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Abstract Significant weight savings in parts can be made
through the use of additive manufacture (AM), a process
which enables the construction of more complex geome-
tries, such as functionally graded lattices, than can be
achieved conventionally. The existing framework describing
the mechanical properties of lattices places strong emphasis
on one property, the relative density of the repeating cells,
but there are other properties to consider if lattices are to
be used effectively. In this work, we explore the effects of
cell size and number of cells, attempting to construct more
complete models for the mechanical performance of lattices.
This was achieved by examining the modulus and ultimate
tensile strength of latticed tensile specimens with a range of
unit cell sizes and fixed relative density. Understanding how
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these mechanical properties depend upon the lattice design
variables is crucial for the development of design tools, such
as finite element methods, that deliver the best performance
from AM latticed parts. We observed significant reductions
in modulus and strength with increasing cell size, and these
reductions cannot be explained by increasing strut poros-
ity as has previously been suggested. We obtained power
law relationships for the mechanical properties of the lat-
ticed specimens as a function of cell size, which are similar
in form to the existing laws for the relative density depen-
dence. These can be used to predict the properties of latticed
column structures comprised of body-centred-cubic (BCC)
cells, and may also be adapted for other part geometries. In
addition, we propose a novel way to analyse the tensile mod-
ulus data, which considers a relative lattice cell size rather
than an absolute size. This may lead to more general models
for the mechanical properties of lattice structures, applicable
to parts of varying size.

Keywords Selective laser melting · Lattice · Titanium
alloy · Additive manufacture · Lightweight structures

Introduction

One of the most promising capabilities of additive man-
ufacturing (AM) is the production of novel lightweight
structures, which are in high demand across sectors such
as automotive, medicine and aerospace. AM enables parts
with high geometrical complexity, such as those determined
by topology optimisation, to be produced with little or no
additional expense over more conventional forms, which
is in stark contrast to subtractive manufacturing processes.
Indeed, many innovations in AM have come from the use
of topology optimisation as a design tool, which is typically
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Fig. 1 Lattice structures in a
range of lightweight part
designs. (a) shows a
cross-section through an AM
part with an internal repeating
cellular structure[5], (b) shows a
tetrahedral lattice conforming to
a complex shape (in this case a
component for a commercial
airliner), and (c) shows a lattice
structure in a topology
optimised part featuring internal
routing channels for structural
health monitoring
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used to identify the material layout that maximises specific
mechanical properties [1–4]. An alternate and complemen-
tary route to designing better parts for AM, i.e. designs
that make more efficient use of material,is the replacement
of otherwise solid volumes with lattice structures. Lattice
designs involving functional grading, variable cell prop-
erties and conformity to complex geometries (see Fig. 1)
are only realistically manufacturable with AM Such lat-
tice designs have the potential to deliver large reductions
in part weight, while offering high levels of stiffness and
energy absorption under static and dynamic loading [5–12].
Compared to topology optimisation methods, lattices may
also offer more robust solutions to problems which include
uncertainty in the loading conditions or have multiple objec-
tives. However, the choice of lattice unit cell design is large
and the mechanical properties of different cell types are far
from fully understood. There are also features of AM in
particular that may influence the design process, such as
relatively high surface roughness and the possible require-
ment for support structures, which depend on the choice
of part build orientation. These factors are obstacles in the
development of design methods that utilise lattice structures
effectively.

In addition to the choice of cell type, at least two other
cell properties are significant in determining its mechan-
ical performance; its relative density (also referred to as
the volume fraction) and its size. The first of these factors
has received some prior attention [6–9], largely because of
the similarity between lattice structures and the more well
established foams, while the second has received very little
[13].

This work examines the modulus and ultimate tensile
strength of latticed parts with body-centred-cubic (BCC)

unit cells of varying size and fixed relative density. The
parts were produced in Ti-6Al-4V alloy using selective laser
melting (SLM), which is an AM process used to produce
parts from a feedstock of metal powder.The cell type was
chosen principally because it is known to be self-supporting,
that is, it does not include overhanging features which would
require the addition of supporting structures. In SLM, sup-
port structures are manufactured from the same material as
the part being manufactured, and they can be difficult to
remove in a secondary process. Also, there is strong motiva-
tion to characterise the mechanical properties of BCC lattice
cells as they have been examined experimentally and theo-
retically elsewhere [7, 8, 11, 14–16]. Note that ‘BCC’ here
refers to a macroscopic 3D structure of the order several
mm, and is not being used in the crystallographic sense.

The main aim of this investigation is to uncover how the
mechanical properties of lattice structures vary according to
the size of the chosen unit cell. We will attempt to explain
the origins of these relationships and add our findings to the
analytical and semi-empirical models that currently exist.
This will aid the development of design methodologies for
latticed parts that enable the most appropriate cell type to
be chosen for a certain application or set of load conditions.
Ultimately this will facilitate lightweight latticed parts with
the highest achievable mechanical performance.

Following this general introduction, a short section of this
paper introduces the pre-existing models for the cell density
and size dependence of the mechanical properties of lattices.
We go on to present our experimental methods, including
SLM part production and tensile testing, before analysing
and discussing the results. In a concluding section we dis-
cuss the implications of our findings for the future use of
lattices in AM and propose areas for future investigation.
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The Gibson-Ashby Model

Gibson and Ashby analysed the mechanical properties of
metal and polymer foams by considering them as systems
of open or closed regular cells, expanding upon previous
work on honeycomb structures [17, 18]. They used analyti-
cal methods based on the beam theories of Timoshenko and
Goodier [19], and Roark and Young [20] to relate several
properties (the modulus and plastic yield strength, amongst
others) of a foam under compression or tension to its rel-
ative density, ρ∗. The relationships put forward by Gibson
and Ashby were seen to describe the mechanical bahaviour
of several foams adequately [17, 21, 22]. The equations have
since been applied to latticed structures comprising repeat-
ing regular unit cells, an application for which they were
essentially devised [6, 23, 24].

Before presenting Gibson and Ashby’s relationships,
some properties of a lattice structure must be defined. We
define the relative density as

ρ∗ = ρlatt./ρsol., (1)

where ρlatt. and ρsol. are the densities of a lattice structure
and a fully-dense solid, respectively (both composed of the
same material). In this way, ρ∗, can be seen simply as the
fraction of a particular volume taken up by the solid material
of the lattice. Similarly, we define

E∗ = Elatt./Esol., (2a)

σ ∗
U = σU latt./σU sol., (2b)

where E∗ and σ ∗
U are the modulus and ultimate tensile

strength of a lattice represented as fractions of those of a
fully-dense solid of the same material. These will hence-
forth be referred to as the relative modulus and relative
ultimate tensile strength. Gibson and Ashby proposed a
semi-empirical scaling relationship for E∗ as a function of
the relative density [17, 18, 25]:

E∗ = C1ρ
∗m, (3)

where the exponent m varies depending on the relative con-
tributions of stretching and bending of the struts in the
cellular deformation process; it is given as m = 2 for open,
bending-dominated, cell types, such as the BCC cell stud-
ied here, with additional terms being added to equation (3)
to account for membrane stresses and gas pressure effects in
closed cells. The prefactor C1,“includes all of the geomet-
ric constants of proportionality [17],” and therefore varies
according to the specimens being examined.

The issue of ultimate tensile strength is more involved,
with a simple relationship of the form of equation (3)

not forthcoming. However, for an open-celled lattice under
compression, Gibson and Ashby proposed

σ ∗
cr ∝ l

(− 3
mw

)

c ρ
∗( 32− 1

mw
)
, (4)

for the crushing strength, σ ∗
cr, as a function of cell width, lc,

and relative density.mw is theWeibull modulus, a parameter
used to quantify the variance in strength amongst samples
of brittle parts. It is related to the distribution of flaws in
a material and, in this case, it principally dictates the size
dependence of the part strength; the larger the Weibull mod-
ulus, the smaller the reduction in strength due to increasing
cell size. The physical mechanism behind this is the fact
that larger cells are more likely to contain larger pre-existing
cracks or pores, which are ultimately responsible for part
failure [17].

For an open-celled lattice under tension, Gibson and
Ashby similarly proposed

K∗
IC ∝ l

( 12− 3
mw

)

c ρ
∗( 32− 1

mw
)
, (5)

to describe the fracture toughness, K∗
IC , again, as a func-

tion of cell width and relative density. In this case, mw = 6
indicates cell size independence, with the fracture toughness
increasing with cell size if mw > 6 and decreasing with
cell size if mw < 6. The possible applicability of these rela-
tionships, and the meaning of the Weibull modulus in the
context of lattice structures, is explored later in this work.

Cell size Dependence of the Mechanical Properties

The motivation for this work stems from the recognition
that Gibson and Ashby’s parameter C1, introduced in equa-
tion (3), must subsume virtually all of the geometrical
information about the lattice except for its relative density.
The factors thought to determine this parameter are; (i) the
choice of unit cell type, of which there are a great many
with different potential applications and varying suitability
for SLM, and AM in general, (ii) the global shape of the lat-
tice structure, (iii) the type of stress, and (iv) the size of the
repeating unit cell. This work focuses on the last of these
properties, providing information to better design latticed
parts for real applications.

Notably, Yan et al. studied Shoen gyroidal cells, made by
SLM from 316 L stainless steel, and observed a reduction in
Young’s modulus from ∼ 306 to 241 MPa upon increasing
the cell size from 2 to 8 mm [13]. The authors attributed this
21 % reduction in Young’s modulus to a decrease in the den-
sity of their specimens’ lattice struts, from 99.5 to 90.6 %,
which accompanied the increase in cell size. Gibson and
Ashby’s density relationship (equation (3)) seems to sup-
port this explanation, as it would provide a Young’s modulus
reduction of (0.9952 − 0.9062)/0.9952 × 100 % = 17 %, if
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Fig. 2 BCC unit cell with a relative density, ρ∗, of 0.36

we make the choice m = 2 (i.e. bending dominated defor-
mation). Therefore, if varying density was the cause for Yan
et al.’s observed Young’s modulus reduction, it provides evi-
dence that the deformation of their Shoen gyroidal cells
was bending dominated, as is suggested in recent theoretical
work by Khaderi et al. [26].

With respect to the relative ultimate tensile strength
of lattices, a cell size dependence is essentially already
predicted (through the closely related properties in equa-
tions (4) and (5), though its form has not been explicitly
determined. We will attempt to identify this dependence and
relate it to existing theory. Any knowledge gleaned regard-
ing the performance of lattices with different sized cells
and equivalent density, will be useful in the development of
more comprehensive lattice design tools.

Experimental Methods

Specimen Production

Tensile test specimens with square cross-section were
designed according to the ISO standard 6892-1:2009. Spec-
imens with two gauge widths, 5.00 and 7.00 mm, were
manufactured. The gauge volumes comprised a repeating
BCC unit cell of varying size contained within a ‘net skin’,
which is a thin surrounding wall (determined after produc-
tion to have thickness 0.243 ± 0.007 mm) with periodic
holes to allow the egress of the unmelted powder after part
production. The net skin was employed so that an exten-
someter could be fitted to the exterior of the gauge surfaces,
allowing more accurate and precise strain measurements
than could otherwise be achieved. The BCC unit cell, which
in our work had a relative density of 0.36, is illustrated in
Fig. 2.

The specimen details, that is the range of unit cell sizes
for each tensile bar, are provided in Table 1. Figures 3 and
4 are CAD representations of the tensile specimens; the for-
mer shows both the 5.00 and 7.00 mm width versions of the
specimen, including dimensions, while the latter provides a
comparison of a latticed gauge region with and without the

Table 1 Range of unit cell widths and total number of cells in the
gauge volumes of the two types of test specimen

Unit cell Number

width (mm) of cells

5.00 mm 1.00 875

gauge width 1.66 789

specimens 2.50 56

5.00 7

7.00 mm 1.00 2401

gauge width 3.50 56

specimens 7.00 7

net skin, revealing the BCC cells beneath. Several parts with
solid gauge volumes were also examined, so that the relative
mechanical performance of the latticed specimens could be
determined.

The specimens were manufactured from Ti-6Al-4V using
a Renishaw AM250 SLM machine. The laser power, laser
scan speed and hatch spacing were 200 W, 600 mms−1 and
150 μm, respectively, and a ‘meander’ scanning strategy
was taken, whereby the hatch path of each subsequent layer
was rotated by 67◦ from the previous one. This strategy

r = 32 mm

r = 23 mm

7 mm

40
 m

m
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 m

m

5 mm

40 m
m
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8.6 mm

50 m
m

x

y
z

Fig. 3 CAD representations of the 5.00 mm width (right) and
7.00 mm width (left) tensile specimens, including dimensions
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Fig. 4 CAD representation of the latticed region of the 5.00 mm
width specimen with 1.6̇6 mm unit cells. The region is shown with
(left) and without (right) the net skin that was employed so that a
surface-mounted extensometer could be used during testing

serves to reduce any build plane anisotropy, geometric or
mechanical, that might occur if there were no hatch rotation.
The feedstock powder was deposited in 50 μm layers prior
to each laser scan. The powder particles were spherical (see
Fig. 5) and had a Gaussian size distribution with a mean
of 32 μm and standard deviation of 13 μm. The test speci-
mens underwent a stress relieving heat treatment (600 ◦C for
3 hours under an Ar-rich atmosphere) before removal from
the build plate. Figure 6 shows a selection of the 7.00 mm
gauge width specimens prior to testing, including one which
is solid and two latticed parts with unit cells of width 3.50
and 7.00 mm.

An important factor relating to the design of the test spec-
imens described here is that of number of cells. As can
be seen in Figs. 4 and 6, the smaller unit cells tessellate
more than the larger cells in the gauge volumes of our spec-
imens. This is clearly a consequence of constraining the
size of the specimens as opposed, say, to scaling them in

  100 µm   

Fig. 5 SEM micrograph of the Ti-6Al-4V feedstock powder used in
the production of SLM specimens

Fig. 6 Photographs of a selection of 7.00 mm gauge parts. From left
to right; solid gauge section, 3.50 mm unit cell and 7.00 mm unit cell.
The inset shows a close-up of the latticed regions, with the net skin and
internal spars visible

relation to the cell size, keeping the number of cells con-
stant in each case. Regarding applicability to actual parts,
these designs should provide findings which are more useful
because of the constrained specimen size; part dimensions
are generally constrained by application and environment,
therefore it is more useful to determine how the combination
of cell size and cell number affect mechanical properties,
even if the effects of these two variables cannot be isolated
easily. Section “Alternate Analysis” of this work contains
a data analysis strategy that recognises and addresses this
issue. Table 1 provides the numbers of repeating unit cells
contained in the 5 and 7 mm gauge specimens.

Tensile Testing

Moduli, Elatt., and ultimate tensile strengths, σU latt., were
recorded for the latticed 5.00 and 7.00 mm test bars. All
measurements were made using an Instron-5969 universal
testing machine, with the displacement applied at a rate
of 0.01 mm s−1. An Instron series 2630 surface-mounted
extensometer with 25 mm gauge length was clamped to the
center of the latticed section of each test specimen in order
to accurately record the strain.

The moduli were determined from the regions up to
around 0.5 % strain of the experimental stress-strain curves;
at approximately this level of strain, the surface-mounted
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Fig. 7 Photographs of a selection of fractured latticed specimens. (a)
and (b) are 7.00 mm bars with 3.50 and 7.00 mm unit cells, respec-
tively, while (c) and (d) are 5.00 mm bars with 2.50 and 5.00 mm unit
cells, respectively

extensometer was removed to ensure it would not be dam-
aged upon part failure. Simultaneously, and continuing
above 0.5 %, the strain values were recorded directly from
the displacement of the universal testing machine cross
heads. This method is sensitive to the deformation of the
part and several components of the machine, due to machine
compliance.

For this reason, a machine compliance correction was
applied by comparing the cross head displacement data with
that from the extensometer. This assumes a relationship of
the form[27],

δR = δS + δC, (6)

where δR is the total displacement recorded by the testing
machine, δS is the sample deformation (in this case mea-
sured by the surface-mounted extensometer) and δC is the
deformation in the loading system due to the machine com-
pliance. The machine compliance, Cm, is given by δC/F ,
where F is the applied load. Its values were seen to be
consistent across multiple specimens, yielding a mean of
5.9 ± 0.5 × 10−5 mm N−1.

Importantly, the moduli, which were determined purely
from the low strain extensometer data, and ultimate tensile

strengths were unaffected by this post-measurement
compliance correction. Therefore, even allowing for non-
ideal correction of the cross head displacement data, there
was no invalidation of the most pertinent information from
the tests. Measurements were performed on at least two,
but usually three, specimens per design (each combination
of cell size and gauge width), with the means and standard
errors being used for subsequent analysis.

The moduli of completely solid (non-latticed) test spec-
imens were also recorded. These were 102.3 ± 0.9 and
101 ± 1 GPa for the 5.00 and 7.00 mm bars, respec-
tively, and provide the Esol. of equation (2a). They agree
with each other within experimental error and are slightly
lower than values typically associated with cast and forged
alloys (∼ 105 − 116 GPa [28, 29]). The ultimate ten-
sile strength of the solid bars was found to be 1.07 ±
0.01 GPa, slightly higher than expected from cast alloy
but lower than has been reported for some Ti-6Al-4V
SLM parts [29–31]. This value constitutes σU sol. of
equation (2b).

Results and Discussion

Figure 7 shows the fractured ends of a sample of latticed
test specimens. A feature among the majority of the exam-
ined latticed bars was that critical fracture occurred across
a single horizontal plane; only occasionally were intact
lattice nodes (the intersections of eight diagonal struts)
observed protruding from fracture surfaces. This suggests
that a likely failure mode was the initial fracture of an indi-
vidual strut followed by others in the same plane which, as
each failed, led to a greater load distributed over a smaller
cross-sectional area. This is supported by the observation,
presented in Fig. 8, of sawtooth features in the stress-strain
curves of some specimens.

Experimental stress-strain curves for some 5.00 and
7.00 mm latticed bars are provided in Fig. 8. There are a few
features of note; (i) the modulus, taken from the extensome-
ter data below ∼ 0.5 % strain, and ultimate tensile strength
of each latticed part decreases with increasing unit cell size,
(ii) though we must be careful in extracting absolute val-
ues, due to the the machine compliance correction discussed
above, there is evidence that increasing unit cell size gen-
erally results in lower maximum strain at break (the 7 mm
gauge bar with 3.50 mm cells is a clear exception, with a
relatively high maximum strain at break), and lastly (iii) the
sawtooth features seen for the 7 mm bar with 1 mm cells
(Fig. 8, marked with †) are believed to relate to the suc-
cessive tensile failure of individual lattice struts prior to the
ultimate failure of the part; this was evidenced audibly dur-
ing the testing of all three such specimens, but was absent
for other types.
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Fig. 8 Stress-strain curves for
the 5 mm (above) and 7 mm
(below) width latticed tensile
specimens with varying cell
size. Below ∼ 0.5 % strain the
data from the surface-mounted
extensometer is shown as a
thicker black line

Numerical results from the mechanical testing of all
specimens are provided in Table 2, where the relative prop-
erties, E∗ and σ ∗

U , are as defined in equations (2a) and (2b).
The unit cell volumes, vc, for each specimen type are also
included; for BCC cells these are simply the unit cell width
cubed. v∗ is the relative volume, which is defined and dis-
cussed in section “Alternate Analysis”. The results in Table
2 are discussed in the following sections.

The Modulus

The relative moduli of the 5 and 7 mm gauge bars are plot-
ted in Fig. 9 as a function of cell width. The E∗ values

decrease with increasing cell width, from (19.4± 0.5) % to
(7.0 ± 0.5) % of the Esol. values obtained from solid bars.
The reduction in modulus over the full range of cell size is∼
64 %. As previously discussed, Yan et al. observed a smaller
reduction (21 %) in the modulus of their latticed parts with
increasing cell size and attributed it to decreasing strut den-
sity [13]. X-ray computed tomography (CT) measurements
of a sample of our 5 and 7 mm latticed bars put the strut
density at (97.6±0.2) %, with little variation between parts
and no correlation between density and cell size. This den-
sity is not ideal, but the lack of variation in strut density
between specimens with different cell sizes implies that our
modulus reduction with increasing cell size is not caused by

Table 2 Absolute and relative mechanical properties of the latticed specimens for varying unit cell sizes. The relative properties v∗, E∗, and
σ ∗

U are defined in the text

lc(mm) vc(mm3) v∗ × 10−3 Elatt.(GPa) E∗ × 10−3 σU latt.(MPa) σ ∗
U × 10−3

1.00 1.00 1.10 17.2 ± 0.5 169 ± 6 189 ± 1 177 ± 2

5mm width bars 1.66 4.63 5.30 12.0 ± 0.5 118 ± 5 152 ± 1 141 ± 2

2.50 15.6 17.9 10.2 ± 0.3 100 ± 3 117.3 ± 0.4 109 ± 1

5.00 125 143 7.8 ± 0.5 76 ± 3 68.8 ± 0.8 64 ± 1

7mm width bars 1.00 1.00 0.42 19.7 ± 0.4 194 ± 5 174 ± 4 163 ± 4

3.50 42.9 17.9 9.0 ± 0.3 89 ± 1 102 ± 1 95 ± 1

7.00 343 143 7.0 ± 0.5 70 ± 5 55 ± 2 52 ± 2
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increasing levels of porosity. The second feature of note in
Fig. 9 is that the data from both the 5.00 and 7.00 mm test
bars appear follow the same distribution, signifying that we
may possibly treat them as a single data set for the purposes
of data analysis.

We first hypothesize that there is a power law relating E∗
and lc, similar to the relationship provided in equation (3)
for ρ∗, i.e.

E∗ = U1 l n1
c , (7)

where U1 and n1 are analagous to Gibson and Ashby’s
parameters C1 and m. The resulting weighted least-squares
fit is shown as a dashed line in Fig. 9. The values of U1 and
n1 were found to be 0.179 ± 0.009 and −0.56 ± 0.05,
respectively. However, this fit is statistically rather poor,
with a χ̄2 (reduced-χ2) value of 2.29, and the fit residual,
shown in the upper panel of Fig. 10, shows significant addi-
tional structure. Clearly, this simple model is incapable of
describing the data set well.

Two variations on this scaling law were trialled; one with
a constant to modify the cell width, the other with a constant
to modify the relative modulus. The modified power laws
are given by E∗ = U1 (lc + δlc )

n1 and E∗ = U1 l
n1

c + δE∗ ,
and are shown in Fig. 9 as solid and dotted lines, respec-
tively. The χ̄2 values associated with these fits were much
improved, with the former providing a value very close to
unity. Furthermore, the central panel of Fig. 10 shows far
less residual structure for the E∗ = U1 (lc + δlc )

n1 fit,
compared to the the unmodified form. The parameters from
this fit were U1 = 0.11 ± 0.01, δlc = −0.8 ± 0.1 mm
and n1 = −0.28 ± 0.07. The determined cell width off-
set of -0.8 mm could have been indicative of a systematic
error in the manufacture of the latticed bars, i.e. the cells
widths being consistently too large by 0.8 mm. This issue
was subsequently investigated; the cell widths were found
to conform well to the designed values as specified in the
CAD drawings.

The second modified power law, E∗ = U1 l
n1

c + δE∗ ,
provided a poorer fit than that described above, with χ̄2 =
1.18 and more residual structure, but it was still superior to
the unmodified form. The fitted parameters areU1 = 0.12±
0.01, n1 = −1.3 ± 0.4 and δE∗ = 0.06 ± 0.01.

Anomalous Behaviour of the Smallest Cells

Furthering the analysis of the modulus data, an alternate
interpretation is that data from samples with 1.00 mm cells
may be statistical outliers or are described by a different
physical model than that which describes the rest of the
data set. Evidence to support this hypothesis comes from
the fit residuals in Fig. 10, where the 1.00 mm data are
almost equally poorly described by all three models trialled
so far. There may be a physical cause for this; the cavities,

Fig. 9 Relative modulus, E∗, of the 5.00 and 7.00 mm latticed test
bars as a function of cell width, lc. Weighted least-squares power law
fits are shown as dashed, solid and dotted lines. The fitting procedure
is described in the text. The inset shows the same data and resulting
power law fits plotted with a log-log scale

or voids, in the 1.00 mm lattice structures are small enough
for the complete removal of Ti-6Al-4V feedstock powder
to be problematic. If residual powder remained in some of
the internal cavities for the 1.00 mm cells, the mechani-
cal properties of those bars under tension may have been
higher, or at least in some way different, than if they had
been completely empty.

Fig. 10 Residuals from the relative modulus fits of Fig. 9
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Fig. 11 5.00 and 7.00 mm bar E∗ data fit with E∗ = U1 l
n1

c . Data
from the 1.00 mm cells are excluded from the fit, as described in the
text. The inset shows the same data and power law fit plotted with a
log-log scale. The lower panel shows the corresponding fit residual

Another explanation is that the performance of these cells
is affected by the presence of loosely bound powder around
the lattice struts and nodes. Loosely bound, or partially sin-
tered, powder is a persistent issue in SLM, often increasing
the surface roughness and possibly providing regions of
high stress concentration, though this is more likely to affect
part strength than modulus. Its presence is related to the
choice of laser processing parameters and the morphology
of the feedstock powder. It has been previously observed
attached to the struts of SLM lattice structures [6, 13, 32].
In the case of our latticed structures, loosely bound powder
may have a larger effect for smaller cells, where the dimen-
sions of the struts and nodes are smallest. The removal of
much of this powder from the exterior of a part can often be
achieved with a post-process treatment such as sandblasting.
However, this technique is not particularly suitable for lat-
tice structures where most of the interior cells are obscured
by those around the outside edges.

A final possible reason for the anomalous behaviour
of the smallest cells lies in the fact that their constitutive
struts have designed thicknesses which are not signifi-
cantly greater than the width of the characteristic melt pools
formed by the SLM process. These melt pools are around
200 μm for Ti-6Al-4V [33], whereas the strut thicknesses
for the 1.00 mm cells are around 300 μm. Further, the
microstructure of SLM Ti-6Al-4V is composed of prior β

columnar grains with widths of the order 100 μm [33]. The
similarity of these length scales means that the smallest

struts are likely to have pronounced staircase-shaped pro-
files, as has been previously reported by Yan et al. [6], and,
unlike the thicker struts of the larger cells, may not be suf-
ficiently greater in size than the microscopic features of the
material to be reasonably treated by continuum mechan-
ics. Therefore, the anomalous behaviour of the 1.00 mm
cells may be due to their struts being close in size to a
representative volume element (RVE) for SLM Ti-6Al-4V.

The relative moduli were re-fit with the basic power law,
E∗ = U1 l

n1
c , this time excluding those data from the

1.00 mm cells; the result is shown in Fig. 11. The parame-
ters are U1 = 0.144±0.002 and n1 = −0.130±0.004. The
χ̄2 value is extremely low at 0.02, most likely indicating
that, with the exclusion of two data points (and the reduction
to just three degrees of freedom for the fitting procedure),
the fit is over-paramaterised. Nevertheless, it is worth noting
that SLM has inherent processing limitations, and these may
affect the observed mechanical properties of a part when the
feature sizes become relatively small .

Alternate Analysis

In Fig. 12 we present E∗ as a function of the relative cell
volume, v∗, which we define as

v∗ = vc/vlatt. env., (8)

where vc is the cell volume (given simply by l 3
c ) and

vlatt. env. is the volume of the latticed environment in which
the cell resides. For the 5.00 and 7.00 mm bars, vlatt. env. has
values of 875 and 2401 mm3, respectively (i.e. 5×5×35 mm
and 7× 7× 49 mm, where 35 and 49 mm are the lengths of
the latticed gauge sections of the bars).

Choosing to work with a relative measure of cell size
like v∗, rather than the absolute values of lc or vc, may pro-
vide a way to formulate general descriptions of lattices that
are independent of the size of the part and, therefore, the
absolute size of the cells it contains. There is precedent for
this methodology in the way we work with E∗, for exam-
ple, instead of E. This is done so that general rules, such
as equations (3), (4) and (5), may be developed that apply
to a range of materials, including polymers, ceramics and
metals, where the absolute moduli differ greatly. Similarly,
ρ∗ is used instead of ρ because the absolute densities of the
materials in question also vary significantly. The main prop-
erty of interest is how a lattice of a certain material performs
compared to a fully dense solid of the same material.

To explore this, an unmodified power law was applied to
the E∗(v∗) data and it is shown as a solid line in Fig. 12.
Weighted least-squares fitting provided the result; E∗ =
(0.051 ± 0.004) v∗(−0.17±0.01) with χ̄2 = 1.68. The fit
is statistically poorer than the previous best, but it has the
advantage of describing the E∗ behaviour equally well over
the full range of cell size, including the smallest cells.
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Fig. 12 Relative modulus, E∗, of the 5.00 and 7.00 mm latticed test
bars as a function of relative cell volume, v∗. The inset shows the same
data and resulting power law fit plotted with a log-log scale

We can see from Fig. 12 that two pairs of specimens,
both the bars that contain 56 cells and both the bars that
contain 7 cells, have performed similarly, with the larger
bar having E∗ values ∼ 9.5 % lower than the smaller
bar. In fact, when analysed with this approach, the data
from the largest cell specimens agree within experimental
error.

If we examine the limiting case in which v∗ tends to its
largest possible value, 1, we find for our fitted function,
limv∗→1 E∗(v∗) = 0.051±0.004. This suggests that a spec-
imen in which the latticed region was composed of a single
BCC unit cell, that is v∗ = 1, would have a modulus around
one twentieth of the value observed for solid material. Such
a specimen cannot exist for our test bar geometry with its
elongated gauge region. However, it would be beneficial
for future investigations, which make use of different test
specimen geometries, to also consider this extreme value
case.

Ultimate Tensile Strength

The relative ultimate tensile strengths, σ ∗
U , of the 5.00 and

7.00 mm latticed bars are shown in Fig. 13. They take val-
ues similar to those seen in Fig. 9 for E∗, decreasing from
(17.7 ± 0.2) % to (5.2 ± 0.2) % of the strengths of fully-
dense test bars, a reduction of ∼ 71 %. Following the same
approach as outlined above, three power laws, two with
additional constants for lc and σ ∗

U , were trialled; they are
shown as dashed, solid and dotted lines in Fig. 13.

Once again, the power law of the form σ ∗
U = U2 (lc +

εlc )
n2 provided the best fit, with the unmodified power law
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Fig. 13 Relative ultimate tensile strength, σ ∗
U , of the 5.00 and

7.00 mm latticed test bars as a function of cell width, lc. The inset
shows the same data and resulting power law fits plotted with a log-log
scale

performing significantly worse. The parameters are U2 =
0.7±0.6, εlc = 2±1 mm and n2 = −1.2±0.3. The χ̄2 val-
ues for the three trialled fits are larger than those obtained
in the E∗ analysis, reflecting statistically poorer fits overall;
this is due mainly to the smaller fractional errors associated
with the σU measurements. This has also given rise to larger
uncertainties in the determined parameters U2, εlc and n2.
The larger χ̄2 values might be indicative that a different, and
perhaps more complex, model is required to describe the σ ∗

U

data. The possibility of treating and fitting the data from 5
and 7 mm gauge bars separately was explored, but the rel-
atively small number of data points in each case, 4 and 3,
respectively, rendered this exercise uninformative. Interest-
ingly, switching the dependent variable to the relative cell
volume, v∗, instead of lc, as implemented previously for the
E∗ data, did not provide an improved fit when using the
unmodified power law, σ ∗

U ∝ v∗n2 .

The Weibull Modulus

In a final and novel exploration of our data set, we used the
determined parameter n2 from our best fit of the σ ∗

U data to
estimate the effective Weibull modulus of our set of latticed
parts. We speculate that the cell width dependence for σ ∗

U is
likely to be, or be similar to, one of those provided in equa-
tions (4) and (5) for related mechanical properties . Thus,
our σ ∗

U values would decrease with cell size according to

l
− 3

mw
c or l

( 12− 3
mw

)

c . The first case yields mw = 2.5 ± 0.6,
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whilst the second provides mw = 1.8 ± 0.4. Reasonable
sources of comparison for these values are understandably
scarce in the literature, owing to the paucity of experimental
research on lattice structures produced by SLM. The most
meaningful results currently available may be the work of
Blazy et al. and Ramamurty et al., who provide values of
mw between 8 and 16.7 ± 0.6 for some aluminium foams
[34, 35], but since both the material and the manufacturing
process in those works are different from our own, direct
comparison cannot be made.

The deduction of Weibull moduli for parts in this way
is new. In the characterisation of materials, Weibull mod-
uli are generally used to describe the flaw distributions and
failure statistics in brittle, but fairly uniform, solids. In con-
trast, our specimens possess the kind of flaws normally
associated with failure analysis (surface roughness, internal
pores, etc.) as well as unique features that result from the
use of AM, most significantly the complex repeating lat-
tice geometry with its non-uniform stress distribution and
incompletely understood deformation mechanisms. There-
fore, the comparability of these Weibull moduli with values
obtained for more conventional materials is uncertain.

As mentioned in our introductory section, the role of the
Weibull modulus is to determine the magnitude of the cell
size dependence of the part strength and fracture tough-
ness. Understanding how our values of mw, which have here
been determined solely for the BCC lattice with a fixed
density, relate to other work on lattices is worthy of fur-
ther research, as it may be found that different combinations
of cell geometries and SLM materials exhibit different size
effects, and are therefore better suited to use in parts of
different shapes and under different loading conditions.

Conclusions

The main, and novel, finding of this investigation is that
there is a significant dependence of the mechanical prop-
erties of BCC lattice structures on the size and number of
the cells they comprise. This has a major implication for the
design of latticed parts; with a fixed relative density, and
therefore part mass, large numbers of smaller cells provide
superior mechanical properties than small numbers of larger
cells.

We have shown that analysing the E∗ data as a function,
not of the absolute cell width, lc, but of the relative cell vol-
ume, v∗, provided a reasonable description across the full
range of cell size. An advantage of this analytical method is
that it provides a way to generalise the performance of lat-
ticed parts of different sizes and number of cells, in much
the same way that the well established use of E∗ and ρ∗
allows us to directly compare lattices of different materials
and volume fractions. If this relationship proves similarly

successful in further investigations, it may ultimately be
found that the relative modulus of lattices can be described
generally by

E∗ = Uρ∗mv∗n, (9)

where U is dependent only on the choice of unit cell and
the global shape of the part. The implication would be that
a latticed cube composed of 1000 unit cells would have the
same relative modulus regardless of its size. This requires
further investigation.

We used the determined lc exponent from the ultimate
tensile strength data to estimate an effective Weibull modu-
lus four our lattices, making the assumption that σ ∗

U follows
a law similar to those proposed by Gibson and Ashby for
crushing strength and fracture toughness. Our determination
of Weibull moduli with this approach delivers a new and
useful metric for comparing the mechanical performance of
different lattice structures.

On the basis of the results presented here, there are sev-
eral areas which should be investigated further to advance
the understanding of SLM lattice structures and improve
their applicability to real parts. These include; (i) the pos-
sible role of the net skin in determining the mechanical
properties of latticed parts (which is expected to decrease
in significance with increasing part size), (ii) the physi-
cal mechanism for the dependence of E∗ on v∗, (iii) the
behaviour of E∗ as v∗ approaches the value of 1 (i.e. a
single unit cell encompassing the volume of the part), and
(iv) the effect of cell size on the mechanical properties of
lattices with a range of different cell types. Further atten-
tion should also be paid to the energy absorption of lattice
structures under dynamic loading (i.e. high velocity impact).
It would be of great academic and industrial interest to
determine how the energy absorption and associated defor-
mation mechanisms relate to the cell design variables (cell
type, size and density), so that truly optimised latticed parts,
which provide stiffness, strength and energy absorption
where required, can be realised.
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