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Abstract Digital volume correlation (DVC), the three-
dimensional (3D) extension of digital image correlation
(DIC), measures internal 3D material displacement fields by
correlating intensity patterns within interrogation windows.
In recent years DVC algorithms have gained increased
attention in experimental mechanics, material science, and
biomechanics. In particular, the application of DVC algo-
rithms to quantify cell-induced material deformations has
generated a demand for user-friendly, and computationally
efficient DVC approaches capable of detecting large, non-
linear deformation fields. We address these challenges by
presenting a fast iterative digital volume correlation method
(FIDVC), which can be run on a personal computer with
computation times on the order of 1–2 min. The FIDVC
algorithm employs a unique deformation-warping scheme
capable of capturing any general non-linear finite deforma-
tion. The validation of the FIDVC algorithm shows that our
technique provides a unique, fast and effective experimen-
tal approach for measuring non-linear 3D deformations with
high spatial resolution.
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Introduction

Rapid advances in three-dimensional (3D) imaging and data
acquisition have increased the need for accurate full-field
displacement measurement techniques of internal defor-
mation fields ranging from inclusion problems to analyz-
ing the 3D motion of mammalian cells interacting with
soft biomaterials [1]. Digital volume correlation (DVC),
the volumetric extension of the popular surface displace-
ment mapping technique of digital image correlation (DIC)
has successfully addressed this need in large parts [2].
Although the mathematical formulation of DVC can be
derived using the same fundamental minimization equa-
tions used in DIC, direct application of this approach
to DVC has suffered from high computational cost and
time.

The processing speed of DVC is worsened when higher
order terms such as the deformation gradient are consid-
ered in the overall motion estimate. Yet ignoring these
higher-order terms can have a significant effect on the
accuracy of the calculated displacements fields especially
when large rotations and stretches are present [3, 4]. In
2011 Gates et al. address these shortcomings by present-
ing a complete, 12 degree of freedom DVC algorithm
derived from the same mathematical principles as DIC.
To handle the issue of computational cost the authors
utilize high performance parallel computing, producing
average run times just under 6 h for 393 voxel correla-
tion grid points with interrogation window sizes of 413

voxels [5].
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While these improvements in accuracy and computation
times have significantly advanced the maturity and prac-
ticality of DVC, there are still key challenges remaining
before DVC will be as versatile and robust as DIC. Perhaps
one of the most important aspects of a potential wide-spread
and user-friendly DVC methodology is close to real-time
computation times allowing the analysis of tens to hundreds
of time-lapse video frames. This will allow DVC algorithms
to produce motion estimates of dynamically evolving 3D
displacements within practical time frames similar to DIC
[6–8].

Another yet equally important parameter is the max-
imization of DVC spatial resolution without adversely
affecting the computational cost. Generally, DVC measure-
ments are highly dependent on the choice of interrogation
window size, which determines the spatial resolution and
displacement uncertainty of the generated results [9, 10].
Both of these parameters, namely computational tractability
and spatial resolution, are particularly important for appli-
cations focused on quantifying cell-material interactions,
which typically require analysis of long 3D time-lapse series
featuring locally applied non-linear deformation fields
[11–15].

We address these two critical technical hurdles by devel-
oping a new DVC algorithm capable of capturing any
general non-linear finite deformation that is performed on a
graphic processing unit (GPU). This new algorithm termed
fast iterative DVC, or FIDVC, maximizes the spatial res-
olution per given deformation field and speckle pattern
while providing almost real-time computation times even
for large 3D volumes. The main principle behind the pro-
posed algorithm lies in an iterative mapping approach simi-
lar to schemes widely used in the particle image velocimetry
(PIV) community [16–18]. Similar to our previous DVC
algorithm the proposed method is based on the standard
cross-correlation formulation with the addition of an iter-
ative image deformation method (IDM). This deformation
method is applied to both deformed and undeformed volu-
metric images, which improves the analysis accuracy. One
main advantage of the method is the multi-step interrogation
window refinement during the iteration process allowing for
the accurate capture of higher spatial frequencies including
localized large displacement gradients.

The paper is organized as follows: “Fast Iterative Digital
Volume Correlation (FIDVC)” presents the mathemati-
cal background and implementation details of the FIDVC
technique. “Validation of the FIDVC Algorithm” presents
numerical and experimental validation of our FIDVC algo-
rithm based on experimentally generated 3D laser scanning
confocal microscopy images. Specifically, the accuracy and
computational performance of our FIDVC technique is
quantified and compared against our previously published
DVC algorithm [4] since both are 3D, FFT-based, and local

deformation tracking techniques. “Conclusion” concludes
and provides an outlook for potential uses of our algorithm.

Fast Iterative Digital Volume Correlation (FIDVC)

The fast iterative digital volume correlation (FIDVC)
method is a fast, non-invasive, 3D full-field measurement
technique for determining large-deformation internal dis-
placement fields in soft materials. By utilizing a fast Fourier
transform (FFT) based cross-correlation formulation in con-
junction with the iterative deformation method (IDM), the
FIDVC efficiently computes finite deformation fields gen-
erally non-resolvable by our previous DVC algorithm. The
flowchart in Fig. 1 illustrates the basic procedure of how
the FIDVC calculates the 3D displacement field, u =
(u1, u2, u3), between two volumetric images, I (x) and
Î (x), where x = (x1, x2, x3) is the image coordinate sys-
tem. The first step involves the acquisition of volumetric
images of the undeformed, I 0(x) and deformed configura-
tion, Î 0(x) using 3D imaging modalities such as computed
tomography (CT), magnetic resonance imaging (MRI) or,
for the purpose of this study, laser scanning confocal
microscopy (LSCM) [2, 4, 19]. Each image should contain
unique intensity variations, or speckle patterns, in order to
allow for accurate motion estimation [20]. In LSCM, these
intensity distributions are in the form of micron-sized flu-
orescent particles that are randomly dispersed throughout
the imaging medium [4]. The precision and resolution ulti-
mately depends on this intensity information, including the
particle density, size, and distribution.

Calculating Displacements (uk)

Once the set of volumetric images I 0(x) and Î 0(x) are
obtained, each volume is subdivided into interrogation win-
dows of specified overlap ratios, i.e., subset spacing. These
two factors determine the final resolution of the DVC dis-
placement field, and can be adjusted during each iteration
to provide resolution refinement to increase the overall dis-
placement field resolution. During each iteration the incre-
mental displacements, du = (du1, du2, du3), of corre-
sponding windows in the undeformed and deformed images
are estimated using the general cross-correlation relation

I k−1(x) ⊗ Î k−1(x) → du, (1)

with k being the integer iteration counter starting at one until
convergence. Equation (1) can be rewritten in terms of the
cross-correlation coefficient, C, as

C(du) =
L/2∑

x=−L/2

f (x)·f̂ (x + du). (2)
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Fig. 1 Flowchart showing the
FIDVC method. The final
displacement, u is equal to the
last iteration of the calculated
displacement field, uk
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Here, f (x) and f̂ (x) are the gray level intensity values of
the undeformed and deformed interrogation windows.

Sub-voxel resolution can be achieved by fitting the
33 voxel cross-correlation peak to a Gaussian polynomial
to yield a more accurate estimate of the true sub-voxel
peak location. While the literature has produced a wealth
of various sub-voxel algorithms [21–23], we have previ-
ously demonstrated that a 3rd order polynomial Gaussian
peak fitting scheme provides both good accuracy and time
efficiency [4].

Due to the intrinsic averaging process in the cross-
correlation formulation some of its high-frequency content
is inevitably lost, which can be related to the Nyquist crite-
rion [13, 24]. Consequently the minimum wavelength that
can be resolved is only greater than twice the mean dis-
tance between markers within an interrogation window [25].
Therefore, the modular transfer function (MTF) of the clas-
sical cross-correlation approach shown in equation (2) is
approximated by the frequency response of a moving aver-
age filter [26]. In the case of a 3D moving average filter, the
MTF is given by:

MTF(λ) =
3∏

i=1

sin(πL/λi)

πL/λi

(3)

where L is the side length of the interrogation window, and
λ = (λ1, λ2, λ3) are the wavelengths under study along the
x = (x1, x2, x3) directions, respectively. It is evident that
when λ = L/n, n being a positive integer, the MTF = 0 and
thus the frequency response is unstable; the moving average
produces irreversible loss of information. Motivated by this,
an appropriate choice of a window weighting function can
be used to flatten the frequency response of a moving aver-
age. While there are many choices of weighting functions
that stabilize the frequency information, we choose to adopt
the robust and straightforward formulation by Nogueira et
al. [27] given by

w(x) =
3∏

i=1

(
12

∣∣∣
xi

L

∣∣∣
2 − 12

∣∣∣
xi

L

∣∣∣ + 3

+0.15 cos(4πxi/L) + 0.2 cos(6πxi/L)

+0.1 cos(8πxi/L) + 0.05 cos(10πxi/L)

)1/2

. (4)

By incorporating this particular weighting function into the
FIDVC process, the cross-correlation coefficient shown in
equation (2) becomes
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C(du) =
L/2∑

x=−L/2

w(x)f (x) · w(x + du)f̂ (x + du) (5)

in which f (x) and f̂ (x) are gray level intensity values of the
undeformed and deformed interrogation windows respec-
tively, and w(x) is the window weighting function given
by equation (4). In the case for our FIDVC, equation (5) is
implemented in Fourier space as

C(du) = F−1{F{w(x)f (x)}∗ ·F{w(x +du)f̂ (x +du)}}.
(6)

As before, the integer-voxel displacements are obtained by
finding the location of the global maximum of C. Although
the use of the weighting function does not completely
eliminate the low-pass behavior of the cross correlation
process it significantly improves the reconstruction of the
high frequency displacement information per interrogation
window.

The Iterative Digital Volume Correlation Method

In order to account for large material deformations but
yet remain computationally efficient, the deformation field
between images I (x) and Î (x) is linearized into k-
increments for which the cross-correlation algorithm is
well suited. As previously mentioned, such an experimen-
tal approach has been well documented for particle image
velocimetry (PIV) measurements, and is known as the
image deformation method (IDM) [28, 29]. Here we extend
the IDM method to measure material displacements in three
dimensions. Figure 2 illustrates the working principle of the
IDM of our FIDVC algorithm.

In Fig. 2, it shows that the original images I 0(x) and
Î 0(x) are symmetrically warped by the displacement field
of the current iteration, uk , which is equal to the sum of all
the previous displacement increments, i.e.,

uk =
∑

k

uk−1 + du. (7)

The warping of the two images, i.e.,

I k(x) = I 0(x − uk/2)

Î k(x) = Î 0(x + uk/2)
(8)

is implemented using a trilinear interpolation scheme. We
purposefully choose a symmetric image warping and tri-
linear interpolation to achieve the second order accuracy
at reasonable computational costs [30, 31]. It should be
noted that for the iterative algorithms, higher order inter-
polation schemes can be implemented at the expense of
increased computational cost [5, 32]. Although not pre-
sented in this work, GPU based interpolation can help to
decrease computation times [33].

The iterative process in the IDM is intrinsically unstable
and unless proper steps are taken, the results may diverge
[26, 32, 34]. Furthermore, in multi-frequency displacement
fields, the larger spatial wavelengths (λ > L) tend to diverge
later in the iterative process while the smaller spatial wave-
lengths are still converging. For this reason employing a
spatial filter during the iterative process serves as a suit-
able option to deal with these undesired results. A class of
linear low-pass convolution filters have been introduced by
Schrijer et al. that are computationally efficient and have
the ability to change strength depending on a single input
parameter [34]. The one-dimensional formulation of the
filter is described by the following equation:

p(ξ) =
(

L

2

)z

− |ξ |z (9)

where the kernel window length given by L is equal to the
interrogation window side length. The parameter z controls
the strength of the low-pass filter. No filtering occurs when
z → 0 since the filter approximates a Dirac delta function
and as z → ∞ the filter becomes a top-hat filter. The fil-
ter strength therefore increases with z and provides higher
instability damping at the expense of lower spatial resolu-
tion. Performing numerical and experimental assessments
of different filter strengths show optimal dampening and
modulation characteristics over the range of 10−3 ≤ z ≤
10−2 [34].

However, the results vary depending on when the filter is
applied during the iterative process. For example, the filter
can have an indirect influence on the displacement field if it
acts on the incremental displacement field, i.e., p ∗ du. It is
chosen that the filter acts on the current displacement field,
uk given by

uk = p ∗ (uk−1 + du), (10)

thus affecting the FIDVC results directly.
In addition to implementing a displacement damping fil-

ter prior application of the IDM, any non-physical displace-
ments are also removed by means of a universal median
test. This assists in producing smoother gradient fields by
ensuring that spurious displacement values are removed. In
general, DVC measurements are sensitive to noise in the
recorded volumetric images and to the choice of interroga-
tion window size. There is an optimal trade-off between the
interrogation window size, the number of spurious displace-
ments and spatial resolution present in the DVC results. For
this reason, the results for every iteration are analyzed by
the universal median test [35]. In this test, the median value
um of a 33 voxel neighborhood surrounding a displacement
value u0 is calculated. Using the median value, a residual
defined by r = |u0 − um| is determined for each displace-
ment value of the surrounding neighborhood, [u1, ..., u26].
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Fig. 2 Schematic showing the
IDM. The undeformed and
deformed images are
symmetrically warped by the
linearized, incremental
displacement field until they
reach the same final
configuration
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The median residual, rm of [r1, ..., r26] is then used to
normalize the residual,

r ′ = |u0 − um|
rm + ε

(11)

where ε represent the typical fluctuation level of the cross-
correlation. This procedure is repeated for every displace-
ment vector and any residual greater than a chosen level is
removed.

The final step in the FIDVC process is to check whether
the displacement values, uk have converged. Having a well
defined stopping criterion is important to provide proper
balance between accuracy and computation times in the
FIDVC algorithm. For example, stopping the algorithm pre-
maturely will produce under-predicted displacement fields,
while over iterating will be time consuming without a signif-
icant gain in displacement accuracy. Hence the most natural
stopping criterion is at a point in which the images have
fully-matching intensity profiles. The image similarity met-
ric of choice is the normalized sum of squared error at the
current iteration, ek , given by

ek = 1

σ

√√√√ 1

N

N∑

x=1

(
I k(x) − Î k(x)

)2
. (12)

Here N is the number of voxels, and σ is the mean standard
deviation of the undeformed and deformed images, I k(x)

and Î k(x).
After each iteration, the difference in the error between

the current and previous iteration is calculated and used as
an interrogation window size refinement or stopping crite-
rion. To illustrate how the convergence of the FIDVC works,
consider the following example run flowchart in Fig. 3. In
the first step, the displacement field of the current iteration,
k is calculated from equation (5) and the images are warped
according to equation (8). The normalized sum of squared

error is calculated for the current iteration, ek and is used
to calculate the error difference between the current and
previous iteration, i.e., �e = ek − ek−1. If �ek/�e0 is less
than or equal to the user defined stopping threshold ε0 than
the FIDVC is stopped and said to have converged. If this
condition is not met, we test against the interrogation win-
dow refinement criterion; if �ek/�ej is less than or equal to
ε1 the interrogation window length, L is reduced by half and
the loop continues. The subscript j is a simple counter denot-
ing the last time point at which the interrogation window
size is changed.

Run      iteration 
of FIDVC 

Calculate     from 
results 

Calculate      

Stop FIDVC
yes

yes

no

no

Fig. 3 Run flow chart showing the convergence scheme of the FIDVC
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3D Displacement Gradient Calculations

In addition to displacement measurements, correlation tech-
niques in 2D or 3D serve as a powerful tool to measure
strains in many research fields; e.g. investigations of cell
traction force microscopy [1, 15, 36], biological tissues
characterization [37], material fracture [38, 39], and full-
field soft matter characterization [40]. All of these exam-
ples rely on accurate measurements of the 3D internal
material strains. Care must be exercised when differenti-
ating the displacement field in the presence of noise and
large displacement gradients. Based on the work of Farid
et al. [41], we implement several suitable filters that mit-
igate sampling aliasing errors. Specifically, we formulate
the optimal differentiation and interpolation kernel solu-
tion as a minimization problem with the constraints that
the filters are linear, separable, and rotationally-invariant. In
Fourier space, this set of constraints allows reformulating
the problem as a 1D minimization procedure making it fast
to calculate large filters with kernel lengths of nine or more
points. The matching pair of filters that make up the gradient
operator are called optimal n-tap, where n denotes the length
of the filter kernel. Precaution has to be taken when choos-
ing an appropriate filter length: while larger n values reduce
errors due to noise, they provide excessive smoothening
of the recorded displacements resulting in a poorer gradi-
ent estimate. More sophisticated noise mitigation models
can be implemented, which are beyond the scope of this
work [42].

Validation of the FIDVC Algorithm

This section presents the quantitative validation of our
FIDVC methodology detailing the spatial resolution limits
and average processing times. The validation examples
presented here are primarily based on simulated deforma-
tion fields. To mimic experimental conditions, all of our
simulated images are corrupted with experimental noise
determined from actual laser scanning confocal microscopy

(LSCM) images. The choice in numerical rather than exper-
imental validation allows us to generate analytically exact,
non-linear localized material deformations to assess the
FIDVC spatial resolution limits quantitatively.

Generation of Simulated Volumetric Images
and Displacement Fields

Figure 4 shows three representative volumetric images that
were used in the validation of the FIDVC algorithm.

The optical system’s point spread function (PSF) is deter-
mined by least-squares fitting of a 3D Gaussian profile to
the intensity values of 1000 randomly sampled micron-sized
fluorescent particles within the image [43]. The PSF with
amplitude A and standard deviation, σ = (σ1, σ2, σ3) is
expressed as

PSF(x) = A exp

(
−

3∑

i=1

x2
i

2σ 2
i

)
. (13)

The following fitting parameters σ = (5, 5, 10), and ρ =
0.004 markers per voxel are determined from the experi-
mental data and used for the generation of all subsequent
synthetic images. Next, a 12-bit grayscale undeformed
image I 0(x) is digitally generated by superimposing the
intensities of multiple PSFs at random integer locations
throughout the image shown in Fig. 4(b). This superposition
of intensities is given by

I (x) =
N∑

n=1

PSF(x − xn) (14)

where xn = (
xn

1 , xn
2 , xn

3

)
is the center location of the nth

micron-sized fluorescent sphere. The total number of beads,
N, is calculated by multiplying the marker seeding density,
ρ, with the number of voxels in the image, V, i.e., N = ρV .
Any image intensity greater than the maximum 12-bit gray
scale level, is saturated to simulate true LSCM images. The
same procedure is utilized to digitally generate the deformed
image, Î (x), except each marker location, xn is translated
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an x1 − x2 cross-section of the displacement field magnitude, |u| for iterations 2, 4, and 6

to its new location, Xn = (
Xn

1 , Xn
2 , Xn

3

)
by the prescribed

displacement field, un, i.e.,

Xn = xn + un. (15)

Following our typical experimental approach [4], all sim-
ulated volumetric images are deconvolved using the Lucy-
Richardson deconvolution algorithm prior to calculating the
displacement field using FIDVC [44].

To rigorously characterize and quantify the spatial res-
olution of our new FIDVC technique a superposition of
Gaussian displacement functions is applied to a set of
volumetric images given by

g(x) =
∑

j

Aj exp

⎛

⎜⎝−
3∑

i=1

(xi − cj )2

2
(
σ

j
i

)2

⎞

⎟⎠ (16)

where

1. The number of Gaussian functions, j is chosen by the
user.

2. The Gaussian width is defined as two times the full
width at half maximum (FWHM) of the standard devia-
tion, i.e. w = 4

√
2 ln 2 σ , and is equal in all directions.

3. The amplitude, A, is chosen such that the applied mate-
rial deformation field falls into the finite deformation
regime. The analytical Lagrangian strain is computed
from the deformation field given in equation (16). The
amplitude, A, is adjusted such that the maximum value
of any strain component equals 15 %, thus ensuring
finite deformations.

4. The center position of the peak, c for each Gaussian
displacement field is chosen not to overlap with any
neighboring functions.

First, this approach allows simultaneous application of sev-
eral well defined spatial deformation wavelengths to assess

the FIDVC resolution limits. Second, it provides an analyti-
cal benchmark for a quantitative assessment of various finite
difference schemes in estimating the Lagrangian strains.
Physical examples of such displacement fields can be found
in many cell-induced material deformations [11–14].

The FIDVC algorithm is written in MATLAB (Math-
Works, Natick, MA) and executed on a custom built PC
with an Intel i7-3820 CPU at 3.6 GHz, 8GB RAM memory,
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Fig. 7 Comparison of the
spatial resolution between the
FIDVC and DVC algorithms.
Plot of the normalized residual
error associated with the
prescribed Gaussian
displacement fields. (Inset)
Contour plot of the prescribed
Gaussian displacement field
with a signal width of 128 voxels

16 32 48 64 80 96 112 128 144 160
0

1

2

3

4

5

6

Signal Width (voxel)

N
or

m
al

iz
ed

 R
es

id
ua

l E
rr

or
 (

e/
 σ

) DVC FIDVC
2.0

1.5

1.0

and Nvidia GTX 690 GPU. To significantly reduce com-
putation times, equation (6) is executed on the PC’s GPU
using the commercially available AccelerEyes Jacket library
(AccelerEyes, Atlanta, GA).

FIDVC Convergence

Since the FIDVC algorithm is an iterative technique, the
convergence behavior of the algorithm needs to be care-
fully characterized. A simulated image of size 512 × 512 ×
256 voxels is deformed according to a displacement field
given by a superposition of four Gaussian functions of
widths 32, 64, 96, and 128 voxels (Fig. 5(a)). The total
error, e between the undeformed and deformed images
given by equation (12) is used as the convergence met-
ric detailed in “The Iterative Digital Volume Correlation
Method”. Figure 5(b) shows the error per iteration along
with the corresponding x1 − x2 contour maps of the cal-
culated displacement field magnitude |u| in iterations 2, 4,
and 6. The corresponding interrogation window lengths for
the iterations shown in Fig. 5 are 64, 32, and 32 voxels with
a window overlap of 50 %, 50 %, and 75 % respectively. The
displacement contours inset at iteration 2 depicts the typi-
cally recovered displacement field using our previous DVC
method [4]. Qualitative comparison with the prescribed
solution clearly shows that most of the higher frequency
content is not properly captured. By utilizing more iterations
and smaller interrogation window sizes, the FIDVC success-
fully captures the higher spatial frequencies and converges
towards the prescribed displacement field.

Spatial Resolution of the FIDVC Technique

To quantify the spatial improvements of the FIDVC over
our previous DVC technique and to investigate the spa-
tial limitations of both algorithms we apply the following
deformation field: an image of size of 384 × 256 × 256
voxels is deformed by a superposition of three Gaussian

displacement functions of widths 32, 64, and 128 vox-
els. Figure 6(a) shows a contour map of the prescribed
displacement magnitude, |u| along the x1 − x2 plane.

The undeformed and deformed images are processed
using the FIDVC algorithm with an initial interrogation win-
dow size of 64 voxels and window overlap of 50 %. The
universal outlier removal filter is performed with a threshold
of 2 and a fluctuation level of 0.1 based on the previously
published displacement standard deviation values [4, 35,
40]. The polynomial degree of the predictor filter, z is cho-
sen to be 7.5 × 10−3 and the convergence threshold for the
interrogation window refinement is ε1 = 0.25. The stopping
threshold is set to ε0 = 0.0625 based on empirical evidence
of the various validation cases.

For all numerical experiments performed using our pre-
vious DVC algorithm, the interrogation window size and
window overlap is fixed at its value of 643 voxels with
a 87.5 % window overlap. The final spatial resolution for

Table 1 Normalized residual error corresponding to the prescribed
Gaussian displacement field of different signal widths for the FIDVC
and DVC algorithms

Signal Width (voxel) Normalized Residual Error (e)

DVC FIDVC DVC
FIDVC

16 6.205 2.144 2.894

32 2.481 0.258 9.597

48 1.435 0.113 12.60

64 1.003 0.066 15.11

80 0.794 0.045 17.62

96 0.678 0.035 19.30

112 0.608 0.029 20.65

128 0.562 0.028 20.11

144 0.530 0.027 19.34

160 0.505 0.027 18.11
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Fig. 8 Histograms of the displacement field corresponding to an experimentally applied rigid translation of 4.4 voxels along the x1 direction. (a)
u1, (b) u2, (c) u3

both the FIDVC and previous DVC algorithms results in an
equal grid spacing of 8 voxels, and 49 × 49 × 33 correla-
tion points. The corresponding line-profiles comparing the
DVC, FIDVC, and prescribed analytical displacements are
shown in Fig. 6(b).

For low spatial frequencies both algorithms capture the
extent of the applied deformations accurately. However,
the DVC algorithm underpredicts the amplitude of the
imposed displacements. For high spatial frequencies the
original DVC algorithm is unable to accurately predict
the correct peak amplitude, and shows an approximately
80 % difference compared to the prescribed solution at
the spatial frequency of 32 voxels. This effect stems from
the intrinsic low-pass smoothing behavior of the cross-
correlation formulation, in which case the DVC algorithm
can be regarded as a moving-average operation [18, 26,
45]. In contrast, the FIDVC algorithm successfully cap-
tures most of the applied deformations even at subsets of 32
voxels.

To quantify the resolution limits and errors associated
with each algorithm more rigorously, we vary the width of a
single applied displacement function incrementally from 16
to 160 voxels. An undeformed image of size 2563 voxels is
numerically deformed and processed through both FIDVC
and DVC algorithms. To quantify the error between the
numerically calculated and analytically prescribed displace-
ments, the normalized residual error for the displacement
magnitude, e calculated by equation (12) for each width
is shown in Fig. 7. The corresponding normalized error
values and DVC/FIDVC error ratios are summarized in
Table 1. For both algorithms, the normalized residual error
between the prescribed and numerically calculated displace-
ment fields is worst for small signal widths and best for
large signal widths as expected. The error from the DVC
algorithm is a factor of 3 to 21 larger when compared to the
FIDVC, resulting in a poorer overall displacement estimate.
This result is not surprising since the regular DVC algorithm
does not account for the higher order terms in its estimate of
the displacement field.

It is also noted that the FIDVC is capable of detecting
spatial widths below the smallest interrogation window size
of 32 voxels. This is possible due to the use of the MTF
weighting function given by equation (4) as well as the
refinement of interrogation windows. With an increase in
fiducial marker seeding density, it is possible to decrease the
smallest interrogation window size to 16 voxels thereby fur-
ther improving the spatial detection capability of the FIDVC
algorithm (see Supplemental Information).

Determination of the FIDVC Measurement Precision
and Accuracy

To determine the measurement precision of the FIDVC
algorithm, a zero-strain deformation is experimentally
acquired using LSCM. In this experiment, a polyacrylamide
hydrogel embedded with 0.5 micron-sized flourescent parti-
cles is rigidly translated by 4.4 voxels along the x1 direction.
Images before and after translation are processed through
the FIDVC to calculate the displacement field. The distribu-
tion along with the mean and standard deviation values are
summarized in the histogram shown in Fig. 8. The mean and
standard deviation of the corresponding Lagrangian strain
field is computed using an optimal-11 tap gradient kernel
and is summarized in Table 2.

Table 2 Mean and standard deviation values corresponding to the
experimental zero-strain deformation

Component Stationary Translation

Mean (%) SD (%) Mean (%) SD (%)

E11 1.78 × 10−4 0.003 1.39 × 10−3 0.018

E22 8.06 × 10−4 0.006 4.67 × 10−4 0.009

E33 6.60 × 10−3 0.005 7.47 × 10−3 0.015

E23 4.86 × 10−3 0.003 4.13 × 10−3 0.005

E13 3.42 × 10−3 0.003 8.30 × 10−3 0.008

E12 2.53 × 10−4 0.002 6.62 × 10−4 0.006
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Fig. 9 Root-mean-square
error,erms between the FD
kernels (a)–(d) and the
prescribed analytical
displacement gradient
magnitude, |∇u| for SNR levels
ranging from 1 to 100. The inset
shows the (a) Prewitt, (b) Sobel,
(c) Optimal-5 tap, (d)
Optimal-11 tap FD kernels
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The values of the standard deviation of the displacements
are an order of magnitude smaller than those previously
reported [4, 40]. This large increase in precision is likely due
to the universal outlier removal process that is performed
during each iteration. The axial precision of the displace-
ments and strains in the x3 direction is approximately 3–4
times lower than the transverse precision in the x1, x2 direc-
tions, caused by an axially elongated PSF seen in Fig. 4.
The values of all strain components are close to zero and
smaller than their corresponding standard deviation values
confirming a zero-strain deformation.

Calculating Displacement Gradients

It is important to assess the performance of different dif-
ferentiation schemes used to calculate the displacement
field gradient in the presence of noise. In this numerical
experiment, the previous four-pole Gaussian displacement
field with widths 32, 64, 96, and 128 voxels is cor-
rupted with Gaussian white noise corresponding to varying
signal-to-noise ratios (SNR). The choice of adding Gaus-
sian white noise is motivated by the normal distributions

in the displacement noise shown in Fig. 8. This allows
quantification of the performance of various finite differ-
ence schemes as a function of SNR. For each displace-
ment field, the gradient is calculated with a Prewitt [46],
Sobel [47], optimal-5 tap, and optimal-11 differentiation
kernel and compared to the analytically calculated displace-
ment field gradient. Figure 9 shows the root-mean-square
error, erms value calculated between the finite difference
schemes and the prescribed analytical displacement gra-
dient magnitude, |∇u| for SNR levels ranging from 1 to
100.

Out of the four kernels, the optimal-11 tap shows the
best performance in handling noise and recovering the cor-
rect displacement gradient. To visualize how the RMS error
affects the displacement gradient, Fig. 10 shows a contour
map of the displacement gradient magnitude, |∇u| along the
x1 −x2 plane for the four differentiation kernels with a SNR
of 5.

The Prewitt and Sobel kernels show the most fluctua-
tions in the calculated displacement gradient and thus are
the most unreliable predictors of the correct strain field at
low SNRs. On the other hand, the optimal-11 tap kernel

Fig. 10 Comparison of various
finite difference schemes
applied to a prescribed four-pole
Gaussian displacement field
with SNR of five. (a) The
corresponding analytical
gradient magnitude and
comparison with the (b) Prewitt,
(c) Sobel, (d) optimal-5 tap, (e)
optimal-11 tap differentiation
kernels
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Fig. 11 x2 − x3 slice
comparing the (a) prescribed
displacement field magnitude,
|u| near a spherical inclusion
under uniaxial compression with
the (b) FIDVC results. The
corresponding (c) analytical and
(d) FIDVC calculation of the
deformation gradient’s first
invariant, tr(F )
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shows the best performance in recovering the displacement
gradient while retaining higher spatial frequencies.

Spherical Inclusion Problem

We demonstrate the full capability of the FIDVC algorithm
by measuring a ubiquitous non-uniform 3D deformation, the
classical solution of a spherical inclusion in an infinite lin-
ear elastic solid subjected to a remote stress along the x3

direction [48]. In the presence of the inclusion under stress,
the material both deforms non-uniformly around the cavity
perimeter and homogeneously due to compression. To per-
form the numerical experiment, the analytical displacement
field of an inclusion of radius a = 48 pixels under a remote

stress of σ̂∞ = σ∞
E

= 0.04 is applied to a 2563 voxel unde-
formed image. The generated undeformed and deformed
images are processed through the FIDVC algorithm, and
the calculated full-field deformation fields are compared
against the prescribed analytical solution. Figure 11(a)–(b)
compares the displacement magnitudes, |u| of the calcu-
lated FIDVC results to the prescribed inclusion solution
along the x2 − x3 inclusion center plane. The corresponding
contour map of the deformation gradient’s first invariant,
tr(F ) is shown in Fig. 11(c)–(d). For visualization pur-
poses, the spherical inclusion is shown in black and the
region around the cavity is cropped to 1283 voxels to better
visualize the high gradients close to the inclusion. Quali-
tative comparison of the contour maps of the displacement
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Fig. 12 (a) Speed-up comparison of (1) DVC processed on the CPU against FIDVC processed on the CPU, (2) DVC processed on the CPU
against DVC processed on the GPU, (3) FIDVC processed on the CPU against FIDVC processed on the GPU, and (4) DVC processed on the CPU
against FIDVC processed on the GPU. (b) Processing times for an image of size 512 × 512 × 256 voxels with 65 × 65 × 33 computation points.
The image is processed using both our previous DVC and FIDVC technique and executed on the CPU and GPU. The FIDVC converged after 7
iteration
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fields between the FIDVC computed results and the pre-
scribed solution show excellent agreement in both the spa-
tial distribution and magnitude of the color contour levels.
When examining the first invariant, there is some devia-
tion between the analytical solution and the FIDVC results
due to slight numerical error associated with the FIDVC
method.

Efficiency

The computational cost of DVC computations is expected
to be significantly higher than that of regular 2D DIC due
to the cubic interrogation window size. Consider two sim-
ilar calculations, one with a DIC displacement grid of m2

points with a square interrogation window size of L2 pix-
els, and one with a DVC displacement grid of m3 points
with a cubic interrogation window size of L3 voxels. The
computational cost of the DVC calculations will be m × L

times greater than that for the DIC. The computational cost
will be even higher at the usual DVC grid sizes of m equals
50 to 100 points with an interrogation window size of 643

voxels. For DVC applications to be competitive and widely
applicable, fast computation speeds without compromising
high-accuracy measurements are imperative.

The computational efficiency of our FIDVC algorithm is
investigated and compared against our previous DVC algo-
rithm by processing a series of images using the CPU and
GPU. Each image of size 512 × 512 × M voxels where,
M is varied from 32 to 256 voxels in increments of 32
voxels, is deformed by the prescribed displacement field in
“FIDVC Convergence”. Due to the refinement of the inter-
rogation window size in FIDVC, the final grid spacing is
set to 8 voxels for a window size of 323 voxels, producing
a 75 % overlap. To accomplish an equal grid size or num-
ber of computation points for the DVC execution, we set an
8 voxel grid spacing, or 87.5 % overlap for the set window
size of 643 voxels. It is possible to use smaller window sizes
that would yield lower computation times; however there is
a trade-off between spatial resolution and capturing large
displacements [9].

Figure 12 summarizes the average computation speed
up factors for the different combinations of processors and
algorithms. As a baseline comparison without GPU accel-
eration, the FIDVC is ≈ 2.9× faster than our previous
DVC because of the optimized interrogation window and
overlap sizes. When executing each algorithm separately on
the GPU, substantial speed improvements of ≈ 22× and
≈ 5.5× are found, resulting in 1–2 min processing times
(Fig. 12(b)). As a final comparison, execution of the FIDVC
on a GPU offers computational speed up times of up to ≈
16× when compared to our previous DVC method run on a
CPU. These computational benefits are especially important
since the purchasing cost of GPUs are far less than both

supercomputing time and high end CPUs. The same GPU
processing times can be maintained within a low to medium
range personal computer. We hope that this will allow many
end-users to take advantage of the FIDVC formulation for
their studies.

Conclusion

This paper presents a new FIDVC technique capable of
capturing large 3D non-linear deformation fields. The tech-
nique utilizes the well-known iterative deformation method
in conjunction with a window weighting function allowing
it to maximize the final resolution of the displacement field
while maintaining low computational cost. A finite differ-
ence scheme that addresses the typical sampling issues of
discrete signal differentiation is presented and validated for
calculating 3D deformation gradients. This approach has
shown to drastically improve strain measurement accuracy
by up to 50 % in low signal-to-noise displacement fields.
The FIDVC results are validated using a combination of
experimental, and numerically simulated volumetric images
that are compared against our previous DVC technique [4].

The results show that the FIDVC can successfully cap-
ture displacements information with a subset size resolution
as small as 16 voxels, which is an approximate four-fold
increase in resolution compared to previous DVC tech-
niques [4, 40]. Execution of the FIDVC on a GPU offers
computational speed up times of up to 16× when com-
pared to traditional DVC methods run on a CPU. Replacing
expensive implementations on high performance comput-
ers by GPU implementation on average personal computers
will open new doors in allowing DVC to be run by a
wide-spread user base similar to DIC. To further support
end users in utilizing the FIDVC technique, our algorithm
will be freely accessible via download from our website
(http://franck.engin.brown.edu). Having the capability to
compute any non-linear finite deformation field quickly and
accurately should provide powerful means for investigating
new areas in experimental mechanics that can benefit from
non-invasive 3D measurement techniques.
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