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Abstract A novel Digital Image Correlation algorithm is
presented, focussing on accurately determining small strains
with high strain gradients. Principles from p-adaptive finite
element analysis are implemented to obtain a self adapt-
ing higher order mesh. The self adapting principle reduces
the dependency of the results on the user’s input and the
higher orders insure sufficient degrees of freedom. Perfor-
mance of the algorithm, in terms of resolution and spatial
resolution, is checked and compared to the traditional local
method. The results indicate that the introduced method is
appropriate for accurately measuring high heterogeneous
deformations and that the obtained data is to a large extent
user independent.

Keywords Global · Digital image correlation ·
Hierarchical · Adaptivity

Introduction

Full field measurement techniques are important techniques
used in experimental mechanics as it makes the connec-
tion between simulations and experiments. The measured
deformation field is used for several purposes such as
model validation or material identification [1]. The full-
field displacement can be measured using different optical
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approaches like speckle interferometry, moiré, holographic
interferometry, Digital Image Correlation (DIC), etc [2]. Of
these, DIC is a very popular one thanks to its versatility. DIC
is a measurement technique which makes it possible to mea-
sure displacements at the surface of an object by comparing
two white light images. The use of “normal” images and
thus standard cameras, explain the growing popularity of
DIC as it is easy both to use and set-up. Further advantages
of this technique are that measurements are contact-less,
strains on the entire surface are determined (so-called “full-
field”) and the method is applicable to a wide range of
materials and loading conditions. This technique has a tra-
ditional, subset-based [3] (local) approach that is very well
developed and is widely used in both commercial as well as
academic packages. Nevertheless this traditional approach
has some important drawbacks, making it cumbersome to
be used in some specific applications. One of these appli-
cations is strain measurement on experiments producing
very small strains with high strain gradients [4]. An alterna-
tive method, namely “global approach”, is available in DIC
where a complete element mesh is tracked on the images.
This method insures C0-continuity, resulting in less noise
influence. As current global algorithms have a fixed element
order and are refined using user experience, measuring these
high gradient strains remains cumbersome. In the following,
it is proposed to counter these disadvantages by developing
a new self adaptive global DIC procedure that uses, when
necessary, higher order elements that are able to describe the
high gradient displacement field.

This paper is outlined as follows. In section “Digital
Image Correlation”, the main principles of the local and
global method are presented. Section “p-DIC” describes the
new method based on the global approach and in section
“Performance” a comparison between local, global and
our proposed algorithm is performed. Finally, in section
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“Application to a Tensile Test”, the local and the adaptive
global algorithm are used to correlate a standard tensile test.

Digital Image Correlation

In DIC, the displacement field is found by comparing
two images which represent the deformed and undeformed
object. Comparing the gray level distribution of these
images, and thus determining the displacement field, can
be done with two different approaches: using the tradi-
tional local approach or the more recently developed global
approach. In what follows, both methods will be briefly
described.

Local DIC

The local method, also known as the subset method, is the
most popular approach for DIC. It is based on tracking each
pixel from the reference image to the deformed image [3]
and is used in almost all commercial and academic cor-
relation software [5–9]. To track a pixel between images,
a certain amount of information is required as the gray
value of a pixel by itself is not unique between two images.
The information for locating the pixel is found in the so-
called subsets, a group of pixels surrounding the considered
pixel. The traditional local method uses these subsets in
the algorithm, hence the name: “subset method”. The actual
tracking of the pixel from the reference to the deformed
image is based on optimising a specific correlation function
representing the difference of the subset between refer-
ence and deformed image. If the subset is located in the
deformed image, the displacement of the center of the subset
is determined as the displacement for that pixel (see Fig. 1).

An important drawback of this technique is the non-
continuity of the displacement field, as the displacement
of the pixels are sought separately and thus no intercon-
nectivity is taken into account. This independent approach
influences the calculation of the strains, as smoothing in

Fig. 1 Principle of the subset-based DIC, tracking of a pixel from
reference to deformed image

the noisy displacement field is essential to obtain accept-
able strain results [10–12]. For the strain calculation mostly
a local polynomial smoothing is used, where a rectangu-
lar area denoted as strain window is used. The extend of
smoothing is controlled by the subset size, step size and
strain window size. Therefore, the measurement result is
significantly influenced by these user-dependent parame-
ters [13]. Choosing the subset and strain window relatively
large will respectively lead to a good (low) displacement
and strain resolution because a lot of data is used to track
the pixel. By using these larger values averaging will occur,
leading to a higher spatial resolution which is less desirable.
Consequentially, opting for smaller values will automat-
ically lead to reducing spatial resolution but increasing
displacement/strain resolution [14]. Definitions of these
resolutions are found in section “Methodology”. Other dis-
advantages are that data is only known at the centres of
calculated subsets, separated by the step, leading to a sparse
set of data points and the lack of information around the
edges, as a distance of half a subset of the pixel towards the
edge need to be preserved. Increasing density of data is pos-
sible by decreasing the step size (e.g. 1) but this results in
significantly longer calculation time.

Global DIC

The second approach for DIC is the global DIC method.
Compared to the subset method, where pixels are individu-
ally tracked, the global method tracks all pixels within the
test object simultaneously. Thus instead of tracking subsets,
a complete mesh is tracked. This method was initially pro-
posed by Cheng et al. [15]. Later, Besnard et al. developed
the Q4-DIC [16], where a fixed bilinear (Q4) or quadratic
(Q8) mesh is implemented. In the following the principle
of global DIC is presented. The images used in the cor-
relation, representing the original and deformed surface of
the tested specimen, can be represented by 2D functions
f (x) and g(x), defining (interpolated) gray values at posi-
tion x = (x, y). Using the conservation of optical flow, the
problem can be described as determining d, the unknown
displacement field for an element �e, so that for each point
x element of �e:

f (x − d) = g(x). (1)

This is valid if no external influences such as light condi-
tions, noise and other external parameters are considered.
Because these influences do act upon the images, specific
cost functions are used to minimize the difference between
f (x − d) and g(x). The correlation functions that will be
used in the implementation are NSSD (Normalised Sum of
Squared Differences) and ZNSSD (Zero Normalised Sum of
Squared Differences) (equivalent to NCC and ZNCC [17]),
used to cope with offset and scaling in light conditions
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[18]. Here, to maintain simplicity, the SSD (Sum of Squared
Differences) is used to present the method:

ε2 =
∫∫

�e

([f (x − d) − g(x)]2)dx (2)

When substituting the first order Taylor expansion of f (x-d)
into equation (2) the cost function becomes:

ε2 =
∫∫

�e

([−d · ∇f (x) + f (x) − g(x)]2)dx (3)

Introducing a pre-described function for d [19], the dis-
placement within element �e object of the mesh �, on an
arbitrary basis �i as

d =
∑
i,a

�i δia ea (4)

Where i is the number of shape functions used, a are the
system directions and δia are the displacement parameters.
Minimising equation (3) with respect to δia , yield a linear
equation:

[Kijab]e[δia]e = [Fjb]e (5)

with:

[Kijab]e =
∫∫

�i [∇af ]�j [∇bf ]dx (6)

[Fjb]e =
∫∫

[g(x) − f (x)]�j [∇bf ]dx (7)

Where e is the element number and ∇a is the derivative of
the function to a. Note that a, b ∈ {x, y}. Iterative calcula-
tion is critical as a Taylor expansion is used, and thus the
calculated displacements are an approximation of the real
displacement. In the previous algorithm [16] this done by
re-correlating a deformed image that is shifted with the inte-
ger value of the previously calculated displacement. In the
proposed algorithm no image shifting is used as it intro-
duces extra uncertainties. Instead an extra displacement d’
is introduced, representing the previous displacement field.
The equation used in this proposed algorithm (in contrast to
equation (1)):

f (x − d) = g(x + d′). (8)

Resulting in element equations:

[Kijab]e =
∫∫

�i [∇af ]�j [∇bf ]dx (9)

[Fjb]e =
∫∫

[g(x + d′) − f (x)]�j [∇bf ]dx (10)

This means that now the extra displacement, relative to
the previous calculated displacement d′, can be determined
by solving the equation (5) containing a matrix [K] and a
matrix [F] which are both based on the gray values of the
reference and deformed image. Obtaining d using δia and
adding d′ to it results in the complete displacement field.

This displacement field can then be used in the next itera-
tion. It is worth noting that at this stage no interconnectivity
between elements is included and that although the equa-
tion contains a K and F matrix, similar to stiffness and
force matrix in finite element analysis (FEA), no consti-
tutive material laws are used. The solution of the element
equation (5) to δia , results in d (described by equation (4))
representing a displacement field within �e.

Solving the system for all the elements of mesh �

results in a displacement field for each element in the mesh
separately without any interconnectivity, and therefore no
C0-continuity is taken into account. To include this con-
nectivity, all element equations are assembled to one linear
“system equation”:

[K]s[δ] = [F ]s (11)

It is common practice to combine the element matrices into
the system matrix as it is analogous to FEA [19]. Solving
this system will result in a matrix δ containing all separate
δe
ia , but now with the connectivity taken into account.

The global description above was mainly developed by
Besnard et al. [16]. A comparison with the local DIC
method [20] proved this concept of global DIC. Several
algorithms based on the global DIC method have been
developed during the years [15, 16, 21–23], all leaving
the polynomial degree of the mesh fixed ranging from lin-
ear (Q4) elements to higher order elements. The matching
algorithm uses a fixed mesh, with the pre-described degree
of freedom (DOF) determined by the element order, to
determine the displacement field as described above. The
element size and pre-described DOF are critical for a good
solution as they influence the displacement/strain and spa-
tial resolution the same way a subset does [23]. When
extra spatial resolution is needed, refinement of the mesh
is done by the user based on his experience. In this con-
text refinement refers reducing the element size. This type
of refinement is called h-refinement, where h denotes the
element size. In our proposed method principles from the
adaptive finite element are adopted in the algorithm to
overcome this problem of user based refinement.

The New Approach

The new approach is developed to fulfil the desire of
minimising the error due to discretisation [24], caused by
meshing and refinement based on the user’s instinct. In the
local method this discretisation is caused by the choice of
subset, step and strain window. By using an adaptive mesh,
locations where the displacement is rather heterogeneous
are automatically refined by an algorithm similar to FEA
[25]. To our knowledge this is the first development of a
fully self-adaptive global image correlation algorithm. The
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new method uses principles like p-adaptive mesh, error esti-
mation and hierarchical shape functions ([19] Chapter 8).
The use of these principles lead to a very important advan-
tage: extra degrees of freedom can be introduced gradually
if the mesh is unable to describe the imposed displacement.
This increase of freedom is done automatically, triggered by
an error estimator, so the data becomes less user dependent.
This method will be referred to as p-DIC and is presented in
the following chapter.

p-DIC

General Description

In the derivation of the global approach, following descrip-
tion for the displacement was used:

d =
∑
i,a

�iδiaea (12)

where �i denote the shape functions of the used basis
[19]. Such a basis is usually expressed in local coordi-
nates to obtain a more general and generic description. An
element described in these local coordinates is a square ele-
ment where local coordinates [ξ, η] are within the range of
[−1..1] (so-called master-element, see Fig. 2).

The transformation of the local coordinates ξ = [ξ, η]T
into the global coordinate x = [x, y]T can be calculated
using mapping functions Xe and Y e :

x = [x, y]T = [Xe(ξ, η), Y e(ξ, η)]T (13)

When a p-adaptive mesh (elements can transform to higher
orders) is used, elements are usually larger than the ones

Fig. 2 Mapping coordinates from global to local coordinate system

used in h-refinement. Using these larger elements makes the
traditional linear mapping not accurate enough and more
precise mapping is necessary. Therefore, in contrast to pre-
vious global algorithms, not only the four corner nodes of
the element are used for the mapping, but extra functions
are blended with the linear functions to obtain a more pre-
cise mapping [26]. These functions, denoted by Ej , describe
the shape of edge j and are defined as parametric functions
Ej = [Ejx(χ), Ejy(χ)]T , where χ is the local coordinate.
Using these edge shape functions Ej and the linear node
functions Ni(ξ, η) defined as:

Ni(η, ξ) = 1

4
(1 + ξiξ)(1 + ηiη) (14)

where (ξi , ηi) denotes the local coordinates of the ith node,
the mapping functions are defined as:

Xe(ξ, η) = 1

2
(1 − η)E1x(ξ) + 1

2
(1 + ξ)E2x(η)

+1

2
(1 + η)E3x(ξ) + 1

2
(1 − ξ)E4x(η)

−
4∑

i=1

Ni(ξ, η)xi (15)

Y e(ξ, η) = 1

2
(1 − η)E1y(ξ) + 1

2
(1 + ξ)E2y(η)

+1

2
(1 + η)E3y(ξ) + 1

2
(1 − ξ)E4y(η)

−
4∑

i=1

Ni(ξ, η)yi (16)

where xi and yi denote the global coordinate of node i.
It is important to notice that no iso-parametric description,
where shape and mapping functions are the same, is used
but that shape and mapping functions are independent of
each other. The choice of shape functions (defining the dis-
placement) is critical as they must be capable of coping with
the updating procedure of an adaptive finite element mesh.
The shape functions used are hierarchical functions, the
same functions as used in p-adaptive finite elements. More
specific, the shape functions used are based on Legendre
polynomials and are shown in Appendix.

The most important property of these hierarchical basis
is that, in contrast to the shape functions used in tradi-
tional FEA, higher order shape functions will not influence
the shape functions of lower orders. This property of inde-
pendent hierarchical shape functions lead to the interesting
characteristic that refining an element, introducing higher
orders, does not influence the already calculated parame-
ters for [K] and [F]. This property is illustrated in section
“Adaptivity”.

As mentioned above the shape functions are expressed in
local coordinates. It is generally believed that the reversed
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mapping functions can not be explicitly determined [27].
Therefore the hierarchical shape functions �i cannot be
found in the global [x, y] system analytically and thus the
coefficients from equation (9) can not be calculated directly.
Consequently a transformation of the element equations
from [x, y] to [ξ, η] is necessary. The element matrices
become:

[Kiajb]e =
∫∫

�i(ξ, η)∇af (x(ξ, η))�j (ξ, η)

∇bf (x(ξ, η)) det([J])dξdη (17)

[Fjb]e =
∫∫

(g(x(ξ, η) + d ′) − f (x(ξ, η)))

�j (ξ, η)∇bf (x(ξ, η)) det([J])dξdη (18)

Where J is the Jacobian of the system, and ξ , η ∈ [−1..1].
Note that a, b ∈ {x, y}, and thus still remains in global
coordinates.

By transforming the coefficients from a global to a
local framework, the element equations are built with local
(equals transformed global) shape functions.

�l
i = �

g
i [Xl(ξ, η), Y l(ξ, η)] (19)

where Xl and Y l are the mapping functions in element l

and �l
i and �

g

i are the local and global shape functions.
This is based on having the global description for the shape
function. In practice, shape functions are given in the local
system following the scheme shown in Appendix. In the
algorithm the same scheme of assigning shape functions is
used. Downside is that choosing local functions instead of
transformed global functions obstructs the assembly process
of the system equations. This obstruction is explained in
following reasoning. When a certain object, node or edge,
has more than one element (e.g. common edge between
two elements) it has as much local shape functions as it
has common elements. The use of transformed global shape
functions as local functions insures that all local functions
for the same object transform back to the same global shape
function, which is necessary for the assembling process.

�1
i [ξ1(x, y), η1(x, y)] = �2

i [ξ2(x, y), η2(x, y)]
= �

g

i [x, y] (20)

where

�1
i = �

g
i [X1(ξ, η), Y 1(ξ, η)] and

�2
i = �

g
i [X2(ξ, η), Y 2(ξ, η)] (21)

Assuming that ξ1, η1, X1, Y 1 and ξ2, η2, X2, Y 2 are the
mapping functions of respectively common element 1 and
2 and �

g
i is the global shape function. In words, we can

describe the condition as: “The equations can be assembled
to the system equations if each object copes with the fact
that all local shape functions have the same transformed

global shape function”. When locally assigned shape func-
tions are used this condition is not always met. The problem
is illustrated in Fig. 3 for a 3th order edge. The figure
clearly indicates that both local functions do not describe
the same global function, resulting in inverted parameters
for the local element functions.

Here δ1 will denote a positive horizontal displacement, as
δ2 denotes a negative displacement. On the edge, the shape
functions become (see Appendix):

�1
i = 2η1((η1)

2 − 1) (22)

�2
i = 2η2((η2)

2 − 1) (23)

The displacement field is then:

u = δ12η1((η1)
2 − 1) = δ22η2((η2)

2 − 1) (24)

and because η1 = −η2 (seen in geometry), previous
equation yields:

δ1 = −δ2 (25)

Here the condition for system assembly is not met, as δ1 is
inverse of δ2 and thus both functions describe inverse dis-
placement fields. To satisfy the condition, an inversion of
one of the element shape functions has to be done. Instead of
inverting the shape function directly, a transformation on the
final element equations are performed. For the calculation
of the element equations the original, local shape functions
are used and when the system is assembled, the element
matrices get transformed so the assembly becomes possible.
This transformation is done by a general procedure based on
the so-called ’direction’ of the edges as it can be shown that
the problem only arises on shape functions of edges with an
uneven polynomial order and specific direction.

Fig. 3 Visualisation of obstruction in assembly process by the use of
locally assigned shape functions
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Strain Calculation

As the displacement field is analytical, strains can be
derived directly from the displacements. The Green-
Lagrange strain tensor is defined as:

E = 1

2
(F T F − I ) = 1

2
(G + GT ) + 1

2
GT G (26)

where

G =
[

δdx

δx
δdx

δy
δdy

δx

δdy

δy

]
(27)

Because the displacement field is described in local coor-
dinates, derivatives in matrix G can be calculated using:
{

δ
δx
δ
δy

}
= [J ]−1

{
δ
δη
δ
δξ

}
(28)

where

J =
[

δx
δη

δy
δη

δx
δξ

δy
δξ

]
(29)

Important is to stress the fact that no smoothing is used
to calculate the strains, and accordingly no degradation of
spatial resolution in strain is introduced! This is in clear con-
trast with local DIC methodologies that often use local poly-
nomial smoothing approaches. Previous work indicated that
in the subset-based approach nor the derivatives obtained
from the Levenberg Marquardt nor the direct derivation
from the shape functions can be used to obtain displacement
derivatives [13].

Adaptivity

Convergence of the mesh is a key in a good FEA. The same
is valid for the global DIC measurement. The displacement
and strain field determined by the global (also local) method
is the best fit of the mesh, with the allowed degrees of free-
dom, on the real displacement field. The best fit does not
insure that the mesh has enough freedom to sufficiently
represent the real deformation field. Correlating a high het-
erogeneous displacement field with a relative large lower
order mesh needs refinement to yield an acceptable solu-
tion [19]. Refining the mesh, in this context, means adding
extra DOFs to specific edges/faces, so that the mesh is more
suitable for representing the actual field. This way of refine-
ment is called p-refinement. In the hierarchical scheme,
three basic degrees of freedom can be added (see Appendix
and Fig. 4):

– Nodal or vertex modes: are the standard DOF for a iso-
parametric four-noded quadrilateral element. The first
order element will only contain these DOFs.

– Edge or side modes: are DOF for each edge separately.
All edges in an element can contain different DOF.

Fig. 4 Visualisation of Legendre shape functions [28]

– Element or internal modes: are extra DOFs for one
element specific. It only works within an element and
does not influence the edges or nodes.

The procedure to refine an element is then straightfor-
ward, referring to Fig. 4. Each row represents a specific
element order. An element from that order contains all the
functions in that row and the ones above. To perform refine-
ment, the element drops a row meaning adding the functions
in this new row. Refining from one till three thus means
only adding edge modes. Refining to four and higher means
adding edge and element modes. This way of updating is
possible due to the special nature of hierarchical functions.
Higher order functions do not replace lower orders, but are
superimposed on to them. To illustrate this principle a 1D
case, thus for one edge in one direction, the refinement is
shown in Fig. 5.

By adding extra shape functions, higher orders elements
receive more DOF. The relationship between order and
number of DOF n is as follows;

n(p) =
{

n = 8 · p if p < 4
n = p2 + 3 · p + 6 if p > 3

The alternative is h-refinement where the elements do
not get extra DOF, but the mesh is refined with smaller
elements. This refinement is not used for several reasons.
Firstly the elements need a certain size to correlate.
Second the mesh should be regenerated and matrices K
should be recalculated. Finally, as it is implemented in other
global procedures, refinement is based on user experience.
These disadvantages are not present for p-refinement as
shown in the previous paragraph.

It is important to note that in our proposed method no
uniform updating is done. And thus not simply fixed higher
order elements are used. Only the regions where the ele-
ments are not able to describe the real displacement, and
thus where the error is high, will be refined. The refinement
(adding orders) is established as follows. The element to be
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Fig. 5 1D representation of the principle of hierarchical shape
functions

refined contains n DOF’s, resulting in displacement field d.

d =
∑
n,a

�n δn ea (30)

with

[Kn][δn] = [F n] (31)

as element equations. When refining the element to d′ by
adding m DOF’s (e.g. updating from p=3 to p=4 then m=5)
the displacement field, with n′ = n + m DOF’s, becomes:

d′ =
∑
n′,a

�n′ δn′ ea (32)

Because the shape functions are independent, one obtains

d′ =
∑
n,a

�n δn ea +
∑
m,a

�m δm ea (33)

Using the equation above in combination with equation (3),
it can easily be shown that:

[Kn′ ][δn′ ] = [F n′ ] (34)

where

[Kn′ ] =
[

Kn Knm

Knm Km

]
and [F n′ ] =

[
F n

F m

]
(35)

The independence of calculated coefficients is straightfor-
ward as the matrix Kn regarding the original element is
simply reused in the matrix Kn′

representing the refined ele-
ment. This makes refining the element in the global method
more efficient. Each time an element is refined with extra
DOF’s, only the coefficients connected to the newly added

freedoms are calculated. The remaining coefficients can be
copied.

Error Estimation

In adaptive finite element analysis, error estimation is a
widely discussed topic [24, 25]. Lots of research has been
done, and multiple approaches are developed. It is now the
goal to transfer these estimators to the global method for
DIC. In general, two main areas exist in error estimation:
a-priori and a-posteriori estimators. In this proposal only
a-posteriori error estimation is used [29], because no a-
priori information about the experiment is known.

Basically, a-posteriori estimators exist in two groups.
Namely recovery or residual based estimators. Recov-
ery based error estimation was proposed by Zienkiewicz
et al. [30, 31]. The principle is to extract/recover a ’more
accurate solution’ based on the current solution. The most
popular example is the ZZ-estimator [30], where the recov-
ered solution is found by using so-called ’super converged
points’. These methods are sometimes called Single Pass
Algorithms (SPA) as only one refinement pass is used.
After the first calculation, the error is determined using a
super convergent solution. Based on this error, the order
needed for each element is determined. The calculation is
performed again with the updated mesh, resulting in the
final results. An other approach is using multiple passes
(MPA), where after each calculation an error estimation is
done and the mesh is refined [32]. In MPA residual based
errors, pioneered by Babuska, can be used where the error is
determined by calculating the residual of the finite element
solution in each local space. The error estimator imple-
mented is an MPA, as after each correlation the error will
be checked and if necessary elements raised in order. The
(local) error in measurand u is defined as:

e = u − û, (36)

where e is the local error, u is the exact solution and û is
the correlated, discretised solution. Measurand u can be dis-
placement, strain or any other quantity of interest. From this
local (point wise) error an element error can be determined.
In FEA the norm used to describe the element error is the
energy norm

‖e‖ =
√∫

�

eT Le · d� (37)

With L the self-adjoined operator. By the lack of material
parameters not the energy norm but RMS norm is used. This
is valid as scalar norms are similar to the energy norm [19].

‖e‖ =
√∫

�
eT ed�∫
� d�

(38)
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If this element error is used as an absolute error, the element
should be update if:

‖e‖ > ¯‖e‖ (39)

with ¯‖e‖ the permissible RMS error. Another approach is
evaluating the element by relative error. Then indicator η is
introduced:

η = ‖e‖
‖û‖ (40)

where

‖û‖ =
√∫

�
ûT ûd�∫
�

d�
(41)

Leading to the updating condition:

η > η̄ (42)

In this way, if the element error is known, elements to be
refined are identified. In the following, calculation of the
local error is presented. Starting from the definition of error:

e = u − û (43)

Based on Zienkiewicz’ work [31] the error is approxi-
mated by the use of a higher order. Here the higher order
solution, one order higher than the current order p, is an
approximation for the the exact solution:

e ∼= ûp+1 − ûp (44)

The approximation is valid if it is assumed that the error
goes down if the order goes up. Since calculating a higher
order solution makes our current (lower order) solution use-
less, the previous solution is preferred instead of the next:

e < e′ = ûp − ûp−1 (45)

Using this approximation, the error will always be overesti-
mated, which is acceptable as it will yield a more accurate
result. This principle, proposed by Zienkiewicz, is common
as estimator in p-FE code [33]. To make the estimator inde-
pendent of the history of the correlation, the error e′ can be
approximated as [25]:

e′ ∼=
∑
h

�h δh (46)

with h denoting the highest orders of the element. Referring
to the displacement function equation (4) based on shape
functions (Fig. 4), the h denotes the functions in the last row
as seen in Fig. 6.

If h is defined, e′ equation (46) can be calculated result-
ing in element error ‖e‖ equation (38).

‖e‖ =
√∫

�
e′T e′d�∫
�

d�
(47)

Fig. 6 Indication of shape functions h used for error estimation

and if

‖e‖ > ¯‖e‖ (48)

then the element is updated. Note that the same reasoning is
used for the relative error η. Because only parameters from
the current solution are used, the calculation of the error is
very efficient. This estimator can be classified as a MPA
method, as at each stage the local error is estimated.

Flowchart p-DIC

To summarise all stated before, a simple flowchart of our
new proposed method is shown in Fig. 7.

Performance

In previous sections the mathematical framework for the
new algorithm was presented. The present section aims at
a validation of the proposed algorithm, using measurements
and spatial resolution. By way of comparison, the following
definitions are firstly presented [34]

– Measurand: Object of measurement. Quantity of inter-
est and submitted to the measurement process. In the
present application mostly displacement or strain.

– Resolution: change in quantity being measured that
causes a change in the corresponding indication greater
than one standard deviation of the measurement noise.
Resolution is comparable to precision.

– Spatial resolution: A measure indicating the distance
between two independent data points. Spatial resolution
is comparable to the detail of the method.

An in-depth comparison of different subset-based platforms
has been performed by Bornet et al. [14]. Bornet et al. used
sinusoidal deformation fields to assess the metrological
performances of image correlation algorithms. Series of
sinusoidal deformed images where generated with various
frequencies and amplitudes. Results showed that general
trends are strongly correlated with the underlying algo-
rithms. A similar approach is used in this comparison, but
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Fig. 7 Flowchart of the
proposed p-DIC method

extensions are done to be applicable for both the local and
global method. Comparable images and representations are
used. The resolutions and the spatial resolution are plotted in
one graph, as the combination of these two quantities indi-
cate the performance of the methods. As can be predicted,
both values are inversely related. Achieving a lower spatial
resolution leads to an increase of the measurand resolution.
For comparison, the in-house developed subset-based plat-
form “MatchID 2D” is used [5]. In the p-DIC method the
same libraries for interpolation and mathematical operations
are used, leading to a more profound comparison. The influ-
ence of filters, interpolation and matrix calculation are ruled
out in this way.

Methodology

Parameters

To perform an assessment of DIC, series of synthetic images
are used. As reference image, an image of a real speckle
pattern (Fig. 8) is used. The dimensions of the images are
1200 by 250 pixels2.

As deformed images, numerically deformed images are
used. These images are generated by altering the gray level
distribution f (x), representing the reference image. If the
displacement field is defined by �D(x), the deformed gray
level distribution g(x) is found by following relation:

g(x + �D(x)) = f (x) (49)

The generation of the deformed images is done by using the
finite element simulation of the experiment intended to be
numerically reproduced [13]. The element size of that mesh
is taken small enough to minimise the error. By imposing a

known deformation field, the error of the correlation can be
assessed in different ways. First a local error is defined.

�u(x, y) = uimposed(x, y) − umeasured (x, y) (50)

with (x, y) ∈ ROI . Globally, the root mean square error is
defined by

RMSg =
√√√√1

n

∑
x,y

[�u(x, y)]2 (51)

The standard distribution and arithmetic mean are defined
as:

σg =
√

n
∑

x,y [�u(x, y)]2 − [∑x,y �u(x, y)]2

n(n − 1)
(52)

�ug =
∑

x,y [�u(x, y)]
n

(53)

Finally, some directional parameters are introduced. Direc-
tional is defined as using only data in the specified direction.
The y-directional standard distribution and arithmetic mean
are:

σy(x) =
√

n
∑

y [�u(x, y)]2 − [∑y �u(x, y)]2

n(n − 1)
(54)

�uy(x) =
∑

y [�u(x, y)]
n

(55)

The x-directional parameters are analogously defined.

Measurand resolution

The resolution is determined by using a so-called self cor-
relation test. Such a test implies the correlation between
two images where no deformation is performed. Due to
noise and other influences, a deformation field between both
images is measured. For that reason the images used are
the original pattern (Fig. 8) and the same image with an
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added (numerical) Gaussian noise with a standard devia-
tion of 1 %, general obtained for standard 8-bit cameras.
The measurand resolution is defined as the global standard
deviation σg of the biased measurand field [35].

Measurand spatial resolution

Traditionally, the spatial resolution is defined as the dis-
tance between two independent data points [35, 36]. For the
local method, the closest distance between two independent
data points is the subset size itself. In this case, two neigh-
bouring subsets separated with the subset size from each
other will use different pixels and thus remain completely
independent. If subsets are closer to each other, they nat-
urally overlap and use common pixels. As such they lose
their independence and thus in the subset method the spa-
tial resolution is the subset size. The step size only indicates
the density in data points. This traditional definition is not
applicable to global DIC as the area needed to correlate a
data point is not clearly defined. Bornet et al. [14] assessed
the metrological performances of different local image cor-
relation algorithms using the sinusoidal deformation fields.
As they assess different errors, no clear definition is pro-
vided for the spatial resolution. For that reason an alternative
indication is used based on the fundamental work of
Bornet et al. The spatial resolution will be evaluated as the
lowest period (i.e. highest frequency) of a sinusoidal defor-
mation that the method is able to reproduce before losing
a certain percentage of amplitude. In this way, a poor reso-
lution is a high value and an optimum value is a low one,
similar as for the resolution. Thus as deformed image a
unidirectional in-plane sinusoidal deformation field is intro-
duced to the original speckle pattern. For displacement this
equals:

�D(x) =
{

dx = a · sin( 2·π
P

· x)

dy = 0

where a is the amplitude and P the constant period. From
this unidirectional in-plane sinusoidal deformation field,
a 1D-displacement function R can be extracted using the
directional average discussed before.

R(x) = �uy(x) =
∑

y [�u(x, y)]
n

(56)

The function R represents the average sine function the
methods (local or global) are capable of reproducing. From

Fig. 8 Speckle pattern used for validation 1200 × 250p2

Fig. 9 Procedure for determining spatial resolution

the function R the absolute peaks are extracted, denoted as
matrix [A], as they represent the reconstructed amplitude.
From these peaks average and deviation can be calculated.

σa =
√

n
∑

p [A]p2 − [∑p [A]p]2

n(n − 1)
(57)

μa =
∑

p [A]p
n

(58)

The principle is shown in Fig. 9. The loss of amplitude is
then defined as:

�A = |a − μa| + 3 · σa

a
· 100 (59)

By the use of 3 ·σa a certainty of 99.8 % on amplitude deter-
mination is obtained. As we defined the spatial resolution
as the lowest period the method is able to reproduce with a
amplitude loss of α, one has

Resolution = P ←→ �A = α (60)

Fig. 10 Relation amplitude loss vs period of deformation
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Table 1 Deformation parameters for the validation of displacements
spatial resolution

Parameter Value

a 5 pixels

P 50
25−→ 200

where α is the percentage of allowed amplitude loss, which
will be the criterion for the spatial resolution determination.

By applying this procedure for different frequencies,
methods and settings, the loss of amplitude is known in
function of frequency for each setting and method. The
graphs resulting from this method are similar as in Fig. 10.

In this way the spatial resolution is mathematical deter-
mined using only the final deformation field, making it
possible to determine the spatial resolution regardless of the
method chosen. For this comparison error estimation and
adaptive meshing is deactivated. This ensures that differ-
ent settings are maintained to produce a graph similar as in
Fig. 10. If these features where used, the algorithm would
update the mesh (higher order) and no loss in amplitude can
be measured.

Displacements Resolution and Spatial Resolution

In the following, the resolution and spatial resolution of
the displacement is determined for the subset method, the
Q8-DIC and p-DIC algorithm. The reference image is the
original speckle pattern, the deformed images are the orig-
inal pattern with an imposed Gaussian noise and unidirec-
tional sinusoidal displacement field. For the resolution a
Gaussian noise with a distribution of 1 % (2 gray values)
is imposed. The in-plane unidirectional sinusoidal displace-
ment field for the spatial resolution has the characteristics
shown in Table 1.

MatchID is used to represent the subset-based approach.
The algorithms receive settings shown in Table 2.

The resolution is clearly defined as the standard deviation
of the measured artificial displacement field (see section
“Measurand resolution”) while measuring the image
with noise. The spatial resolution is defined in section
“Measurand spatial resolution”. For each combination of
method and setting (defined in Table 1) the period for a
loss of amplitude ranging from 1 to 5 % can be determined

Table 2 Summarised correlation parameters used in the validation

Subset method p-DIC Q8-DIC

Criterion NSSD NSSD NSSD

Element size (pxl) 21
10−→ 61 100 × 100 200 −→ 20

Element order Quad 4
1−→ 9 2

Fig. 11 Displacement vs spatial resolution for p-DIC, subset method
and Q8-DIC. For the local (Q8-DIC) methodology, a decrease in subset
dimensions (element size) is adopted horizontally from right to left.
The introduced p-DIC, on the other hand, increases the element order
from right to left. Spatial resolution criterion α = 5

and coupled with the displacement resolution for that set-
up. The resulting graphs are shown in Figs. 11 (α = 5 %)
and 12 (α = 1 %).

Figures 11 and 12 confirms some intuitive expectations.
First of all, as expected, the spatial resolution decreases
(more heterogeneous deformation) if smaller subsets or
higher order elements are taken. Related to the gain in spa-
tial resolution, a increase in resolution is observed. The
increase is explained by the rising influence of noise in
smaller or higher order elements. Previous research [16]
proved that a global approach has less influence of noise
for the same element/subset size. Here it’s further proved
that for the same spatial resolution, the global method has
a lower displacement resolution than the subset method.
This can be expected as the global method obtains C0-
continuity and thus obtains a smooth displacement field.

Fig. 12 Displacement vs spatial resolution for p-DIC, subset method
and Q8-DIC. For the local (Q8-DIC) methodology, a decrease in subset
dimensions (element size) is adopted horizontally from right to left.
The introduced p-DIC, on the other hand, increases the element order
from right to left. Spatial resolution criterion α = 1
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Fig. 13 Influence of noise on Displacement vs spatial resolution for
p-DIC and subset method. Spatial resolution criterion α = 5

Introducing higher orders in the global method keeps this
low influence of noise but also lowers the spatial resolu-
tion, as more complex deformations can be represented. The
graph also indicates that lowering the criterion α, increases
the difference between the subset and p-DIC method. At
1 % the difference is larger than at 5 %. In general it can
be concluded that for low heterogeneous applications (high
spatial resolution - right side of Figs. 11 and 12) the sub-
set, Q8-DIC and p-DIC are competitive. All have similar
displacement resolutions for the same spatial resolution. For
higher heterogeneous applications (low spatial resolution -
left side of Figs. 11 and 12), the p-DIC has less displacement
resolution then the local and Q8-DIC method. For example:
at a spatial resolution of 50 and criterion of 5 %, the subset
method has a resolution of 0.0165, as the p-DIC has a res-
olution of 0.011. Influence of the amount of the noise has
been investigated, concluding that noise shifts both Figs. 11
and 12 equally up as illustrated in Fig. 13. Here the noise
level is doubled ( form 1 % to 2 %). The general conclusion
is still valid with higher noise values. The data discussed
clearly indicate that for high accurate (low α) low spatial
resolutions (low P ), the p-DIC method is more favourable
then the subset or Q8-DIC method.

Strain Resolution and Spatial Resolution

The same procedures are followed for the strain resolution
and the spatial resolution. The only difference is that not a
sinusoidal displacement field but strain field is imposed and

Table 3 Deformation parameters for the validation of strains spatial
resolution

Parameter Value

a 0.05

P 40
20−→ 200

Table 4 Summarised correlation parameters used in the validation

Subset method p-DIC

Criterion NSSD NSSD

Element size (pxl) 21
41−→ 61 100 × 100

Element order Quad 4
1−→ 9

Step (pxl) 2 pixel

Strain window size 11
10−→ 51 n/a

Strain order Q8 n/a

that only the subset and p-DIC method are investigated. The
in-plane unidirectional sinusoidal strain field for the spatial
resolution has the characteristics shown in Table 3. For the
resolution, again a Gaussian noise with distribution of 1 %
(2 gray values) is imposed.

The configurations for the algorithms are given in
Table 4.

The resolution is still clearly defined as the standard
deviation of the measured artificial strain field (see section
“Measurand resolution”). The spatial resolution is defined
in section “Measurand spatial resolution”. For each combi-
nation of method and setting (defined in Table 4) the period
for a loss in amplitude ranging from 5 to 15 % can be deter-
mined and coupled with the strain resolution for that set-up.
The resulting graphs are shown in Figs. 14 and 15.

The representation of the data will be the same as the
plot used for the displacement. Here criteria 5 and 15 % are
used. Note that the graphs for other subsets between 21 and
61 lay between both lines and are left out for obtaining clear
graphs.

The data clearly indicates that again lowering the crite-
rion for amplitude loss (determining the accuracy) increases
the difference between the methods. The local method was
not able to reproduce the strain fields with an accuracy

Fig. 14 Strain vs. spatial resolution for p-DIC and subset method.
Spatial resolution criterion criterion 15 %
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Fig. 15 Strain vs. spatial resolution for p-DIC and subset method.
Spatial resolution criterion criterion 5 %

of 5 %. Increasing this criterion made comparison possi-
ble showing that local and global become competitive. It is
also noted that again the strain resolution is lower for the
same spatial resolution, with increasing difference if the α

is lowered. The same conclusion can be drawn as seen in
the displacement resolutions, saying that for high accurate
(low α) low spatial resolutions (low P ) the p-DIC method
clearly outperforms the local method.

Full Automatic Correlation

The p-DIC method, presented in chapter 2, is developed for
measuring strains with minimal user dependency in applica-
tions producing a high gradient strain field. The validation
of the p-DIC method is performed in chapter 3, showing
that the p-DIC method is appropriate to be used in these
low spatial resolution applications. To minimise user depen-
dency on the results, an error estimator was introduced to
adapt the mesh where necessary. Remind that the validation

Fig. 16 Imposed unidirectional sinusoidal displacement field with
varying frequency

Table 5 Correlation parameters for p-DIC

Parameter Value

Interpolation Bicubic

Correlation NSSD

p-refinement enabled

Uniform updating 4th order

‖e‖ 0.05

is performed without the error estimator to not alter the spa-
tial resolution of the method. In this chapter the estimator is
activated to prove the concept of the estimator.

The aim is to point out the independence of results
obtained by p-DIC. The most important task of the esti-
mator is to identify regions where the mesh is insufficient.
Insufficient in this context means needing higher orders to
describe the real displacement and thus needing a lower
spatial resolution. To test this performance, again a unidi-
rectional sinusoidal numerical deformed image is used. In
contrast with previous methodology, a variation in spatial
resolution is imposed.

�D(x) =
{

dx = a · sin[ 2·π
P0

· x + ( 2·π
P1

− 2·π
P0

) · x2

2L
]

dy = 0

Where P0 is the begin period, P1 the end period and L the
length of the image. In this case P0 = 160 pixels, P1 = 70
pixels and L = 1200 pixels. The resulting field is shown in
Fig. 16.

With this variation in spatial resolution, a similar vari-
ation should be found in the order distribution of the
elements. Choosing larger or smaller elements will lead to
respectively higher or lower orders. The input for the p-DIC
algorithm is shown in Table 5.

These settings have the following proceeding. First, the
mesh is uniformly updated until 4th order to prevent severe
underestimation of the real displacement. Once the mesh
reaches 4th order, the estimator is responsible for updating

Fig. 17 Distribution of element orders for the correlation of a dis-
placement field with varying needed spatial resolution for elements
ranging from 50x50 to 150 × 150 pixels
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Fig. 18 Trend error estimation value for correlation with element size
100 × 100

the mesh. If the element error indicator ‖e‖ equation (47) is
larger then 5 · 10−2 pixels, that element is refined. Running
p-DIC with this settings and using element sizes ranging
from 50 × 50 to 150 × 150 (= user dependent input), the
algorithm yields order distributions as shown in Fig. 17.

Based on the indicator equation (47), the error plot for
element size 100 (middle mesh in Fig. 17) is shown in
Fig. 18. The x-axis represent the refinement loop. The y-
axis represents the error indicator value. As seen in the
settings, uniform updating is done for four loops, after that
the adaptive procedure takes over. Each line on the graph
represents an element’s indicator in all the loops. The con-
verging behaviour is clearly seen and in loop 9 all elements
are converged.

The convergence graphs for the other mesh sizes are sim-
ilar. The convergence and order distribution proves that the
estimator is able to refine the mesh properly, as needed by
spatial resolution. The left side of Fig. 17, where the defor-
mation is less heterogeneous, have lower orders then the
right side. Also, the large elements are higher order then the
small elements. This experiment shows that the measure-
ment is now less dependent from user input. The algorithm
will automatically converge to the proper order to represent
the real displacement field, and thus having an user indepen-
dent spatial resolution. This in contrast to the subset method
where the spatial resolution is linked to the subset size, cho-
sen by the user. No feedback is given on loss of spatial
resolution, in contrast to the p-DIC. In Table 6 errors of the
correlation for the three mesh sizes are presented. The accu-
racy is RMSg equation (51) based on the known theoretical

Table 6 Accuracy, resolution and spatial resolution for p-DIC using
different element sizes

Size Accuracy Resolution Spatial resolution

50 x 50 1.88 % 0.72 % 1.22 %

100 x 100 1.85 % 0.50 % 1.15 %

150 x 150 2.25 % 0.37 % 2.00 %

Fig. 19 Numerically simulated tensile test with imposed noise. On the
left the reference image, on the right the deformed image

imposed displacement field. The resolution is the standard
deviation of the measured displacement field obtained by
correlating a noised reference image (see section “Mea-
surand resolution”). The spatial resolution is the percent-
age of amplitude loss in the reconstruction of a sinu-
soidal displacement field (see section “Measurand spatial
resolution”).

The results, shown in Table 6, indicate a clear conclusion.
Starting with a bigger mesh influences the spatial resolu-
tion slightly. The spatial resolution only rises 0.78 % for an
element area increase of 900 %. The estimator will update
the mesh till convergence, and thus till the mesh is able
to reproduce the real displacement. The resolution slightly
increases when smaller elements are taken. As the accuracy
is a combination of resolution and spatial resolution the
same conclusion stands.

Using the p-DIC method, one thus chooses the biggest
mesh possible. If the correlation does not converge, a
smaller mesh should be chosen. If the method converges,
one is sure that regardless of the mesh chosen the spatial
resolution is low enough if the setting for the estimator is
appropriate. By using the biggest mesh that has conver-
gence, one results a solution with enough spatial resolution
and the lowest resolution.

Application to a Tensile Test

For a more realistic situation, a tensile test is numerically
simulated. In the image noise is introduced to be as real-
istic as possible. A holed aluminium specimen is used,

Table 7 Correlation parameters p-DIC

Criterion NSSD −
Interpolation Bicubic −
Shape function Automatic update −
Min order 4 −
Element size (pxl) 100 × 100 pixel2

‖e‖ 0.025 pixel
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Fig. 20 Distribution absolute error horizontal displacement for tensile
test on holed specimen using subset and p-DIC

producing a heterogeneous strain field. Extensive research
has been done by Wang et al. [37] for selecting correct cor-
relation parameters for the subset method. It is stated that
the choice of parameters is critical for reaching the opti-
mum between noise reduction and spatial resolution. For
the experiment the same artificial images as in [37] will be
used, so the same optimum parameters can be selected for
the subset method. The used images are shown in the Fig. 19
where the left image represents the reference image and the
right the deformed image.

As stated by Wang et al this experiment has an opti-
mum subset size of 25 with affine shape function (based
on speckle pattern, noise, strain state, criterion ...). The
strain window should be bilinear with size 9. For p-DIC, the
settings shown in Table 7 are used.

Notice that the choice of element size is not critical,
uniform updating is performed until 4th order and the
estimator will refine the mesh automatically. That indicates
the data is less user dependent, as each correlation starts
with the same settings (error estimator) and adapts it self
during the correlation. Also, both methods use the same

Fig. 21 Distribution of error in vertical displacement for tensile test
on holed specimen using subset and p-DIC

Fig. 22 Distribution of error in strain Exx for tensile test on holed
specimen using subset and p-DIC

interpolation library to make the comparison more pro-
found. As the images are numerically deformed, the theo-
retic displacement and strain field is known. Based on these
fields, the distribution of the errors are shown in Fig. 20
till Fig. 23. The error is defined as the difference between
imposed an measured deformation.

The first conclusion coming from Figs. 20 and 21 is
that the distribution of the error in p-DIC displacements
have less variance than the ones from the subset method,
although for this method the optimal settings where used.
Remark that these optimal settings for the subset method
can only be found by the knowledge of the “true” defor-
mation. Development of an experimental simulator is on
its way so that different settings can be checked, yielding
the optimal correlation parameters [38]. Currently obtain-
ing these parameters is not possible yet and the settings has
to be estimated by user experience. Even if the simulator
was used, again user dependent input will be needed in the
simulator (model, noise, material, ...) whereas the p-DIC
refines only based on the experimental data without any
model or pre-knowledge.

Fig. 23 Distribution of error in strain Eyy for tensile test on holed
specimen using subset and p-DIC
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Fig. 24 Distribution of error in Exx using various strain window sizes
for tensile test on holed specimen

Secondly, Figs. 22 and 23 show that the use of a strain
window greatly improves the accuracy despite the noisy
measurement. The results (variance) for displacement field
are better (smaller) for the p-DIC method than the subset
method. More accuracy is obtained in the strain field by
smoothing the displacement field until calculated strains are
acceptable. The accuracy is here obtained by applying the
correct filter, dependent on the used step and strain window,
and is thus very user dependent. This effect of change in
data is shown in the Fig. 24.

The graph clearly shows the change in error, if the strain
window is changed. Increasing the window reduces the
noise effect, reducing the variance. Remark that if even
larger strain windows were used, the error distribution starts
widening again due to the lack of spatial resolution. For
this reason, increasing the size of the window is limited by
the spatial resolution, which is not known in a normal test.
There thus exists a window of acceptable values which is
not known, making it cumbersome to find these acceptable
settings. Because the p-DIC obtains the derivatives directly,
without any smoothing, this problem does not occur.

Fig. 25 Distribution of error in Exx with various element sizes for
tensile test on holed specimen

Fig. 26 Left: Mesh size 75 × 75. Right: Mesh size 200 × 200 pixels

To prove the statements made earlier the same graph
is produced for the p-DIC where the mesh ranges from
75 × 75 to 200 × 200 pixels resulting in Fig. 25 represent-
ing the change in error in function of the mesh choice. Other
settings like ‖e‖ and uniform updating order are not altered.

The graph confirms the conclusions made earlier: the
p-DIC method is less dependent of user’s input than the
subset method. There is a small change in the error dis-
tribution for an extreme range of elements (increment of
166 %). The smallest and biggest elements are shown in
Fig. 26. Although the use of small elements (size 75) is less
favourable (see section “Full Automatic Correlation”), the
method still yields acceptable results comparable to the opti-
mal subset size. As stated before, larger elements are more
favourable for the p-DIC method, as noise has less influence
and thus large elements have to be used. Once the elements
are large and reaching convergence the difference is mini-
mal (size 125 × 125 till 200 × 200). The size is limited by
the geometry of ROI or the lack of convergence indicated by
the estimator. Still keep in mind that although for the p-DIC
methods the least favourable settings where used, similar
results are obtained as by the subset method (see Figs. 22
and 23).

Conclusion

In this paper a new global DIC algorithm is presented. The
algorithm adopts features from the concept of adaptive FEA.
The region of interest is described by an adaptive element
mesh. A p-refinement scheme is implemented so that the
elements in the mesh are capable of rising in degrees of
freedom when the error estimators indicate them to do so.
Using measurand resolution and spatial resolution, a vali-
dation of the traditional local and newly presented p-DIC is
performed. Results from the validation indicate that the p-
DIC method has a lower measurand resolution for the same
spatial resolution compared to the local method. Also from
the strain validation can be concluded that for the accurate
measurement of low spatial strain fields the p-DIC method
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is more favourable than the local method. Beside the advan-
tage in performance at optimal settings, an other major
advantage is that the method becomes less user dependent
by using the self-adapting mesh. The spatial resolution is,
in comparison to the local method, not limit by initial user
settings. Future work is mainly aimed on the further devel-
opment of the error estimators as they are key in the p-DIC
procedure.

Appendix: Legendre Shape Functions

Legendre shape functions are a combination of function
Pp(χ):

Pp(χ) = 1

(p − 2)!2p−2

dp−2

dχp−2
[(1 − χ2)p−1] (61)

In a p-element shape functions are assigned to nodes, edges
or faces identified in Fig. 27.

Fig. 27 Element nodes, edges and face

The shape functions that can be used are shown in Table 8
with p the polynomial order.

Table 8 Hierarchical shape functions

Object Shape function

Node 1 P0(ξ)P0(η)

Node 2 P1(ξ)P0(η)

Node 3 P1(ξ)P1(η)

Node 4 P0(ξ)P1(η)

Edge 1 Pp(ξ)P0(η)

Edge 2 P1(ξ)Pp(η)

Edge 3 Pp(ξ)P1(η)

Edge 4 P0(ξ)Pp(η)

Face
∑p−3

k=1 Pk+1(ξ)Pp−1−k(η)
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