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Abstract This paper describes a residual stress measurement
approach that determines a two-dimensional map of biaxial
residual stress. The biaxial measurement is a combination of
contour method and slitting measurements and a computation
to determine the effects of out-of-plane stress on a thin slice.
The measurement approach uses only mechanical stress re-
lease methods, which is advantageous for some measurement
articles. The measurement approach is verified with a numer-
ical experiment and validated with independent confirmation
measurements. Biaxial mapping measurements are performed
in a long aluminum bar (77.8 mm width, 51.2 mm thickness,
and 304.8 mm length) that has residual stresses induced with
quenching. The measured stresses are consistent with quench
induced residual stress, having peak magnitude of 150 MPa
and a distribution that is tensile toward the center of the bar
and compressive around the boundary. The validating confir-
mation measurements showed good agreement with the biax-
ial map. An uncertainty assessment, performed for each step
of the experimental procedure, shows that the overall com-
bined uncertainty is low, maximum of 21MPa for longitudinal
stress and maximum of 6 MPa for transverse stress, indicating
that the new biaxial mapping approach has excellent measure-
ment precision.

Keywords Residual stress measurement . Contour
method . Slitting . Validation . Quenching

Introduction

Residual stress can play a role in many failure mechanisms.
Fatigue [1, 2] and stress corrosion cracking [3–6] are particu-
larly sensitive to the presence of tensile residual stresses.
Residual stresses can be difficult to predict because they are
often the result of complex manufacturing processes, which
makes their measurement important for both understanding
failure [7, 8] and for validation of computational models of
stress inducing processes [9–14].

Many methods exist for measuring residual stress, and all
provide a limited portion of the stress tensor and have different
limitations. For example, large samples or samples with diffi-
cult microstructure (e.g., texture, large grains, etc.) are difficult
to measure with diffraction techniques [15]. Conversely, some
mechanical stress release methods can have difficulty measur-
ing large magnitude residual stresses [16] especially when the
stresses become large when a part is being sectioned [17, 18].
One mechanical stress release method, the contour method,
has been found to be especially useful since it inherently mea-
sures a map of residual stress over a cross-section. The contour
method measures the change in stress when cutting a part in
half (at the cut plane). Since the cut has created a free surface,
the stress normal to the cut plane must be zero after the cut, so
that the contour method completely determines the out-of-
plane stress component that existed at the cut plane, prior to
cutting. Pagliaro, Prime, et al. [19] further showed that the
contour method also determines the change in stress for the
in-plane normal components of residual stress at the cut plane.
Therefore, additional measurements of in-plane stresses on the
cut surface can be used to determine the original in-plane
stresses. The first measurement of this type was reported in
[19] and used x-ray diffraction to measure the remaining in-
plane stress at the contour cut plane (after the contour mea-
surement). Our recent work has extended this methodology to
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use only mechanical stress release methods [20, 21], but that
extension lacks validation.

This paper describes an approach for mechanical biaxial
residual stress mapping and verifies the fundamental mechan-
ics with a numerical experiment. The approach is then carried
out on a quenched bar, and the residual stresses determined are
validated with complementary measurements.

Methods

Measurement Approach

The new measurement approach comprises multiple mechan-
ical stress release measurements, in conjunction with superpo-
sition, to determine multiple stress components in the part at a
single plane of interest. Each mechanical stress release mea-
surement will change the part configuration (i.e., change the
geometry of the part) and each configuration will be denoted
with a capital letter (e.g., A, B, C). The residual stress tensor in
each configuration, at the plane of interest, is indicated with a
superscripted σ (e.g., σA). The biaxial stress mapping ap-
proach determines the out-of-plane stress, σzz, and one com-
ponent of the in-plane stress, either σxx or σyy, at the plane of
interest.

The configuration changes comprising the new approach
are shown in Fig. 1(a) and include cutting the part in half at the
plane of interest (configuration A to B) and removing a thin
slice (configuration B to C) adjacent to the plane of interest.
Assumed coordinates are also shown in Fig. 1, with x and y
lying in the plane of interest, and z along the length. Using
superposition, the stress in configuration A can be found with

σA x; y; 0ð Þ ¼ σi x; y; 0ð Þ þ σB x; y; 0ð Þ
¼ σi x; y; 0ð Þ þ σii x; y; 0ð Þ þ σC x; y; 0ð Þ ð1Þ

where σ with a superscripted Roman numeral denotes the
stress released by a change of configuration, defined as the
stress in the current configuration subtracted from the stress in
the prior configuration (e.g., σi=σA – σB). Although equation
(1) applies at all spatial locations, our concern is only the plane
of interest at z=0. The contour method is used to determine σi,
and this measurement completely determines the out of plane
component (σzz) of σ

A, since the plane of interest is a free
surface in configuration B. The slitting method is used to
determine one in-plane component of σC.

As shown in Fig. 1(b), σA can be decomposed so that

σA x; y; 0ð Þ ¼ σA zð Þ x; y; 0ð Þ þ σC x; y; 0ð Þ ð2Þ
where σA(z) is the effect of the out-of-plane stress on the thin
slice of configuration C, which can be determined using σzz
found by the contourmethod. Furthermore,σA(z) is a theoretical
construct that gives the change in stress that would occur in a

thin slice, if the out-of-plane stress were removed; and it is the
sum of σi and σii. Using equation (1) and (2), only σi and σC

need to be measured to find σA, thus there is no need to directly
measure σii. A locally smooth stress field is requited so that
σC(x, y, 0) can be assumed equal to an average of σC(x, y, z)
through the slice thickness, as would be measured with slitting.

Numerical Verification

As a first step, it is useful to verify the biaxial mapping ap-
proach using a numerical simulation. The goal of the simula-
tion is to show that the original stress state, σA, is equal to the
stress remaining in a thin slice, σC, and the effect of the out-of-
plane stress on the slice, σA(z).

The verification simulations comprise finite element anal-
ysis of three geometries, one for each configuration A, B, and
C. The finite element computations used commercial finite
element software [22]. A block was used for configuration
A, with a cross-section of 50.8 mm×76.2 mm and a length
of 144.4 mm, with rounded corners of 5 mm radius. The
model was 72.2 mm long, using a symmetry boundary condi-
tion at the mid-length. The model assumed an elastic modulus
of 71.7 GPa and a Poisson’s ratio of 0.33, which are typical of
aluminum alloy. The mesh was highly refined with in-plane
node spacing of 0.5 mm and a biased node spacing along the
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Fig. 1 Stress decomposition diagrams. (a) The original stresses (σA, all
stress components, at the plane of interest) are equal to the stress release
from cutting the part in half (σi), the stress released when removing a thin
slice (σii), and the stress remaining in the slice (σC). (b) The original stress
(σA) is equal to the stress remaining in a thin slice (σC) plus the effect of
total longitudinal stress on the thin slice (σA(z))
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length, varying from 0.5 mm at the symmetry plane to 4mm at
the free end of the block. The total number of eight-node brick
elements used was around 800,000. The stress state in each
configuration results from a bivariate uniaxial thermal strain
field

εthzz x; y; zð Þ ¼ −0:0075 f xð Þg yð Þ
f xð Þ ¼ 1

2
cos

π

3

8x

W
−1

� �� �
; x∈ W=8; 7W=8½ �

g yð Þ ¼ 1

2
cos

π
3

8y

H
−1

� �� �
; y∈ H=8; 7H=8½ �

ð3Þ

with all other components of the thermal strain zero. Here the
coordinate origin is at the lower left corner of the cross-sec-
tion, withW the maximum dimension along x (76.2 mm), and
H the maximum dimension along y (50.8 mm). The field is
chosen to have a complex shape including discontinuities near
the surface to rigorously test the measurement approach.

To determine stress in configuration B, the symmetry
boundary condition was removed from the configuration A
model. To determine stress in configuration C, all elements
farther than 5 mm from the symmetry plane were removed,
leaving a 5 mm slice. Stress from these three models provides
known values of σA, σB, and σC.

To find σA(z), a similar model was used, having a length
2.5 mm, and a symmetry boundary condition at the mid-
length. The in-plane mesh was the same as for configuration
A, and there were five elements through the thickness,
resulting in roughly 77,000 eight-node linear brick elements.
The original longitudinal stress in the block, along the mid-
length, was applied as a traction boundary condition to the
slice model to find σA(z). To verify the mapping approach,
σAwill be compared to (σC+σA(z)), to verify equation (2).

Validation

Biaxial mapping

The experimental validation requires two sets of measure-
ments; the first is the biaxial measurement itself and the sec-
ond additional measurements to confirm those results.
Measurements were done on an aluminum bar that was cut
from 51.2 mm (2.02 in. thick, rolled 7050 aluminum plate to
form a bar with a cross section 51.2 mm (2.02 in. thick by
77.8 mm (3.06 in. wide, and a length of 304.8 mm (12 in), as
shown in Fig. 2. The original plate was in the T7451 condi-
tion, being over-aged and stress relieved by stretching. The
bar had an additional heat treatment performed to introduce a
higher stress, that was representative of that used for the T74
temper [23]. The heat treatment consisted of solution heat
treatment at 477 °C for 3 h, immersion quenching in room
temperature water with 16 % polyalkylene glycol (Aqua-

Quench 260), and a dual artificial age at 121 °C for 8 h then
177 °C for 8 h.

The biaxial mapping approach consists of a measurement
of σzz with the contour method [24], removing three thin
slices, each 5 mm thick, adjacent to the contour measurement
cutting plane, and measuring the remaining σxx in the slices
with the slitting method [25].

The theoretical underpinning of the contour method has
been established earlier by Prime [26] and detailed experimen-
tal steps have been established by DeWald and Hill [27]; a
brief summary of the experimental procedure is given here,
which followed the practical advice in [24]. The specimen is
cut in two using a wire electric discharge machine (EDM)
along the plane of interest, at the mid-length of the bar
(Fig. 2). Cutting is performed with the specimen rigidly
clamped to the EDM frame. Following cutting, the profile of
each of the two opposing cut faces is measured with a laser
scanning profilometer to determine the surface height normal
to the cut plane as a function of in-plane position. The surface
height data are taken on a grid of points with spacing of
200μm× 200μm, so that there are roughly 96,000 data points
for each surface. The two surface profiles are then averaged on
a common grid, and the average is fit to a smooth bivariate
Fourier series [28], where the number of coefficients in the
surface is determined by the choice of the maximum fitting
parameters (m, n) for the (x, y) spatial dimensions. A level of
smoothing is determined by choosing the fitting parameters
(m, n) during data reduction.

Fig. 2 Dimensioned diagram of the measurement article with the
location of measurement planes (W=77.8 mm, H=51.2 mm, and L=
304.8 mm). The biaxial measurement plane is at z=0 mm and the three
confirmation measurements (V1, V2A and V2B) are at x=38.9 mm,
19.45 mm, and 58.35 mm. Three slices were removed adjacent to the
plane of interest by cutting at z=−5 mm (S1), −10 mm (S2), and −15 mm
(S3). Each slice has a slitting measurement at the mid-width of the slice
and at ±10 mm (S1), ±15 mm (S2), and ±20 mm (S3) from the mid-width
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The residual stress on the contour plane is found with a
linear elastic finite element analysis that applies the negative
of the smoothed surface profile as a displacement boundary
condition on the cut plane. The finite element mesh used
eight-node, linear displacement brick elements with node
spacing of 1 mm on the cut face, and node spacing normal
to the cut face that increased with distance away from the cut,
being 1 mm at the cut face and 5 mm at the end of the
bar. The mesh was sufficiently refined such that when
the node spacing is halved there is negligible change of
stress. The model used an elastic modulus of 71.0 GPa
and a Poisson’s ratio of 0.33.

To find the remaining transverse stress in the three removed
slices, slitting (also known as the crack compliance technique)
was used. The theoretical underpinning of the slitting mea-
surements has been given by Prime [29] and best experimental
practices have been given by Hill [25]. Slitting measurements
consisted of incrementally cutting through the sample (along
y) using a wire EDM while measuring strain at the back face
of the cut plane for each cut increment. The stress normal to
the cut plane is then determined from measured strain vs. cut
depth data using an elastic inverse, with smoothing of the
stress profile provided by Tikhonov regularization [30]. The
elastic inverse uses a compliance matrix that provides the
strain that would occur at a specified set of cut depths for stress
given by an assumed set of basis functions. Details of the
compliance matrix development are given in [31]. The com-
pliance matrix development uses a finite element model of the
part geometry with 2D bilinear plane strain elements and a
stiffness correction scheme developed by Aydiner and Prime
[32] to accurately reflect the finite thickness of the slice.

Since the goal of this work is to determine a map of the
stress, multiple slitting measurements are needed, and were
made in a set of three slices. The three slices, each 5 mm thick,
were removed adjacent to the contour measurement plane by
cutting with wire EDM at z=−5 mm, −10 mm, and −15 mm.
The slitting measurements provided σxx(y) and were made at x
locations symmetric about the midwidth, xm=38.9 mm.
Measurement locations in the first slice were at xm and
at xm±10 mm; measurement locations in the second slice
were at xm and at xm±15 mm; and, measurement locations
in the third slice were at xm and at xm±20 mm.

We assume that the stress near the plane of interest is in-
variant of z, so that the stresses determined in different slices
can be collapsed onto a single measurement plane. Since we
are performing multiple slitting measurements on each slice,
the effect of previous slitting measurements on the current
measurement is needed and is found with a supplemental
stress analysis. A detailed description of the supplemental
stress analysis is given in [33] and consists of applying the
measured stress from a previous slitting measurement as a
traction boundary condition at the prior measurement plane,
in a finite element model of the part, and extracting the
resulting stress at the current measurement site. The total
stress, at a given plane is a superposition of the stress mea-
sured from slitting and the effect of any prior measurement,
determined with a supplemental stress analysis.

To find σA(z), the longitudinal stress field found with
the contour method is applied as a traction boundary
condition to both in-plane (x-y) faces of a finite element
model of the thin slice used in the slitting measure-
ments. The finite element mesh used eight-node, linear
displacement brick (C3D8) elements with node spacing
of 1 mm on the cut face, and five elements through the
thickness. The material behavior was elastic, using the
properties stated earlier.

Biaxial Mapping Uncertainty

An uncertainty estimate for each step of the biaxial
measurement provides an assessment of the robustness
of the measurement approach, to check that the cumu-
lative uncertainty doesn’t become unreasonably large.
The uncertainty for the contour method is found using
the approach described in [34], which accounts for two
uncertainty sources that are present in every contour
measurement, the uncertainty associated with noise in
the displacement profiles, called the displacement error,
and the uncertainty associated with selecting an analyt-
ical form to smooth the displacement profile, called the
model error. The model error definition takes the stan-
dard deviation of the stresses determined from five dif-
ferent levels smoothing

Umodel; m;nð Þ x; yð Þ ¼ std σ m;nð Þ x; yð Þ;σ mþ1;nð Þ x; yð Þ;σ m;nþ1ð Þ x; yð Þ;σ m−1;nð Þ x; yð Þ;σ m;n−1ð Þ x; yð Þ� � ð4Þ

where Umodel.(m,n)(x, y) is the model error as function of in-
plane position and σ(m,n)(x, y) is the contour stress, both for a
choice of fitting parameters, and std is the standard deviation
operator.

The displacement error is found using a Monte Carlo ap-
proach. Uncertainty in the displacement field is estimated to

be 3 μm, which is superposed as normally distributed noise
with the measured displacement field. After noise is added to
the data, standard contour data processing is performed. The
standard deviation of five contour measurements with Bnoisy^
data is taken as the displacement error for a chosen set of
fitting parameters (m, n). Additional Bnoisy^ simulations were
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performed to confirm the displacement error converged with
five simulations. The two error sources are combined using

Ucontour; m;nð Þ x; yð Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U 2

model; m;nð Þ x; yð Þ þ U 2
disp; m;nð Þ x; yð Þ

q
ð5Þ

where Ucontour,(m,n)(x, y) is the total uncertainty of the
contour measurement and Udisp,(m,n)(x, y) is the displace-
ment error, each for a given set of smoothing parame-
ters (m, n) and as functions of in-plane spatial position
(x, y). Since the contour measurement is the only con-
tributor to the out of plane stress, the uncertainty in σzz

for the original configuration is given by the contour
uncertainty (i.e., Uzz(x, y)=Ucontour,(m,n)(x, y)).

The uncertainty analysis for slitting measurements follow-
ed the procedure given in [35]. Since regularized unit pulses
were used as the basis functions, only the random uncertainty
term described in [35] was used, and was taken as the maxi-
mum of either the misfit between measured strain and fitted
strain, or 2 με. The uncertainty in the corrections for prior
slitting measurements was estimated using a Monte Carlo ap-
proach. The prior stresses were assumed to have normally
distributed noise, corresponding to their uncertainty. The error
was then taken as the standard deviation of the results of five
such Monte Carlo simulations. The total uncertainty was
found using

UC x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

slitting x; yð Þ þ U 2
correction x; yð Þ

q
ð6Þ

where UC(x, y) is the uncertainty in σC, Uslitting(x, y) is
the uncertainty from the slitting measurements, and
Ucorrection(x, y) is the uncertainty in the corrections that
accounted for the prior slitting measurement.

The uncertainty in σA(z), UA(z)(x, y), was also found
using Monte Carlo. The uncertainty was estimated by
taking the standard deviation of the results of σA(z)

when the underlying longitudinal stress had normally
distributed noise with a standard deviation correspond-
ing to the uncertainty in σzz.

The two uncertainty sources for the transverse stress (those
relating to σC and σA(z)) are combined using

Uxx x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U 2

C x; yð Þ þ U 2
A zð Þ x; yð Þ

q
ð7Þ

where Uxx(x, y) is the total uncertainty in σxx as a function of
in-plane spatial position (x, y).

Confirmation Measurements

Confirmation measurements are required to validate the biax-
ial mapping approach. To do so, σxx is measured at specific
planes using the contour method on configuration B, the

half-length bar. Three contour measurements are made at
planes V1, V2A, and V2B shown in Fig. 2. The first
validation measurement, at plane V1, is made at x=
38.9 mm and the second and third measurements are
made at x=19.45 mm (plane V2A) and 58.35 mm (plane
V2B). The first validation measurement aligns with mea-
surements from the biaxial map, but the second and third
measurements are not exactly aligned with the measure-
ment locations from the biaxial map (i.e., slitting measure-
ments were offset in x by 0.55 mm). The transverse stress
from the biaxial mapping result will be interpolated from
nearby data to evaluate stresses at the same positions.
Since the stress in the bar was induced with quenching,
it is expected that the stress should be constant along the
length of the bar, except near the ends.

The confirmation measurements and uncertainty estima-
tion followed the methods for contour measurement described
above. The effect of the measurement at plane V1 on stress at
planes V2A and V2B was accounted for using superposition.
The confirmation contour measurements are cut along the
z direction, and determine σxx(y, z) at a set of points with
approximately 1 mm in-plane spacing. Since the stress is
due to quenching, it is expected to be invariant with z,
except near the ends of the half-length bar (at z=-152 mm
and 0 mm) where σxx would be affected by the free sur-
face condition. To compare the results of the confirmation
contour measurements with results from the biaxial map-
ping, we report σxx(y) as an average of results at the set
of z-positions farther than one thickness from the free end
of the half-length bar (i.e., for −100≤z≤-52), rather than
reporting results for an arbitrarily chosen value of z. At a
given value of y, the uncertainty of the confirmation mea-
surement is taken to be the standard deviation of the
values from which the average was determined; at nearly
all locations, this uncertainty exceeded the underlying con-
tour method uncertainty.

Results

Numerical Verification

The numerical verification results are shown in Fig. 3. The
results confirm that σA is the sum of σC and σA(z). Line plots
of the results along the horizontal direction at the mid-vertical
dimension can be seen in Fig. 4. As the results show, the sum
of σC and σA(z) equals σA, but interestingly σC and σA(z) have
significantly different magnitudes for σxx and σyy. The contri-
bution of σC to σzz is nearly zero as expected, since the slice is
thin, except in a small region where the stress field is discon-
tinuous. For σxx and σyy, σ

C and σA(z) are both major con-
tributors to the total.
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Validation

Biaxial mapping

The raw surface profiles from the contour measurement can be
seen in Fig. 5. The surface profiles from each side of the cut
show similar distributions, which indicate good clamping dur-
ing cutting. The fitting parameters for the contour measure-
ment selected during data processing are (m, n)=(1, 1). The
average and fit surface profiles have shapes similar to the
measured surface profiles. Line plots of the surface profile

data (Fig. 6) show that the fit surface appropriately represents
the underlying data.

The longitudinal stress and uncertainty can be seen in
Fig. 7. The stress has a paraboloid distribution with com-
pressive stresses along the exterior (minimum of
−153 MPa) and tensile stresses toward the center (maxi-
mum of 157 MPa), as would be expected in a quenched
bar [36]. The uncertainty is low away from the cross sec-
tion boundaries (mostly below 8 MPa) with a maximum
uncertainty at the top and bottom edges of 21 MPa at a
68 % confidence interval.

Longitudinal, σzz Short Transverse, σyy Long Transverse, σxx

A
A

(z
)

C

Zero

A
(z

)
+

 
C

Fig. 3 Contour plots of the initial stress (σA) (top row), the effect of the longitudinal stress in the slice (σA(z)) (second row), the stress remaining in the
slice (σC) (third row), and the sum of σA(z) and σC (bottom row) for each stress component
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Fig. 4 Line plots comparing the
contribution of the stresses
remaining in the slice (σC), the
effect of the longitudinal stress on
the slice (σA(z)), and their sum, to
the original stress (σA) for (a)
longitudinal stress, (b) short
transverse stress, and (c) long
transverse stress

Fig. 5 Measured surface displacement from the contour method measurement. (a) Surface B1^, (b) surface B2^, (c) averaged surface, and (d) fitted
surface
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The measured strain for the slitting measurement at x=
18.9 mm is shown in Fig. 8(a), and the calculated stress is
shown in Fig. 8(b). The stress profile is roughly parabolic,
as would be expected from a rapid quench. The strain data
and stress results at other planes resemble those at x=
18.9 mm.

The transverse stress and uncertainty from the biaxial map
can be seen in Fig. 9. The stresses remaining in the slice, σC,
have compressive stresses along the exterior (minimum of
−90 MPa) and tensile stresses toward the center (maximum
of 55 MPa). The uncertainty is low, with most points below
4 MPa and a maximum of 8 MPa. The effect of the longitu-
dinal stress, σA(z), has a paraboloid distribution, with compres-
sive stresses along the exterior (minimum of −70 MPa) and
tensile stresses toward the center (maximum of 33 MPa). The
uncertainty is also very low, with most points below 1 MPa
and a maximum near the top and bottom edges at 6 MPa. The
total transverse stress also has a paraboloid distribution, with
compressive stresses along the exterior (minimum of
−160 MPa) and tensile stresses toward the center (maximum
of 90 MPa), which is expected for quenched samples. Line
plots of the two contributions to the total transverse stress at a
horizontal position of 18.9 mm can be seen in Fig. 10 (same
spatial position as the plot shown in Fig. 8). The plot shows
that both contributions are significant parts of the total.

Confirmation Measurements

The results of the three confirmation measurements and their
uncertainties can be seen in Fig. 11. The fitting parameters for
the contour measurement at x=38.9 mm, 19.45 mm, and 58.35
have (m, n)=(2, 1), (3, 1), and (3, 1), respectively. The results
for the first confirmation measurement at x=38.9 mm shows a
roughly parabolic distribution through thickness (away from
the edges), with compressive stresses along the exterior (mini-
mum of −160MPa) and tensile stresses toward the center (max-
imum of 75 MPa). The uncertainty for this measurement has a
roughly similar distribution as that found in the contour mea-
surement used for the biaxial map. The uncertainty is largest at
the edges (25 MPa), but is fairly low over most of the interior
(below 10MPa). The stress for the two secondary confirmation
measurements at horizontal positions of 19.45 mm and
58.35 mm have essentially the same measured stress as each
other and both have very similar distributions to the measure-
ment at x=38.9 mm, but with lower magnitudes (minimum of
−100 MPa and maximum of 55 MPa). The uncertainty of both
measurements is also very similar to each other, with very low
uncertainty in the interior (under 2 MPa), and maximums at the
top and bottom edges of 9 MPa.

The comparison of the transverse stress from the biaxial
map and from the confirmation measurements can be seen

(a) (b)

Fig. 6 Measured surface
displacements along the (a)
horizontal direction at mid-
vertical dimension and (b)
vertical direction at mid-
horizontal dimension. Note: the
data from surface 1 is offset by
30μm and the data from surface 2
is offset by −30 μm, so that the
average and fit are also visible on
the same plot

(a) (b)

Fig. 7 Measured longitudinal (a)
stress and (b) uncertainty (68 %
confidence interval)

1146 Exp Mech (2015) 55:1139–1150



in Fig. 12. The results show that the confirmation mea-
surements agree well with the biaxial mapping at all three
intersecting planes. The comparison at x=38.9 mm has the
largest disagreement of the three, with a maximum differ-
ence of 25 MPa near y=50 mm. However, at most points,
the error bars from the two different measurement tech-
niques are close to one another, so differences in tech-
nique are not statistically significant. Overall, there is ex-
cellent agreement between the two methods, validating the
biaxial mapping approach.

Discussion

One point of concern in developing the biaxial mapping ap-
proach is that the superposition of multiple measurements
could result in poor precision. However, we have found that
not to be the case. The uncertainty in the transverse stress (of
the biaxial map) is low, under 10 MPa, in large part because
slitting has excellent precision [35, 37]. To contrast, the lon-
gitudinal stress, which consisted of a single contour measure-
ment, had somewhat larger uncertainties, up to 20 MPa. The

(a) (b)

Fig. 8 (a) Measured strain and
(b) calculated stress for the slitting
measurement at x=18.9 mm

(a) (b) (c)

(d) (e) (f)

Fig. 9 Long transverse stress: (a) remaining in slice, (b) effect of longitudinal stress on the thin slice, and (c) total, with (d) through (f) showing
corresponding uncertainty, at a 68 % confidence interval
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20 MPa uncertainty found in the contour measurement will
affect the uncertainty in σxx

A(z), but to smaller degree because
the effect of the longitudinal stress on the axial stress in the
thin slice is always smaller than the longitudinal stress itself.

The uncertainty found here compares favorably with uncer-
tainties typical of other residual stress measurement tech-
niques [38].

The new biaxial mapping method has some advantages
over other established residual stress measurement techniques.
For example, biaxial mapping measurements in welded com-
ponents have been shown to be especially useful [20, 39, 40].
In welds, the primary advantage derives from the use of me-
chanical stress release, which is largely unaffected by the mi-
crostructural issues commonly present in welds that very often
complicate diffraction based measurements. Furthermore, the
use of slitting brings the excellent precision offered by that
technique, as compared to somewhat poorer precision of other
methods that could be used for mapping stress in the thin slice
[41].

Another issue that is relevant for biaxial mapping is the
optimal selection of slitting measurement locations. If mea-
surements in the slice are too close to one another, the preci-
sion of the measurement decreases. A recent study has ad-
dressed this topic [33] and found the minimum distance be-
tween slitting planes for good measurement precision is 0.2
times the part thickness.

Fig. 10 Stress and uncertainty of the two contributions to the transverse
stress measurement and the total (σA), at a horizontal position of
18.9 mm. Uncertainty is shown as dotted lines

(a) (b)

(c) (d)

(e) (f)

Fig. 11 Measured transverse stress and uncertainty (68 % confidence interval) at x=38.9 mm ((a) and (b)); x=18.9 mm ((c) and (d)); and x=58.9 mm
((e) and (f))
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Summary

A biaxial residual stress mapping approach using mechanical
stress release methods was described. The measurement con-
sists of decomposing the initial residual stress into the stress
remaining in a thin slice and the effect of the longitudinal
stress on that slice. The longitudinal stress is found using the
contour method. The effect of the longitudinal stress on a thin
slice is found using a finite element computation. The trans-
verse stress remaining in the slice is found using several slit-
ting measurements. Numerical simulations were performed to
verify the measurement concept.

Physical experiments were performed to find a biaxial map
of longitudinal and transverse stress in a quenched aluminum
bar. Both the longitudinal and transverse stresses were found
to have a paraboloid distribution, with tensile stress in the
center of the cross-section and compressive stress along the
edges, which agrees with the residual stress field typical of
quenching. The minimum and maximum of the longitudinal
stresses are −153 and 157 MPa and of the transverse stress are
−160 and 90 MPa. The uncertainty in the longitudinal stress
was found to be low over most of the interior, under 8 MPa,
with higher uncertainty toward the edges, with a maximum of
21 MPa. The uncertainty for the transverse stress had several

contributing error sources, but is very low, with maximum
uncertainty of 6 MPa.

The results of the biaxial mapping measurement were com-
pared to confirmation measurements of the transverse stress at
three planes. The good agreement with the confirmation mea-
surements validates the biaxial mapping approach.
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