run 10 119.99 147.20 189.96 229.97 234.31 319.97 349.98

Run 11 119.84 149.85 173.53 229.97 213.20 319.98 349.95

Run 12 119.99 145.82 189.99 229.99 249.98 319.99 349.90

Run 13 119.94 143.65 189.99 229.99 228.50 319.99 349.96

Run 14 119.95 123.06 188.67 212.85 249.98 319.99 349.99

Run 15 119.99 128.05 189.98 188.93 249.99 319.99 349.96

Average 119.13 141.03 188.46 221.25 237.94 316.05 349.97

% St. Dev. 1.64 6.85 2.56 8.85 9.67 3.61 0.05

The values are all in GPa. Layer #1 indicates the Ti side and Layer #7 denotes the TiB-rich side

Fig. 12 The elastic modulus profile of the specimen found from the GA
results

Fig. 13 Distribution of the normalized effective elastic modulus vs.
thickness, compared with the results published in the literature. The
results of the strain gage measurements have been presented in this figure
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load as shown in Fig. 8(b). A linear curvature-load relation is
observed in tensile experiment, similar to that observed in case
of the bending test.

Next, based on the results obtained from the tensile and four-
point bend experiments, the unknown constants Ae, Be and De

were calculated using equations (16) to (20). These constants
were calculated using the entire collection of data points acquired
during tensile and bending tests, and using the strain gage results.
The average value and standard deviation of each constant ob-
tained through such process are shown in Table 3. The standard
deviations of <2 % reported for the constants Ae, Be and De

confirm the accuracy of the experiments and the data analysis.
The evolution of the bending moment,Mt, developed with-

in the specimen during tensile experiment was calculated
using equations (16) and (21) and plotted as a function of axial
load, Nt, as shown in Fig. 9. The bending moment, Mt, varies
linearly with Nt. If the grips are rigid, they will not allow any
curvature to develop at the clamped ends and the beam will
remain straight. In such a situation,Mt will be related to Nt as
Mt=(B/A) Nt. Note that the slope of the curve shown in Fig. 9
is close to B/A ratio. (See Table 3 for values of A and B.)
Accordingly, the strains developed on both surfaces of the spec-
imen will be uniform along the length in the middle region
(away from the grips). It can be observed from Fig. 7(c) and
(d) that the strain is fairly uniform in the area studied. This along
with the fact that the curvature is small indicates that the grips
are considerably restraining the curvature of the specimen.

Elastic Modulus Profile

As described in Inverse Analysis to Obtain Elastic Properties
section, the accuracy of the GA-based method used in this
work was first validated by testing the proposed method to
determine the elastic modulus profile of a seven layer FGM
with known elastic profile. The FGM considered here was an
epoxy/glass bead graded material made of seven 1.5 mm thick
layers of different elastic properties. The elastic properties
were varied by changing the glass bead volume fraction pro-
gressively in each layer. The elastic properties of the individ-
ual layers were first evaluated, and the results were used to
compare with that obtained using the method proposed in this
work. Details of the manufacturing of the resin/glass bead
FGM, as well as the mechanical testing results are beyond
the scope of this work and can be found in [36]. A graph
showing the through thickness variation of the elastic moduli
of the epoxy/glass bead graded specimen is depicted in
Fig. 10. A good agreement between two sets of results vali-
dates the effectiveness of the proposed GA-based algorithm
considered in this work.

The distribution of the effective elastic moduli across the
Ti/TiB FGM thickness was found using the code written in the
MATLAB® programming platform, as explained in detail in
earlier sections. A typical evolution of the population, i.e. a set

of seven elastic moduli values corresponding to the actual
seven layers in the Ti/TiB FGM, is plotted in Fig. 11 demon-
strating a very fast convergence to have taken place in the GA
analysis in this work. The elastic modulus of each layer ob-
tained from 15 independent runs of the GA program was
averaged and the same is listed in Table 4 for each layer.
The elastic moduli obtained using the strain data measured
using strain gages in the tensile test are shown in Fig. 12.
The method is shown to be able to resolve the monotonic
increase in the elastic modulus of the layers with increasing
the TiB without such a constraint being imposed on the min-
imization scheme. To compare with the existing results [14,
32], the elastic modulus of each layer was normalized and
plotted as a function of the normalized thickness of the spec-
imen as shown in Fig. 13. The results obtained from the present
work are in very good agreement with the effective elastic mod-
uli obtained from a previous micromechanics model [14]. It was
also observed that the elastic modulus profile obtained in the
present work is closest to that obtained from a modified Mori-
Tanaka micromechanical approach in which evenly distributed
TiB phase is modeled in the form of platelets with an aspect ratio
of 100 in a Ti matrix [14]. It is interesting to note that from a
material processing standpoint, the fabrication of Ti-TiB mate-
rials using hot press apparatus normally results in the develop-
ment of TiB platelets with aspect ratios of up to 40 [38, 39].

On the other hand, comparison of the elastic modulus
values found from the current method with those determined
by testing individual layers presented in Ref. [32] shows a
significant difference. The difference is more substantial
(>20 %) on the middle layers, from layer #2 to layer #5. The
reason behind this discrepancy might be due to the difference
in geometry and size of the specimen used in these methods.
Slicing each layer of the graded material into thin monolithic
sections and individually testing these sections will not take
into account the contribution of the interface deformation and
complexities present when testing the graded beams.

Conclusions

A simple yet sufficiently accurate method is proposed to ob-
tain the elastic modulus profile of a through-thickness func-
tionally graded material. Two independent experimental eval-
uations, i.e. tensile and bending tests were performed, follow-
ed by an inverse calculation scheme to determine the mate-
rial’s elastic constants. A minimization algorithm was then
utilized to calculate the elastic modulus of each layer within
the graded structure. The proposed method was successfully
applied to a layered Ti/TiB graded specimen. The experimen-
tally determined elastic modulus profile was compared to the
estimates obtained from individual-layer testing, as well as
from a micromechanical approach reported in literature. Good
agreement between the experimental results with those from
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the micromechanical approach was observed. It is believed
that the simple method proposed here will be highly useful
in quick estimation of the elastic modulus profile of graded
plates with good accuracy, particularly during their develop-
mental stages.
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