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Abstract The mechanical behavior in cross biaxial tension
was investigated for two metallic sheets, an aluminium alloy
and a dual phase steel. The heterogeneous strain field in the
central gauge area of a cruciform specimen was analyzed by
digital image correlation. Minor and major strains were output
along several paths, for a given load level just before necking,
showing a wide range of strain states, from uniaxial tension to
biaxial state. The applied loads along the two loading directions
were also recorded, the gap between the two signals being all
the most important that the material anisotropy was significant.
Moreover, the strain path ratio, defined as the ratio of the minor
strain over themajor strain, exhibited a sensible non-monotonic
evolution along the transverse direction, compared to the
rolling direction. Finally, a material parameter identification
process with only biaxial tensile test for Bron and Besson
anisotropic yield model was proposed, based on the minimiza-
tion of experimental and numerical principal strains along a
specified path in the gauge area of the cruciform specimen.

Keywords Biaxial test . Plastic anisotropy . Yield
criterion . Material parameter identification

Introduction

Sheet metals usually exhibit an orthotropic behavior related to
the rolling process. Such an anisotropy influences the final
geometry of deep-drawn parts, stress level prediction in finite

element simulations as well as the strain at rupture. Within a
phenomenological description of the mechanical behavior of
sheet metals, this phenomenon is classically represented with
anisotropic yield functions, considering that the initial anisot-
ropy, as determined just at the elasto-plastic transition, does
not evolve with plastic strain. A very large number of aniso-
tropic yield criteria have already been proposed, e.g., [1–4],
and the models tend to become more and more complex
involving more and more material parameters, which leads
to a great flexibility to describe the anisotropic behavior at
different stress and strain states. In this study, a yield function
based on two transformation tensors and involving 16material
parameters was chosen [5]. However, such yield function with
numerous parameters requires an extensive experimental da-
tabase and therefore a complex identification strategy.

A first approach for material parameter identification is to
consider several quasi-homogeneous mechanical tests in the
experimental database. The frequently used tests are: uniaxial
tension, simple shear, planar tension and biaxial tension ob-
tained by hydraulic bulging, which are in the following called
conventional tests [6]. They are either considered homoge-
neous, leading to an analytical post-treatment of raw data, e.g.,
uniaxial tension and simple shear, or at least the post-treatment
is limited to a reduced area like in hydraulic bulging. The
identification method is usually based on adjusting, either in a
direct way or by an inverse procedure, the yield model pa-
rameters for several signals obtained from conventional tests;
very often, initial yield stresses and anisotropic coefficients
are considered in the experimental database [2, 7–11].
However, it was pointed out that due to the dispersion on
initial yield stresses as well as the evolution of anisotropy with
strain, considering only initial values does not give an accurate
description of the mechanical behavior [12]. Moreover, the
anisotropic model should be able to address all the experi-
mental results: initial data and also subsequent data at least
over a given strain range. Some works investigated the iden-
tification of material parameters considering not only the
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initial values but also values recorded at higher strains. Bron
and Besson [5] and Zang et al. [13] identified Bron and
Besson yield model parameters, for plane stress states, by
considering plastic anisotropy coefficients as well as the full
strain–stress curves for several conventional tests. Some stud-
ies proposed non-constant material parameters, that depended
on the plastic strain [12–15]. However, with thismethod, more
material parameters were introduced. Moreover, each conven-
tional test corresponds usually to a unique strain state, i.e.,
monotonic loading, and therefore a multi-parameter identifi-
cation process requires several conventional tests.

An interesting alternative can consist in performing identi-
fication process with data from a heterogeneous test, so that
different strain states can be obtained with only one specimen.
As the techniques to measure displacement and strain fields
have developed, parameter identification of mechanical
models with the whole heterogeneous strain field has been
performed [16]. Among the different possibilities to perform
parameter identification from full-field measurements, one
possibility is to use finite element model updating method or
FEMU [17]. It consists of decreasing the gap between finite
element simulation output and experiments, by optimizing the
material parameters. For example, Güner et al. [18] propose to
use heterogeneous tensile tests to identify the anisotropy of an
AA6016-T4 sheet described with the Yld2000-2Dmodel. The
method includes the optical measurement of strains on three
flat specimens with varying cross-section and an inverse pa-
rameter identification scheme, which minimizes the differ-
ences between the numerical simulation strain fields and the
experimental ones. The specimen allows different strain states
between uniaxial tension and plane strain tension. The equi-
biaxial stress state is obtained from a layer compression test,
which is also included in the experimental database. Several
parameters of a constitutive model can be identified at the
same time with only one test when the experimental field
information is rich enough [19]. For example, Pottier et al.
[20] proposed an inverse identification procedure with out-of-
plane displacement and deformation field measurement. The
sample was designed to exhibit tension, shear and expansion
strain states. Parameters (4) of Hill 1948 yield model written
for a plane stress state, together with parameters of a harden-
ing law (2), were identified by comparing the experimental
and numerical displacements along three directions as well as
the tool reaction force. However, extracting relevant informa-
tion from inhomogeneous strain fields is a vast task that
necessitates dedicated strategies. Lubineau [21] highlighted
that material parameters may affect differently the mechanical
response depending on the material point and therefore pro-
posed an automated treatment, via filtering, of the informa-
tion. However, it led to high computational times even though
only 2 material parameters were used. Indeed, the develop-
ment of such strategies is in itself a research work, and their
applications were restricted to a small number of material

parameters and to virtual materials [22]. The focus of this
work is to consider a large number of material parameters
identified from experimental data.

Biaxial tensile test with a cruciform specimen seems to be
also promising to reach different strain states. Indeed, this test
seems particularly interesting since different strain paths can
be obtained simultaneously with a unique specimen shape by
imposing different loads or velocity on two arms [23]. Prates
[24] proposed an inverse analysis methodology to determine
the parameters of Hill 1948 yield criterion with a cruciform
specimen. Principal strains along rolling and transverse direc-
tions (RD and TD respectively) from the specimen center
were measured and output. During the identification process,
the parameters were adjusted by minimizing the difference
between experimental and numerical equivalent strain and
strain path ratio, defined as the ratio of the minor strain over
the major strain. Teaca [25] also proposed a parameter identi-
fication procedure with two designed cruciform specimens,
which offered high sensitivity of strain field along the arms.
To identify the parameters of an anisotropic yield function
[26], strain field along rolling and diagonal directions were
determined experimentally and numerically. During the iden-
tification process, two parameters of the yield model were
adjusted by minimizing the difference between experimental
and numerical strain field along rolling direction. The remain-
ing parameters were determined from uniaxial tensile test
data. Several mechanical tests were still required.

By itself, biaxial tension of cruciform specimen has pre-
sented a continuous interest among the mechanical commu-
nity. Several mechanical design were tested to reach the
biaxial strain or stress state, e.g., using two tensile loading
systems [27], or a dedicated set-up installed on a tensile
machine with jointed arms [28], or a transformation of the
vertical displacement of the machine into horizontal ones [29].
Specific devices were also designed using servo-hydraulic
actuators [30, 31]. Signals recorded during the test are the
loads in the two orthogonal directions and the strains, either
with an extensometer [32] or digital image correlation [33].
The mechanical design of the cruciform specimen is the main
difficulty and clearly the main limitation for an extensive use
of cruciform biaxial tension. A lot of different shapes have
been proposed, leading to a difficult comparison of the results;
they can be classified into three main categories [34], i.e., cut
type, reduced section type and slot type specimen. The main
aim is to reduce the strain in the arms and to increase the strain
in the central area, and in some case to promote rupture in the
central area, e.g., [35] for a survey of the different proposed
geometries. It should also be emphasized that the choice
of the geometry depends on the application, like mea-
sure of elasto-plastic yield stresses under different strain
states [9, 10, 36–39] within a limited strain range or
characterization of forming limit curves up to very high
strains [40].
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According to the literature survey presented above,
cross biaxial tension combined with strain field measure
is a new technique applied to the identification of ma-
terial parameters for metallic sheets materials, though
already used for other types of materials. Indeed, a
similar test and sample geometry were previously used
for composites [41, 42] and elastomers [43]. It can be
emphasized that in these studies, a maximum of 4
parameters were identified from the information of the
biaxial test. Up to now and to the authors’ knowledge,
there was no published work that dealt with the param-
eter identification of a complex yield model involving a
large number of parameters (i.e., above 10) with a
single heterogeneous test.

In the present article, a cross biaxial tensile test was used to
identify the parameters of Bron and Besson anisotropic yield
model for AA5086 and DP980 sheets. Experimental results
on load and strain fields showed that these two materials
exhibit an anisotropy that is more significant for the alumin-
ium alloy than for the steel. The strain fields in the central area
of the cruciform specimen for both materials showed a large
heterogeneity, both in magnitude and strain path ratio.
Principal strains were output in several directions, i.e., diago-
nal, longitudinal and transverse, and it was shown a specific
evolution of the strain path ratio along the longitudinal direc-
tion, all the more important that the material anisotropy is
significant. Finally, Bron and Besson yield model parameter
were identified based on an inverse optimization method that
involves a numerical simulation of the biaxial test and a
minimization of the gap between experimental and nu-
merical values of the principal strains in the central
area. Out of comparison’s sake, and in order to high-
light the sensitivity of the numerical strain field to the
anisotropy model, numerical simulations using Hill 1948
yield model were also performed. Hence, the reliability
of the proposed identification method with only a cross-
biaxial tensile test was established.

Experiments

Material

Two different materials were used in this study, an aluminium
alloy AA5086 provided in sheets of thickness 2 mm and dual
phase steel DP980 sheets of thickness 1.75 mm. Both mate-
rials were characterized in previous works in uniaxial tension
[35, 44], and their mechanical properties are given in Table 1.
It can be seen that the aluminium alloy exhibits a significant
normal anisotropy, as evidenced by an average plastic anisot-
ropy coefficient, �r ¼ r0 þ 2r45 þ r90ð Þ =4, well below unity
whereas DP980 exhibits a value closer to the isotropic value.
Both materials show a weak in-plane anisotropy, as evidenced

by |Δr|=(r0−2r45+r90)/2, where r0, r45 and r90 are the three
plastic anisotropic coefficients defined by the ratio of width
plastic strain rate to normal plastic strain rate. Finally, the
ultimate tensile strength Rm of DP980 is 3.6 times higher than
the one for AA5086.

Biaxial Tensile Machine

The biaxial device, available in the Laboratory of Civil and
Mechanical Engineering (LGCGM) of National Institute of
Applied Sciences (INSA) at Rennes, is displayed in Fig. 1.
The apparatus is equipped with four hydraulic cylinders and
accumulators, which allow static and dynamic tests for cruci-
form specimen, though in this study only quasi-static tests
were performed. The maximum load capacity for each arm is
50 kN and the cylinder speed can be cumulated up to 2 m/s. To
impose different strain paths to the biaxial tensile specimen,
different velocities along the two arms can be applied.

The specimen is settled in the center of the machine. It is
connected to the load cell via a bi-articulated link (Fig. 2),
leading to a pivot. Therefore, there is no transverse load
applied to the sample, only loads along the direction of
the arms.

The displacement sensors are located at the far ex-
tremities of the machine and therefore the real displace-
ments at the sample arms are not known accurately. A
high-speed digital camera and a lighting system are
installed above the specimen to take synchronized pic-
tures of the specimen and to record the material point
displacements throughout the biaxial tensile process. In
order to have a high accuracy, only the central square
area of the cruciform specimen was considered.

Cruciform Specimen

Concerning the cruciform specimen shape, there is no nor-
malized geometry and many different shapes have been pro-
posed in the literature [40]. The main drawback of the cruci-
form specimen shape is the localization of the deformation
between two adjacent arms leading to small levels of strain in
the central area at rupture. The existing shapes can be classi-
fied into twomain types: (i) the cut type with radius or notches
between two adjacent arms [10, 36, 37] and possibly with

Table 1 Mechanical properties of AA5086 and DP980

r0 r45 r90 r |Δr| Rp 0.2 % (MPa) Rm

(MPa)
0° 45° 90°

AA5086 0.39 0.47 0.4 0.437 0.015 146 131 130 270

DP980 0.63 0.95 0.84 0.815 0.05 701 690 694 973
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slots in the arms to reduce the strain localization at the corner
of the two arms without reduction of the thickness. This type
of cruciform specimen shape is the easiest one to manufacture
and is usually chosen to characterize elastic properties or
initial yield contours where low strain levels are required;
(ii) the second type is the reduced section type where the
thickness sheet is reduced in the central part of the specimen
in order to ensure a localization of the deformation in this
zone. Slots in the arms or notches can be also added to this
type. With these specimen geometries, larger strain levels can
be reached in the central zone before rupture occurs and
hardening behavior or forming limits curves [40] can be
characterized.

In this work, since large plastic strains are not necessarily
required to capture initial yield contours, a simple specimen
shape, a cut type one, with a radius of 5 mm between two arms
has been chosen (Fig. 3). This specimen has no thickness

reduction in its central area, so it can be used whatever the
sheet thickness.

Experimental Parameters

Experiments on the servo-hydraulic device have been per-
formed with a constant velocity ratio vx / vy = 1 imposed on
the four arms of the cruciform specimen, with vx= vy= 1mm/s
the velocities imposed on the two arms, cf. Fig. 4 for the frame
definition. x and y are along the rolling and transverse direc-
tions respectively.

Figure 4 shows the image of the cruciform specimens
before (initial state) and after the biaxial tensile tests for both
materials: AA5086 and DP980. Two tests were performed for
each material, in order to assess the reproducibility, specimen
1 and 2 are aluminium samples whereas specimen 3 and 4
refer to DP980 samples. Rupture of the samples occurred at

Fig. 1 Schematic representation
of the biaxial tensile machine

Fig. 2 Grip system to clamp the
specimen
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time t=6.048 s for AA5086 (specimen 1) and t=3.240 s for
DP980 (specimen 3). The rupture took place along the rolling
direction for both materials, at the smallest section along one
of the arm. For DP980, a second rupture was also obtained
along y direction, since after the rupture along x, the displace-
ments were still imposed up to a fixed value.

Figures 5 and 6 show the evolution of the loads with time
during the tests: FX and FY, for AA5086 and DP980 respec-
tively. It can be seen that due to the material anisotropy, the
force along rolling direction is about 5 % higher than the one
along transverse direction for AA5086, while for DP980, the
force along the transverse direction is higher, by about 4.5 %,
than the force along the rolling direction, before the necking.
These results are consistent with the stress–strain data obtain-
ed in uniaxial tension in rolling and transverse directions for
these materials [33, 44].

Moreover, due to the material and the thickness, a maxi-
mum load of 12 kN was reached for AA5086 compared to 45
kN for DP980. Also there exists a slight time shift between the

loadings of the arms along two directions, in particular for
AA5086 (Fig. 5). For DP980, the force along rolling direction
exhibits a final decrease, before the rupture takes place, cor-
responding to necking (Fig. 6). While for the transverse di-
rection, the still increasing force indicates that the necking did
not occur along this arm.

Strain Field Measurement

Central Area

Images of the central area of the cruciform specimen were
recorded with a high resolution camera. A frequency of 250
images/s is chosen. Considering the adopted image size and
the dimensions of the filmed zone, a resolution of 0.419 mm/
pixel is obtained. The DIC software CORRELA 2D was used

Fig. 3 Geometry of the
cruciform specimen. Dimensions
are given in mm

Fig. 4 Cruciform specimens before and after biaxial tensile test.
Dimensions of the samples are given in Fig. 3

Fig. 5 Evolution of load with time along two arms for AA5086
specimens
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to compute the in-plane strain tensor. Figure 7 shows the
different parameters of the calculation strain model used in
current work. L and H define the subset size, D and E denote
the distance between two sequential subsets in the X and Y
direction. By setting the interval value N, in-plane strains are
calculated at the center of selected subsets, in grey color in
Fig. 7, from displacements of subsets. In this study, L and H
were both set to 32 pixels and in order to obtain more strain
points with DIC method, D and E were both set to 16 pixels.
To smooth the strain values, the interval value was set to 4.
With this configuration, the correlation results can provide the
in-plane initial and current positions and the strains for each
subset at different times.

Figure 8 shows an image of a specimen in the initial state.
The central square area 1 (highlighted in blue) of approxi-
mately 25×25 mm2 was selected for two specimens, leading
to a total number of about 1600 calculation points. Major
strain ε1, minor strain ε2 and the strain path ratio, defined by
the ratio ε2/ε1, were output at these points and analyzed just
before rupture took place, at time t = 6.0 s for AA5086 and
t = 3.240 s for DP980.

The strain field in the central area is presented in Fig. 9 for
both specimens. Similar distributions for the two specimens
have been observed. However, the maximum strain level of
DP980 is much lower than AA5086. Figure 9(a) and (b)

shows the major strain distribution. The strain increases from
the center to the edge with a lowest value in the center around
0.024 for AA5086 and 0.01 for DP980, up to the largest value
at about 0.11 and 0.036 respectively. Figure 9(c) and (d) gives
the minor strain distribution. It decreases from about 0.024 for
AA5086 and 0.0098 for DP980 at the center down to around
−0.019 and −0.007 at the edge, respectively. Figure 9(e) and
(f) presents the strain path ratio distribution. There is nearly an
equi-biaxial strain state (about 0.90 and 0.95 respectively) for
both specimens in the central area. It then changes gradually
along the diagonal direction to nearly uniaxial tensile strain
state (about −0.17 for both specimens) near the corner. The
designed cruciform specimen presents therefore different
levels of strain in the central gauge area, which is an interest-
ing feature to be used in the material parameter identification.
It can be emphasized that a rather low maximum strain was
reached for the biaxial stress state corresponding to the fact
that a constant thickness was used. Indeed, higher strains (up
to rupture) were only obtained by reducing locally the thick-
ness in the central area [35].

The strain field data (ε1, ε2 and ε2/ε1) was then output
along the selected directions given in Fig. 8, in order to have a
quantitative view on the evolution.

Principal Strains along Diagonal Profiles

Figure 10 presents the major and minor strains. Each diagonal
direction being at 45° to both RD and TD, the lengths of these
four directions are all equal.When comparing the four profiles
(1 to 4) for each specimen and whatever the material, a slight
discrepancy is recorded near the free edge of the sample, the
maximum relative gap being about 10 % for the major strain
and 5 % for the minor strain. The values are about 0.026 and
0.024 for AA50816 at the center for major and minor strains

Fig. 6 Evolution of load with time along two arms for DP980 specimens

Fig. 7 Subset dimensions and calculation strain model used in DIC
technique

Fig. 8 Analysis areas in the central part of the cruciform specimen and
visualization of specified paths. 1, 2, 3, 4 are the diagonal profiles, x_1, x_
2 the longitudinal ones and y_1, y_2 the transverse ones. The inner blue
square has a side of 25 mm
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respectively, but only 0.01 for both major and minor strains
for DP980. About 10 % of difference between the major and
minor strains is recorded in the center for AA5086 whereas no
difference is noted for DP980, which reflects the stronger
anisotropy of the aluminium alloy compared to DP steel.

The major strain then increases with the distance
from the center to the edge for both materials. It
reaches up to about 0.11 for AA5086 and 0.034 for
DP980. On the contrary, the minor strain decreases
continuously along the axis. The average value at the

corner is about −0.015 for AA5086, −0.006 for DP980.
It can be noted that, for DP980, though the measured
strain level is low, the dispersion is rather low over the
4 diagonal profiles.

An average value, both for minor and major strains, was
then calculated over the four profiles. The evolution of the
strain path ratio was figured out with the averaged principal
strains and is presented in Fig. 11. The evolution is quite
similar for both materials, with a continuous decrease of the
strain path ratio from the center to the free edge, though some

Fig. 9 Major and minor strains
and strain path ratios in the central
area for AA5086 [(a), (c), (e)] and
DP980 [(b), (d), (f)]
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slight differences exist: the maximum value reached in the
center is higher for DP980 than for AA5086, with a sharper

decrease in-between 4 and 16 mm for AA5086 than for DP
steel. The two curves then converge toward a same one. It can
be clearly seen that the strain state varies from nearly equi-
biaxial tensile strain state (about 0.87 for AA5086 and 0.92 for
DP980) in the specimen center to a state (about −0.15 and
−0.17 respectively) between uniaxial tension (−0.3) and plane
strain tension (0).

Principal Strains along Longitudinal and Transverse
Directions

A second square area (area 2, highlighted in purple in Fig. 8)
of approximately 32×32 mm2 (leading to 2500 calculation
points) was also selected to output the principal strains along
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longitudinal and transverse directions. Rupture took place on
the arm corresponding to profile x_2 for all specimens.

Figure 12 presents the major and minor strains and
the strain path ratio along longitudinal and transverse
prof i les for AA5086 (Fig . 12(a) ) and DP980
(Fig. 12(b)). Concerning AA5086, the evolution of
the major strain ε1 along the four paths is rather
similar up to a distance of 14 mm from the center.
Between the profiles along rolling and transverse di-
rections, a slight gap is recorded: the values along
rolling direction are a little higher than the ones along

transverse direction from 4 to 12 mm. Values are close
to each other for two profiles corresponding to the
same direction. After 14 mm from the center, the
difference between each profile becomes more and
more significant since necking has taken place in the
arm along profile x_2 just before the rupture. The
evolution of the minor strain ε2 along direction y is
slightly higher than the one along direction x. It can be
seen that a maximum value along transverse direction
is recorded, around 4 mm from the specimen center.
Generally speaking, the minor strain along both
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directions decreases from 0.021 in the center down to
around 0 at the beginning of the arm.

The obtained values for DP980 are much lower than the
ones for AA5086, ranging from 0.01 in the center up to a
maximum of 0.06. The values of the major strain along
the four profiles are close to each other in the specimen
center and below 12 mm. However, above 12 mm, the
difference between longitudinal and transverse directions
becomes more and more significant, due to necking.
Necking is evidenced along the longitudinal direction,
especially profile x_2 with a high increase of the strain,
whereas a stable increase at a lower rate can be noticed
for the other profiles. Dispersions can be noticed for the
minor strain, since the very low value can be influenced
by the strain measure dispersion. However there is no
significantly difference between the four profiles. The
minor strain decreases from 0.009 in the center down to
around 0.003 at the beginning of the arm.

The strain path ratio for the four profiles is also
presented in Fig. 12. It can be seen that, for AA5086,
the values are close for the two profiles along the same
direction. However, there is a significant gap between
rolling and transverse directions, with an increase of
the ratio up to 1 at a distance of 4 mm from the
specimen center, along the transverse direction. The
strain state along these profiles varies from nearly
equi-biaxial tensile strain state to a state of plane
strain. It is unfortunate that the strain path correspond-
ing to uniaxial tensile strain state could not be captured
in this experiment. In future works, tests should be
performed with a larger camera view both for the
central area and the specimen arms, to enlarge the
measurement area. However, a larger view will also
decrease the accuracy of the strain measure in the
central gauge area, which can be a significant draw-
back due to the low strains measured.

On the contrary, for DP980, it can be seen that the strain
path ratio along the two directions are rather close to each
other. And the sensitive increase along transverse direction
recorded for AA5086 is not noticed for DP980. However,
there is a certain discrepancy, especially for a distance in-
between 4 and 8 mm from the specimen center. In this area,
the variation range can reach 25 %. However, the strain state
variation range is similar to the one of AA5086. Indeed, it
varies from nearly equi-biaxial tensile strain state to a nearly
plane strain state. The minimum value is about 0.07, which
remains positive.

Principal Strains along Diagonal Paths for DP980 far
from Necking

Strain evolution along longitudinal and transverse directions
was influenced significantly by necking, in particular for DP

steel. Therefore, to check this influence, an analysis at a
smaller time step, far away from necking, was conducted.
The strain field in the central gauge area at t = 2 s was then
analyzed, but only for DP980. The maximum and min-
imum principal strains at t = 2 s along four diagonal
profiles are presented in Fig. 13. Comparing with the
strain just before rupture (Fig. 10(b)), a lower strain
level and a more significant discrepancy were recorded.
Near the free edge of the sample, the maximum relative
gap is about 28 % for the major strain and 50 % for the
minor strain for the four profiles. The difference be-
tween major and minor strains at the center is about
12 %, which is higher than the one at t = 3.232 s. Near
the free edge, an average value about 0.02 is obtained
for the major strain, while −0.004 is obtained for the
minor strain.

Discussion

Two main advantages of the biaxial tensile test have
been evidenced so far: the strain field exhibits a certain
sensitivity to the material anisotropy and also a wide
range of strain paths can be investigated. Indeed, con-
sidering the evolution of the strain path ratio along
longitudinal and transverse directions, it was shown that
a non-monotonous evolution occurred in the transverse
direction for AA5086. From the center up to a distance
of 4 mm, the major strain tends to slightly decrease
after the initial value whereas the minor strain increases,
leading to a significant increase of the strain path ratio
from 0.8 to 0.95. This specificity was not observed for
DP980 and it may come from the material anisotropy.
The origin of such an evolution will be checked later
with the help of numerical simulation.

Secondly, Fig. 14 exhibits the evolution of the major
strain as a function of the minor strain for several
material points along the diagonal direction. This re-
flects the temporal evolution of the strain path ratio
and it can be seen that a rather linear evolution is
imposed during the biaxial tensile test for points labeled
1, 2, 4 and 5. This suggests that the information given
by a strain field at a fixed time is rich enough and
adding other times leads to mainly an increase of the
strain level but does not bring other strain path. For
point 3, the strain path is no longer linear, with a
beginning close to biaxial tension and then an interme-
diate strain state between biaxial and plane strain ten-
sion. Concerning point 5, located near the free edge, the
strain state seems more dependent on the boundary
conditions then on the material anisotropy, as is the
case for a uniaxial tension, because a rather similar
slope is noticed for the two materials.
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Due to the sensitivity to material anisotropy and the
vast range of strain paths, a material parameter identifi-
cation was developed, considering the average values
over the four profiles along the diagonal direction,
which were less sensitive to the necking occurring be-
fore rupture and exhibit less dispersion.

Numerical Strain Field Predictions

Bron and Besson anisotropic yield function, associated
to isotropic hardening, was implemented as a user sub-
routine in the finite element code. Out of comparison’s
sake, Hill 1948 yield criterion was also used. The
equations of these yield criteria are recalled below using

the frame 1
!
; 2
!
; 3
!� �

, where the directions correspond to

the rolling direction (RD), transverse direction (TD) and
normal direction (ND) respectively.

Material Models

Bron and Besson yield model

Bron and Besson proposed a yield function involving 16
parameters under the form [5]:

ψ σi j

� � ¼ X2
k¼1

αk σ
k

� �a
 !1=a

ð1Þ

αk, k = 1,2, are positive coefficients, the sum of which is
equal to 1. σij are the components of Cauchy stress tensor.
Plastic yielding occurs when ψ ¼ σ ¼ Y0; where σ is the
equivalent stress and Y0 a reference yield stress characteristics

Fig. 14 Strain paths for different
points on a diagonal profile for
AA5086 (in blue) and DP980
(in red)
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of the material. It should be emphasized that Y0 is not equal to

the uniaxial yield stress in the rolling direction. σk are
expressed in the form:

σ1 ¼ 1

2
S12−S

1
3

�� ��b1 þ S13−S
1
1

�� ��b1 þ S12−S
1
1

�� ��b1� �� �1=b1

σ2 ¼ 3b2
2b2 þ 2

S21
�� ��b2 þ S22

�� ��b2 þ S23
�� ��b2� �� �1=b2

ð2Þ

a, b1, b2 and α
1 (α2 = 1 ‐ α1) are four isotropic parameters

which define the shape of the yield surface.
Si
k are the principal values of the transformed stress devi-

ators sij
′ k defined by: sij

′ k = Lkσij with

Lk ¼

ck2 þ ck3
3

−
ck3
3

−
ck2
3

0 0 0

−
ck3
3

ck1 þ ck3
3

−
ck1
3

0 0 0

−
ck2
3

−
ck1
3

ck1 þ ck2
3

0 0 0

0 0 0 ck4 0 0
0 0 0 0 ck5 0
0 0 0 0 0 ck6

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

ð3Þ

where cm
k are 12 parameters which are related to the

anisotropy of the material. In plane stress condition, the
anisotropic parameter number reduces to 8 with
c5
k = c6

k = 1. So there are a total of 13 parameters to
be identified. Bron and Besson yield model will be
called B&B yield model in the following.

Hill 1948 yield model

Hill 1948 orthotropic yield function is written in the following
form [1]:

ψH¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F σ22‐σ33ð Þ2 þ G σ33−σ11ð Þ2 þ H σ11−σ22ð Þ2 þ 2Lσ2

23 þ 2Mσ2
13 þ 2Nσ2

12

q

ð4Þ

where ψH denotes the yield function. Plastic yielding occurs
when ψH ¼ σ ¼ Y0: F, G, H, L, M and N are material
parameters. When the condition G + H = 1 is imposed, Y0 is
the uniaxial yield stress along the rolling direction. Then, with
plane stress conditions (σ33 = σ13 = σ23 = 0), three
independent anisotropic parameters F, G and N have to
be identified. In this work, they were calculated from
the anisotropic coefficients.

Strain hardening law

Hardening of the material is modeled with isotropic hardening
identified from a tensile test in the rolling direction. From the
tensile test data in the rolling direction, and assuming isotropy,
the equivalent plastic strain was calculated and Cauchy
stress versus equivalent plastic strain curve was fitted.
For aluminium alloy AA5086, a Voce equation given by
σ0 ¼ σs þ Q 1‐exp ‐Bεpð Þð Þ, w i th σ s = 146 MPa,
Q = 217.6 MPa and B = 10.9 is adopted. These parameters were
determined from tensile data and were kept constant throughout
the study. From the relationσ ¼ Y0, it comes that the hardening
law introduced in the finite element code is written as:

σ ¼ ψ
σi j


 �
UT

σ0
; a; b1; b2;α

1; ckm

 !
σs þ Q 1‐exp −Bε

p� �� �� �
ð5Þ

where the first term in the right-hand side part of (equation (5))
depends only on the stress tensor for uniaxial tension in RD (only
one non-zero component) normalized by the yield stress in RD
and on the parameter set for the anisotropic yield criterion.

For the steel DP980, the hardening law is described by a
combined equation based on Swift and Voce formulations as
presented in (equation (6)).

σ0 ¼ α K ε
p
þ ε0

� �n
þ Hε

ph i

þ 1�αð Þ σs þ Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�exp �Bε

p� �r !
withε0

¼ σs

K

� �1
n ð6Þ

Parameters values are: α=0.5; K=1600; σs= 449.2MPa;
H=150MPa; n=0.09; Q=500MPa; B=120.

Finite Element Model of the Biaxial Tensile Test

Finite element (FE) simulations of the biaxial test were carried
out with the commercial software ABAQUS, with the implicit
solver. The anisotropic behavior of the material was modeled
by Bron and Besson yield function implemented through a
user subroutine [13, 33].

The boundary conditions of numerical simulation of the
biaxial test are shown in Fig. 15. Due to the symmetry of the
problem, only a quarter of the specimen was modeled. The load
values FX and FY derived from the experiments were used as
input to the numerical simulation and due to the symmetry, FX/2
and FY/2 were imposed on the two arms. Four node shell
elements were used for the mesh. A minimum element size of
the mesh was fixed at 1 mm, insuring the calculation accuracy
and also a minimum simulation time. Influence of the mesh size
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was investigated, in particular its influence on the major and
minor strain distributions, and stable predictions were obtained
with the selected mesh. The computational time is about ten
minutes (processor i7-640 M, 2.8 GHz with 4Go RAM) with
these conditions.

Methodology of Identification Process

In inverse approaches, different experimental quantities
have been successfully used like displacements [45],
strains [46], velocities or forces. Rigid body motions
(RBM) strongly affect the experimental measured dis-
placements. With the biaxial tensile test, the cruciform
specimen is loaded by four independent actuators and it
is very difficult to guarantee a perfect synchronization
between the different axes. The rigid body motion in-
duces a slight displacement of the center and an in-
plane rotation of the specimen. Due to the small dis-
placements measured in the center of the specimen
during the test, the part of rigid body displacements is

not insignificant. This problem is well known by the
community and for instance, the use of relative dis-
placements is the best way to compensate the RBM.
In our case, it is very difficult to calculate precisely the
relative displacements since a slight out of synchroniza-
tion can lead to a small time lag between the two axes
and the start of loading is not exactly the same for all
the material points. Another approach [47] consists in
prescribing the measured boundary conditions to the
finite element model and use relative displacement to
formulate the cost-function and thus cancel the influence
of RBM. In this work, displacement fields are suffi-
ciently unnoised to allow a proper strain calculation
and thus define a stable cost-function. Cost function is
then formulated from strain fields obtained through the
space-derivative of the displacement fields. Initial mesh
size of strain calculation points by DIC technique is

Fig. 16 Interpolation of the
numerical strain field to calculate
values at the same point as the
experiments

Fig. 17 Flowchart of the identification process with biaxial test

Fig. 15 Numerical model with imposed force
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about 0.7 mm and as explained above, a global size of
1 mm has been chosen for the FE model mesh.

A cost function was defined to calculate the difference
between the experimental and numerical principal strains:

δ Y0; a; b1; b2;α1; c
k
m

� � ¼

Xp
i¼1

εexpi1 ‐εnumi
1

� �2
Xp
i¼1

εexpi1

� �2 þ

Xp
i¼1

εexpi2 ‐εnumi
2

� �2
Xp
i¼1

εexpi2

� �2 ð7Þ

where p corresponds to the number of calculation points used
along the diagonal path, ε1

exp _ i and ε2
exp _ i (i = 1,p) are the

experimental values for the major and minor strains
respectively; ε1

num _ i and ε2
num _ i (i = 1,p) are the numer-

ical principal strains output from the numerical simula-
tion and interpolated with Piecewise Cubic Hermite
Interpolating Polynomial [48], to calculate their value
at the same location as the experimental values. Indeed,
as shown in Fig. 16, for a given distance from the
center coming from the experiments dexp_i, the corre-
sponding numerical principal strains ε1

num _ i and ε2
num _ i

are interpolated from the principal values at nodes j
and j+1, which are along diagonal direction.

The identification process with biaxial test data was real-

coupled with software Abaqus and Matlab (for the interpola-
tion and the calculation of the cost function) for this
optimization.

The optimization process is presented as a flowchart in
Fig. 17. The major task lied in the optimization of the material
parameters with the recourse to a finite element simulation to
minimize the cost function.

Firstly, the variation range of parameters was determined.
The central values and their variation range for each parameter

are given in Table 2. For the reference yield stress Y0, the
variation range was set to be from 0.8σ0 to 1.2σ0.

The optimization algorithm Simplex [50] was pre-
ferred in the identification process. Like hill climbing
algorithms, the Simplex method may not converge to
the global minimum and can stop at local optima. To be

Table 2 Central values and
variation ranges (in brackets) for
each parameter

α0 a b1 b2 c1
1 c2

1

0.5 (0.1~0.9) 6 (0~12) 10 (0~20) 10 (0~20) 0.5 (−1.2~2.2) 0.5 (−1.2~2.2)
c3
1 c4

1 c1
2 c2

2 c3
2 c4

2

0.5 (−1.2~2.2) 0.5 (−1.2~2.2) 0.5 (−1.2~2.2) 0.5 (−1.2~2.2) 0.5 (−1.2~2.2) 0.5 (−1.2~2.2)

Table 3 Bron and Besson parameter set for AA5086

Y0(MPa) α1 a b1 b2 c1
1 c2

1

125.9 0.72 0.16 13.00 8.41 1.06 1.10

c3
1 c4

1 c1
2 c2

2 c3
2 c4

2

0.82 0.95 0.75 0.47 0.78 0.62

(a) : major strain

(b) : minor strain

(c) : strain path ratio
Fig. 18 Bron&Besson andMises initial yield contours (a) AA5086 - (b)
DP980
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sure that the global minimum was found, several opti-
mizations were launched with various initial sets of
parameters. The Simplex method presents the advantage
of using n+1 vectors (with n the number of parameters)
and then facilitates the search of the global minimum in
the n-dimensional space. The use of a first-order opti-
mization algorithm with only one initial vector requires
more tests than Simplex with different initial sets to

cover the n-dimensional space. Nevertheless, the con-
vergence is less efficient with Simplex method than for
many algorithms when the number of parameters is
high. A best approach could consist in applying a
hybrid method by using for example an evolutionary
algorithm to localize approximately the global minimum
of the cost function and then converge efficiently with a
first-order optimization algorithm.
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Fig. 19 Comparison between
experimental and predicted
principal strains and strain path
ratio along the diagonal direction
for AA5086
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Within the determined parameter variation range, 13 initial
parameter sets were generated. They were used in the finite
element simulation as the input data of a user subroutine.
Then, the output principal strain values were interpolated with
Matlab program, to compare with the experimental values via
the cost function defined by Eq. (6). A new parameter set was
then generated by Simplex algorithm as long as the cost
function continued to decrease.

Applications

AA5086

Table 3 gives the optimized Bron and Besson parameter
set for AA5086, the initial corresponding yield contour
is presented Fig. 18(a). As mentioned above, several
optimizations were carried out with different initial pa-
rameter sets. Only one optimized parameter set was
found.

The r-values calculated with Bron and Besson parameters
given Table 3 are respectively r0=0.39, r45=0.46 and r90=
0.37. The calculated 0.2 % proof stresses for the 0°, 45° and
90° from the rolling direction are respectively σ0=146MPa,
σ45=145MPa and σ90=141MPa. Those values must be com-
pared to the experimental ones given in Table 1. As one can
see, a good agreement is observed for the anisotropic coeffi-
cients whereas differences of 10 and 8.5 % are approximately
obtained respectively for σ45 and σ90.

Figure 19(a), (b) and (c) compare the experimental princi-
pal strains and strain path ratio along diagonal direction with
predictions by Hill 1948 and B&B yield models respectively.
For the major strain, Hill 1948 yield model leads to an over-
estimation of about 60 % in the center and 25 % at the
diagonal corner. The predicted values with B&B yield model
are close to the experiments. However, there is still a differ-
ence between them, with an overestimation of about 10 % in
the center. For minor strain, B&B predictions are better than
Hill 1948 ones, which overestimate by about 60 % the exper-
imental data in the center. For the strain path ratio, the two
models give a slight underestimation close to the specimen
center. Above 4 mm from the center, only B&B predictions
vary accordingly to the experimental curve.

It can then be concluded that the parameter set for Bron and
Besson yield criterion identified from the biaxial data lead to a
very good description of the strain field along the diagonal
direction. To go further and as a validation step, experimental
data output in the longitudinal and transverse directions are
then compared to the numerical predictions obtained with the
two models.

Figure 20(a) compares the experimental major strain along
longitudinal and transverse directions with predictions by Hill
1948 and B&B yield models respectively. For Hill 1948 yield
model, predicted values along the two directions are quite

different. Both of them overestimate the first part of the paths
and underestimate the rest of them. The overestimation in the
center area is nearly up to 73 %. B&B predictions give an
overestimation by only 12 and 24 % respectively for a dis-
tance below 4 mm. And in this area, the predictions along
rolling direction are slightly higher than the one along trans-
verse direction, as observed in the experiments. Above a
distance of 10 mm from the center, there is an underestimation
of the major strain, as with Hill 1948 model. This underesti-
mation seems to come from the fact that the experimental
strain was measured just before the rupture. Necking in the
cruciform specimen arm may have started in the experiments
but may not be well predicted numerically.

Figure 20(b) compares the minor strains. The predic-
tion with Hill 1948 yield model leads to an overestimation
along the whole path and for the two directions. The

(a): Experimental and predicted principal strains

(b) : Experimental and predicted strain path ratios

Fig. 20 Experimental and predicted strains and strain path ratios along
the longitudinal and transverse directions for AA5086

Table 4 Bron and Besson parameter set for DP980

Y0(MPa) α1 a b1 b2 c1
1 c2

1

135.9 0.34 9.78 6.77 2.84 0.77 0.92

c3
1 c4

1 c1
2 c2

2 c3
2 c4

2

0.90 0.42 0.87 1.08 0.79 0.76

832 Exp Mech (2015) 55:817–835



overestimation in the center is about 69 %. On the con-
trary, B&B model gives a good description, though a
slight overestimation of 7 % can be noticed in the center,
and it remains along the whole path.

Figure 20(c) compares the strain path ratios. Hill 1948
predictions do not stick to the experimental values at all,
except for a distance below 4 mm from the center. However,
the numerical result shows a bump along the transverse direc-
tion, as already shown and discussed in the experiments, but it
occurs further along the direction than the experiments (6 mm
instead of 4 mm). For B&B yield model, a perfect match for
both directions is obtained up to 10 mm. the bump along the
transverse direction which is failed to be described by Hill
1948 yield model is precisely predicted by B&B yield model.

Through the above strain analysis in the central gauge area
of the cruciform specimen, a sensitivity of the strain field to
different yield criteria has been shown. It can also be seen that
Hill 1948 strain field predictions are far away from the exper-
imental values, while B&B model describes it well. It can be
concluded that the proposed parameter identification method
with only a biaxial tensile test is really promising. The
proposed method will now be applied to DP980 in the
following part.

DP980

The identification for DP980 was carried out with the average
values along diagonal direction at t = 2.0 s. This instant is far
away from the rupture, in order to avoid the influence of
necking. Table 4 gives the optimized Bron and Besson pa-
rameter set for DP980, the initial corresponding yield contour
is presented Fig. 18(b).

The r-values calculated with Bron and Besson parameters,
presented Table 4, are respectively r0=0.61, r45=0.35 and
r90=1.03. The calculated 0.2 % proof stresses for the 0°, 45°
and 90° from the rolling direction are respectively σ0=
701MPa, σ45=829MPa and σ90=784MPa.

Figure 21(a) shows the predicted and experimental major
and minor strain evolution along the diagonal path. It can be
shown that there is a very good agreement between experi-
ments and numerical simulation. However, an overestimation
of about 10 % is noticed for the major strain in the specimen
center. The strain path ratio along the diagonal direction was
also compared with the experimental value in Fig. 21(b). Bron
and Besson model gives a slight underestimation at the begin-
ning of the curve, in the central area of the cruciform speci-
men. However, farther from the center, the prediction is rather
close to the experiments.

Conclusion

In this work, biaxial tensile tests were carried out for an
aluminum alloy AA5086 and a dual phase steel DP980, using
a specifically designed cruciform specimen. The strain field in
the central gauge area of each specimen was analyzed during
the test, using digital image correlation, and major and minor
strains, as well as the ratio of the minor strain over the major
strain (or strain path ratio), were in particular investigated
along specific paths, i.e., longitudinal, transverse and diago-
nal. The overall strain level reached before rupture depends on
the material, and is larger for AA5086 than for DP980.
Moreover, a rather large variation of the strain path ratio was
evidenced, as well as quasi-linear strain paths up to rupture.
And the strain field seems sensitive to the anisotropy of the
material. Consequently, a parameter identification process for
Bron and Besson anisotropic yield model was proposed,
involving finite element simulation of the test and minimiza-
tion of the gap between experimental and numerical principal
strains along the diagonal direction. A very good description
of the strain field was thus obtained. Moreover, longitudinal
and transverse directions were used out of validation pur-
poses, in the case of the aluminium alloy, showing again that,
for strain level far enough from the onset of necking, a close
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Fig. 21 Predictions along
diagonal direction by Bron and
Besson parameter set for DP980:
(a) principal strains; (b) strain
path ratio
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description of the experimental major and minor strains was
obtained. The biaxial tensile test can be therefore considered
as an interesting tool for material parameter identification.
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