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Abstract As any Digital Image Correlation (DIC) method,
Finite-Element (FE) based DIC methods lead to uncer-
tainties which are related to the spatial resolution (in
pixel/element). To overcome the tricky and well-known
compromise between spatial resolution and uncertainty, a
multiscale approach to FE-DIC is proposed. Additional
nearfield images are used to improve locally the resolu-
tion of the measurement for a given measurement mesh. An
automatic and accurate estimation of the nearfield/farfield
transformation is obtained by a dedicated DIC based
method, in order to bridge precisely the measurement per-
formed at both scales. This multiscale measurement is then
associated to a multiscale Finite Element Model Updating
(FEMU) identification technique. After being validated on
synthetic test cases, the method is applied to a tensile test
carried out on an open-hole specimen made of glass/epoxy
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laminate. The four in-plane orthotropic elastic parameters
are identified at different levels of loading. Results show
that the multiscale approach greatly improves the uncer-
tainty of both the measured displacements and the identified
material parameters.
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Introduction

Over the three last decades, full-field measurement tech-
niques have become increasingly popular in the community
of experimental mechanics. One can report geometrical
methods, such as grid method, moiré, or Digital Image
Correlation (DIC), and interferometric methods such as
electronic speckle pattern interferometry, holographic inter-
ferometry, or shearography, etc. [1]. Among these experi-
mental techniques, DIC is probably the most used either in
the academic or industrial community thanks to its (appar-
ent) simplicity [2]. Displacement (or strain) fields measured
by DIC can also be used for constitutive parameters identi-
fication, e.g. from heterogeneous mechanical tests. In fact,
with conventional identification methods [3, 4] more than
one test is usually required for the identification of the
constitutive parameters. Since they provide a sufficiently
large amount of information, full-field measurement tech-
niques allow the identification of several parameters from
a single non-homogeneous test [5–10]. For that purpose,
several identification strategies based on full-field measure-
ments have been recently developed, see e.g. [8] or [1]
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for more details. However a drawback of this approach
is obviously that the level of uncertainty associated with
the identified parameters depends on the quality of the
kinematic measurements [11], and thus in our concern, of
the DIC displacement measurement uncertainties [12]. The
latter are related at least to the DIC method itself [13],
but also depend strongly on the spatial resolution of the
displacement measurement [13, 14].

DIC is based on the assumption that the distortion of
the image pattern is due to the mechanical transforma-
tion of the seen object. Classically, DIC methods consist
in the minimization of a quantity that express the differ-
ence between the gray levels in the undeformed I0 and
the deformed I1 images. DIC methods roughly comprise
two broad categories: (i) subset-based method (or local
approach) in which the parameters of a shape function (typ-
ically linear or quadratic) are searched across a (generally
small and square) subset of the whole region of interest
(ROI) [15], and (ii) the global approach, that minimize the
criteria over the entire ROI at one time. In this work, a global
DIC method based on Finite Element kinematics (FE-DIC)
is used, following [16–18]. The main advantage, besides the
fact that between the numerical simulations and the full-
field measurements no projection is necessary because the
displacement is discretized in the same way, is that FE-
DIC approaches reduce measurement uncertainties because
they require the continuity of the found displacement field
throughout the ROI [13]. In the following, a unique mesh
is used for the discretization of both experimental and
simulated displacements.

Concerning the measurement uncertainties in DIC, the
most restricting ones are the random errors, which are linked
to the subset size (local approach) [2, 12, 19] or to the
number of pixels per element (global approach) [17], thus
defining the spatial resolution (expressed in pixel). More
precisely, the higher the number of pixels per element is,
the smaller uncertainties are. This compromise is classical
to DIC [2, 17]. It is worth noting that a kinematic model
(i.e. mesh) sufficiently rich to catch strain gradients, may
lead to high spatial resolution, to the detrimental of larger
measurement errors.

On the other hand, if one wishes to identify all the model
parameters, the kinematic field is obviously not enough, and
the static quantities must also be taken into account [10].
To this purpose, the region of interest (ROI) must include
the boundaries of the domain on which a resultant of the
external loads is partially measured. The image definition
which is a characteristic of the camera (number of pixels)
and the size of the ROI, which characterizes the experimen-
tal test, set the image resolution (in pixel/mm). As a result,
the spatial resolution is thus a highly constrained experi-
mental parameter (large structure, high gradients, complex
geometry, low levels of deformation in the elastic range,

etc.). In some cases it may be that the measurement uncer-
tainties become disadvantageous for the inverse parameter
identification [20]. This is particularly true when it comes
to identifying the model parameters describing the elastic
behavior of composite materials.

To overcome this spatial resolution / uncertainty com-
promise, we introduce in this work a nearfield/farfield
multiscale approach, that utilizes a Finite Element-based
DIC measurement method and a Finite Element Model
Updating (FEMU) identification procedure [21, 22]. In a
first step, we propose to use two cameras that acquire
images with two different image resolutions to measure
the displacement fields by FE-DIC on the surface of the
specimen. A series of images capture the full specimen
(farfield images: at the scale of the structure), while a sec-
ond series of images zoom on a structural detail (nearfield
images: for example, in a local region where the displace-
ment field is particularly sensitive to the parameters to be
identified). The FE simulation mesh is used for the FE-
DIC measurement at both scales. An image registration
process that automatically and accurately repositions the
nearfield image into the farfield image, based on a global
DIC approach, allows to place precisely the mesh on the
nearfield image.

In a second step, an ad hoc inverse multiscale iden-
tification method is presented. Based on the FEMU, it
takes advantage of the multiscale FE-DIC. On the one
hand the farfield FE-DIC measurement provides repre-
sentative Dirichlet boundary conditions for the numerical
simulation [9, 10, 23]. The corresponding reaction force is
compared to the one provided by a load cell. The addition
of this force term in the cost function is essential for the
identification of elastic moduli. On the second hand, the
nearfield FE-DIC measurement provides a high spatial reso-
lution kinematics field for the test / calculation displacement
comparison, in a region where the model parameters are
particularly sensitive.

The outline of the paper is as follows: in section
“Multiscale Digital Image Correlation”, after a brief review
on digital image correlation, an automatic nearfield / farfield
image registration technique is proposed. An a priori anal-
ysis of the multiscale FE-DIC approach is then presented in
section “A priori Analysis of Synthetic Images”. Measure-
ment uncertainties are evaluated through synthetic images
(shifted or strained). In section “Analysis of Real Images”,
the method is applied to an open-hole tensile test per-
formed on a glass/epoxy laminate. The experimental set-up
is presented and both farfield and nearfield images are
analyzed. In section “Application to the Identification of
Elastic Properties”, after being validated on previous syn-
thetic test cases, the multiscale inverse method is applied
to identify in-plane parameters of an orthotropic elastic
model.
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Multiscale Digital Image Correlation

Digital Image Correlation

Digital Image Correlation (DIC [14, 24]) consists in seek-
ing the displacement field u that register an image I1 into
another image I0 of a specimen in two different loading
conditions. Following [13, 17], a weak form of the gray
level conservation equation [25] is written globally over the
whole region of interest (ROI):

u� = arg min
u(x)

∫
ROI

(I0(x) − I1(x + u(x)))2 dx (1)

In practice, the unknown displacement field u : I0 → I1

is sought in an approximation subspace UN , spanned by a
finite dimension interpolation basis φi(x) as follows:

u =
N∑

i=1

φi(x)qi (2)

where q is the corresponding vector of degrees of free-
dom qi . A large choice of interpolations can be used
in this framework, among which Fourier series [26, 27],
B-Splines [28, 29], separation of variables [30], mechanical
based analytical functions [31, 32] or precomputed numer-
ical functions [20]. In this work, a DIC method based on
Finite Element kinematics (FE-DIC) has been developed
following [16–18]. The stationarity conditions associated to
the minimization of the linearized problem (1) yields a set
of linear systems:

Mqk = bk (3)

where M is a N × N matrix called the correlation operator
and b the corresponding right-hand-side:

Mij =
∫

ROI

(
∇I�

0 φi

) (
∇I�

0 φj

)
dx

bk
i =

∫
ROI

(
∇I�

0 φi

) (
I0(x) − I1(x + uk−1)

)
dx

where uk−1 = ∑k−1
j=0

∑N
i=1 φi q

j
i is the approximation of

the displacement at iteration k − 1. Since x + uk−1 may be
non-integer, a gray level interpolation is required to eval-
uate the right-hand-side. In this paper, a classical spline
interpolation is used.

The definition of the approximation subspace UN has
a direct impact on the accuracy of the estimation. First
N should be far lower than the number of pixels in the
ROI because of the ill-posedness nature of the correlation
problem. Namely, the larger N , the larger are measure-
ment uncertainties. However, UN should be rich enough
to accurately represent the a priori unknown displacement.
Namely, measurement uncertainties result from a compro-
mise between the accuracy of the displacement interpo-
lation, that manages what is called the “mismatch error”

in Bornert et al. [12], and the so-called “ultimate error”
when the displacement interpolation is sufficiently accurate
according to the true deformation of the image. In the case
of FE-DIC, a mesh that would be optimal for simulation
purposes, is not necessarily optimal for the DIC measure-
ment. Thus the choice of a common mesh is not, in general,
an easy task in the context of identification [20].

Most often, digital images are taken at one single reso-
lution. In this case, a first way to use a simulation mesh
including small elements (i.e., with a poor measurement
resolution) is to search only for solutions that have some
numerical [30] or mechanical [20, 33] regularity. The aim
of this article is to explore another route, which consists
in using images of the same speckle at more than one res-
olution. The multiscale (or multi-resolution) measurement
technique proposed herein, is designed to adapt the image
resolution to the mesh and not the reverse.

In this paper, the case of image pairs taken from two
cameras at two different scales is considered, one being
denoted farfield and the second nearfield. The first question
that arises, is how to characterize accurately the transforma-
tion which links the position of a point in the nearfield image
to its corresponding in the farfield image. For this purpose,
a dedicated digital image correlation technique is devised in
section “Farfield/Nearfield Image Registration”.

Farfield/Nearfield Image Registration

A key issue of the proposed multiscale correlation method
consists in registering accurately the nearfield reference
image In

0 in the farfield reference image If

0 . In this study,
this multiscale transformation t(x) is estimated by consid-
ering only the speckle of both scales. Thus a dedicated
digital image correlation algorithm is devised for that pur-
pose. Indeed, t(x) is sought to minimize the gray level
conservation equation:

t� = arg min
t(x)

∫
ROI

(
I0

n(x) − If

0 (x + t(x))
)2

dx (4)

where the ROI corresponds, here, to the entire nearfield
image In

0 .
As mentionned previously, the key point of a correlation

method is to propose an adequate and sufficiently accu-
rate kinematic interpolation model in the DIC algorithm.
One way to do this is to use the a priori knowledge of the
unknown transformation in order to reduce the number of
unknowns N . In the context of the near/farfield registration,
and since the studied specimen are assumed to be planar, the
proposed contribution consists in seeking the transforma-
tion t as an arbitrary homography H relating In

0 to If

0 . An
homography is an invertible mapping of points (and lines)
on the projective plane P

2, represented by a non-singular
3×3 matrix H. In other words, for a given point x ∈ In

0
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and its corresponding point x′
i ∈ If

0 we have the constraint:
x′ = Hx. Note that H can be multiplied by an arbitrary
non-zero constant without modifying the projective trans-
formation. Thus H is an homogeneous matrix with only 8
degrees of freedom even though it contains 9 parameters.
So, the dimension of the approximation subspace is reduced
to 8 for the whole nearfield image. Finally, the solution is
computed by a Levenberg-Marquardt algorithm applied to
the following problem:

H� = arg min
H∈M3,3(R)

∫
ROI

(
In

0 (x) − If

0 (Hx)
)2

dx (5)

where the numerical integration over the ROI In
0 is per-

formed by a mid-pixel rectangle method following [13].
Since the scales can be very different between near and

farfield images, this algorithm has to be initialized with
a coarse approximation of the homography. Typically, an
homography is estimated between two images by finding
a set of r matched points (mi , m′

i ). Three algorithms have
been compared for extracting and matching interest points :
SURF [34], MSER [35], SIFT [36]. In most of the examples
that have been processed, the SIFT algorithm [36] was the
most efficient because it provides a large sets of matched
points for most of our configurations. Next, consider a suf-
ficient set (i.e. r ≥ 8) of matched points (mi , m′

i ). Written
element by element, in homogenous coordinates one gets
the following constraint:

⎛
⎝ x′

i

y′
i

z′
i

⎞
⎠ =

⎛
⎝ h11 h12 h13

h21 h22 h23

h31 h32 h33

⎞
⎠

⎛
⎝ xi

yi

zi

⎞
⎠ ⇔ m′

i = Hmi (6)

which, in inhomogenous coordinates, corresponds to:

x′
i ≡ x′

i

z′
i

= h11xi + h12yi + h13zi

h31xi + h32yi + h33zi

(7)

y′
i ≡ y′

i

z′
i

= h21xi + h22yi + h23zi

h31xi + h32yi + h33zi

(8)

Without loss of generality, zi is set to zi = 1 and (7) and (8)
are rearranged in order to have an overdetermined linear sys-
tem (solved in a least square sense) where coefficients of H
appear linearly:

Ah = 0 where A = (
ax1 ay2 . . . axr ayr

)�
(9)

and

axi = ( −xi −yi −1 0 0 0 x′
ixi x′

iyi x′
i

)�

ayi = (
0 0 0 −xi −yi −1 y′

ixi y′
iyi y′

i

)�

h = (
h11 h12 h13 h21 h22 h23 h31 h32 h33

)�

This two step method is applied to synthetic images
whose construction is detailed in section “Multiscale Image
Synthesis”. In order to visualize the results, a point cloud

which corresponds to the nodes of a FE mesh are adjusted
on the nearfield image In

0 . Their image under the initial and
optimized homography operators are plotted on the farfield
image If

0 in Fig. 1. (Note that the homography is estimated
in the nearfield region only and extrapolated in the farfield).
The corresponding raw discrepancy maps (in gray levels
for a 256 gray levels range) In

0 (xi ) − If

0 (Hxi ) are plot-
ted in Fig. 2. Theoretically, with exact matched points the
result of the initial value of H estimated by SIFT should
be accurate. But, in practice, the couples (mi , m′

i ) are not
properly matched and the solution of (9) is inaccurate, see
Fig. 1(left). The gray level conservation is also poorly ver-
ified since the standard deviation of the residual map is
equal to 23.5 % of the dynamic range of the image, see
Fig. 2(left). However it provides a sufficiently good approx-
imation to initialize the DIC algorithm of equation (5), see
Fig. 1(right). The latter provides a very good estimation of
the transformation since the gray level conservation seems
accurately verified: standard deviation of the discrepancy
map is equal to 1.14 % of the dynamic range, as shown in
Fig. 2(right).

Remark 1 In the particular case of the synthetic images
described in “Multiscale Image Synthesis”, the homogra-
phy has additional properties. First, because the scales are
the same everywhere in In

0 , the coefficients h31 and h32,
responsible of the non-linearity in (7) and (8), are equal to
zero.

h31 = h32 = 0 (10)

In such a condition, the homography is said affine. Second,
because, in this case, H is a composition of a pure scaling
of factor 5 and a translation, the following relations must
apply:

h12 = h21 = 0 (11)

h11 = h22 = 1

5
. (12)

Finally, h13 and h23, coefficients of the rigid body transla-
tions, are arbitrary and only depend on the localization of
the nearfield region of interest. Thus, in addition to the mea-
surement of the discrepancy map of Fig. 2, a good way to
validate the proposed DIC algorithm is to underline that the
optimized homography (13)

H� =
⎛
⎝ 0.199899 5.86 10−6 499.812

−3.41 10−5 0.199985 359.793
−1.22 10−7 −1.11 10−10 1

⎞
⎠ (13)

solution of (5), meets properties (10), (11) and (12).
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Fig. 1 The mesh nodes are
adjusted on the nearfield
reference image In

0 by hand.
The images of these nodes under
the initial homography
estimated by SIFT (left) and the
one measured by the DIC
technique (right) are plotted on
the farfield reference image If

0

A priori Analysis of Synthetic Images

Images used in these sections are synthetized from a
mechanical analytical displacement field. Their construc-
tion is detailed in section “Multiscale Image Synthesis”.
The nearfield / farfield registration described in the previ-
ous section is performed. It is then possible to quantify both
ultimate and model random errors with the same meshes in
section “Separate Analysis of Multiresolution Images”.

Multiscale Image Synthesis

The main idea is to build a set of synthetic images in order to
evaluate the deviation between the measured and prescribed
displacement fields. The set of synthetic speckle-pattern
images is obtained using the TexGen software [37]. This
software has been developed to produce synthetic speckle-
pattern images which simulate real DIC speckle patterns
as realistically as possible. Deformed synthetic images can
also be generated with any displacement field.

Details of the speckle-pattern generator algorithm can be
found in [37]. Let us simply mention that Perlin’s coherent

noise function [38] is used to generate a continuous texture
function η:

η : [−1, 1]2 → [0, 1]
(x, y) → η(x, y).

The speckle-pattern image is generated by a photometric
mapping and an 8-bit digitization of the texture function
computed for each integer pixel of the image. The integra-
tion of the texture function over the domain corresponding
to the photosensitive area of one pixel is performed by
a super-sampling technique in order to simulate the pixel
fill factor. A reference speckle-pattern image, represented
by a gray level function I0(x), is first generated. Next,
the deformed speckle-pattern image I1(x) is generated by
applying a transformation � using the optical flow conser-
vation equation:

I1(x) = I0(�
−1(x)), with �(x) = x + u(x), (14)

where u must be an analytical C1 function in order to ensure
the computation of �−1 thanks to an iterative root finding
algorithm. Note that � is applied to the continuous texture

Fig. 2 The raw discrepancy
map In

0 (xi ) − If

0 (Hxi ) (in gray
levels) with the initial
homography estimated by SIFT
(left) and the one measured by
the DIC technique (right)
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function η, and not to the pixel (i.e. discrete gray level) val-
ues of I0. Then, the continuous deformed texture obtained
by solving (14) is mapped to generate the deformed image.
Regarding classical procedures (e.g. based on gray level
interpolation in the space [39] or Fourier [40] domain), this
method is known to limit the introduction of any bias due to
interpolation.

In order to perform a virtual mechanical test, the dis-
placement u is calculated from the analytical solution uL of
an infinite orthotropic open hole plate in vertical remote ten-
sion. Theoretical solution of this problem has been proposed
in [41] and already used for identification purposes in [6].
The four orthotropic parameters are set to El = 60 GPa,
Et = 56 GPa , Glt = 4.26 GPa and νlt = 0.049, the
hole radius is set to r = 2 mm and the prescribed stress to
σ∞ = 100 MPa.

A first pair of 1000 × 1000 pixels images (If

0 , If

1 )
is generated with a resolution of 26 μm per pixel. This
pair of images correspond to the farfield, as the field of
view is 26 mm wide. A second pair of 1000 × 1000 pix-
els images (In

0 , In
1 ) is generated, but with a resolution of

5.2 μm per pixel (5 times smaller). This one corresponds to
the nearfield images, with a field of view of 5.2 mm wide.
The caracteristic size of the speckle is 34 μm, which cor-
responds to 1.3 pixel in the farfield images and 6.5 pixel
in the nearfield images. These speckles, shown in Fig. 3,
are thus respectively suboptimal and superoptimal accord-
ing to [2]. The corresponding theoretical reference nearfield
and farfield displacement fields are shown in Fig. 4.

Separate Analysis of Multiresolution Images

As mentioned above, in DIC, the total measurement uncer-
tainties is classically viewed as a competition of the
so-called ultimate and model errors [12, 29]. Knowing

the exact analytical displacement field uref (see section
“Multiscale Image Synthesis”), it possible to compute the
random error of a displacement field u measured by FE-
DIC as the standard deviation of the discrepancy �u =
u − uref over the pixels overlaped by finite elements within
the ROI. The discrepancy term �u depends on the chosen
uncertainty:

– ultimate error. A simple rigid body translation along
x-axis is imposed to the reference image, here by a shift
in the Fourier space [12, 17]. Such a displacement field
does belong to the finite element approximation sub-
space Uh. Thus the ultimate error only considers the
errors inherent to the DIC technique in situation where
the adopted kinematic model of the DIC algorithm per-
fectly fits the actual displacement field in the image.
In this work, the magnitude of the x-component of the
displacement is set to ushif t

ref = 0.5 pixel since it max-
imises the standard uncertainty in the case of noiseless
images [42]. The FE-DIC measurement yields an inex-
act displacement map um which is used to estimate the
ultimate random error as follows:

σult = σ
(

um − ushif t
ref

)
(15)

where σ(·) is the standard deviation operator.
– model error. It correponds to the so-called interpola-

tion error in the computational mechanics jargon [29].
It only consists in the evaluation of the distance
between a non-constant analytical displacement field
and its projection on the finite element approxima-
tion subspace Uh. No DIC is performed at this stage.
In this paper, the mechanical analytical displacement
field described in the previous section serves as the

Fig. 3 Reference image
generated with TexGen for the
farfield image If

0 (left) and the
nearfield image In

0 (right)
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Fig. 4 Horizontal x-component
of the reference displacement
field in pixel, in farfield (left)
and in nearfield (right)

reference uL
ref . Its projection uproj on the FE approxi-

mation subspace is computed in the least square sense:

uproj = arg min
u∈Uh

m∑
i=1

(
uL

ref − u
)2

(16)

which only requires the resolution of a linear system
whose operator is the finite element mass matrix. Where
m is the number of pixels that are overlaped by finite
elements in the region of interest. The model error is
thus estimated by:

σmod = σ
(

uproj − uL
ref

)
(17)

– total error. The mechanical analytical field uL
ref is

prescribed to the reference image as described in
section “Multiscale Image Synthesis”. The measured
displacement um between these synthetic images is
computed by performing a FE-DIC. The total error is
then computed as:

σ tot = σ
(

um − uL
ref

)
(18)

This quantity, which measures the exact error between
the measured and reference displacement maps, takes
into account both sources of uncertainties.

Remark 2 The total error is always greater than the model
error σ tot ≥ σmod . However, the ultimate error may, in
some cases, be slightly lower than the total error since
a prescribed rigid body translation of 0.5 pixel does not
always maximize the ultimate error, in particular when noise
is present in the image, or when the characteristic speckle
size is not optimal [42].

This a priori performance analysis is performed with
both fields of view as a function of the characteristic mesh
size (which corresponds to the spatial resolution i.e. the
subset size for subset-based DIC approaches). Therefore, a
set of eleven unstructured finite element meshes are gener-
ated with Gmsh [43]. Their elements size are rather tightly
clustered around the mean value that ranges from 78 μm

to 5 mm, as shown in Fig. 5. The mesh is adjusted on the
farfield image and transfered to the nearfield image thanks
to the inverse of the optimized homography (H�)−1. Like
this, the same meshes are used for both near and farfield
images analyses.

Figure 6 presents the evolution of ultimate, model and
total random errors in millimeter as a function of the ele-
ment size in millimeter, for both nearfield (in red) and
farfield (in black) images. When nearfield and farfield anal-
yses are considered independantly, it can be observed that
the larger the elements (or equivalent, the more pixels per
element), the lower is the ultimate error. Conversely, the
larger the elements, the higher is the model error. The over-
mentionned compromise can be seen graphically on this
figure, since the total error results from the competition of
these two antithetical behaviors.

When nearfield and farfield curves are compared, it
appears that the model errors seems to broadly follow the
same trend. Theoretically, they should be aligned, since this
error simply depends on the physical mesh size (mm). In
practice, it is not exactly the case, since the number of ele-
ments considered for computing this error is not the same
in nearfield and farfield analyses as shown in Fig. 5. Con-
versely, the ultimate error associated to the nearfield image
is much lower than that of the farfield, for a given element
size. This gain can be explained, almost in its entirety, by
the resolution ratio. As a result, the total error is logically
shifted by the same ratio, along the direction of the model
error.

A naive conclusion would be to use exclusively high
definition images everywhere on the specimen. But, it is nei-
ther conceptually desirable nor technically possible for the
following reasons:

– even if ultra-high definition digital camera (up to
29 MPixels) are now available at a reasonnable price,
there will always exist technical limits. The compro-
mise between the image resolution and the ROI size will
remain, since, as stated in section “Identification from
Multiscale Measurements”, a large field of view may be
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Fig. 5 Example of unstructured meshes used for the a priori uncertainty analysis described in this section: from left to right, the average element
size is respectively 163, 411 and 719 μm, which corresponds to 6, 16 and 28 pixels per element width in the farfield image (top) and 31, 79 and
138 pixels per element width in nearfield image (bottom)

requested in the context of identification. For represen-
tative structures, the ratio between the structural scale
and the detail scale does generally not counterbalance
by the increase in camera definition.

– in addition, depending on the application, the choice
of the resolution may be limited by the acquisition
framerate [44–46].

– generally, the finite element meshes used for simulation
are only refined where higher gradients are expected,
in order to rationalise computational costs [47]. It is
thus unnecessary to have the same image resolution
everywhere.

– computational mechanics develop more and more mul-
tiscale models that describe the behavior at two or
more different scales (homogenized/refined). Dedi-
cated measurement techniques have to be developped
concurrently.

As a conclusion, for a given physical element size, the
total error is thus significantly reduced thanks to such a
multiscale approach. In other words, for a given target
error, the multiscale measurement makes it possible to use
much smaller elements. Consequently, it makes the use of a
simulation mesh for measurement purposes more flexible.

Fig. 6 Evolution of the ultimate
(wedge), model (circles) and
total (solid line) random errors
as a function of the element size
in millimeter for both nearfield
(in red) and farfield images (in
black)
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Analysis of Real Images

Description of the Test and Experimental Setup

The proposed multiscale methodology is now applied to a
real experiment. A quasi-static tensile test is performed on
an open hole glass/epoxy composite coupon.

The base plate was manufactured by stacking four pre-
preg plies made of 8-harness satin balanced woven fabric
(8-HS) in the same draping direction [48]. It was formed
using a vacuum bag technique and cured in a polymerization
oven. The 1.26 mm thick laminated plate was cut with a dia-
mond wheel into a straight-sided 30×250 mm [0]4 coupon
(i.e. orientated at 0 ◦ with respect to the warp direction).
Once the tabs glued, the gauge section is 150 mm long.
Finally, a 10 mm hole is drilled in the centre of the speci-
men. The macroscopic behavior of the studied thin laminate
is assumed to be orthotropic without in-plane bending-
twisting coupling. The major material axis is aligned with
the tensile direction. In the following, a 2D stress state
is assumed. As proposed by [6, 22], the idea is to take
advantage of the non-uniformity of the resulting 2D strain
field in order to identify the four in-plane elastic properties
at once.

The test was carried out on an electromechanical tensile
machine (Instron 5800). The loading was periodically inter-
rupted after a load increment of approximately 0.5 kN up
to 5 kN. In between the steps, the loading rate was around
0.25 mm/mn. At each load step, once the load stabilized,
both the farfield and nearfield images were recorded.

Two CCD cameras (AVT Dolphin F-145B) have been
used to capture these images (definition: 1392 × 1040 pix-
els, 8-bit). Assuming that the specimen undergoes in-plane
deformations, both the optical axes are set to be perpendic-
ular to the laminate plane. The first camera takes pictures
which cover approximately the whole gauge region, while
the second concentrates over a smaller area located around
the hole. The choice of the location of this nearfield region
is justified in section “Choice of the Nearfield Region of
Interest”. Here the ratio between the two optical resolutions
is around 5. The nearfield camera, mounted on a translation
stage, is then retracted to take a picture of the farfield region,
see Fig. 7.

A black and white speckle is sprayed on top of the sur-
face in order to provide a random texture suited for the DIC.
In practice, the speckle was intentionally made finer in the
nearfield region [2], see Fig. 8.

As expected in such a situation, the global load/displa-
cement response is linear elastic. A typical simulation
mesh is used in the FE-DIC to measure the displace-
ment field at both scales. In practice, the simulation mesh
is adjusted on the farfield image (the diameter of the
hole and the width of the coupon are measured, but the

position of the hole is adjusted). On the contrary, the mesh
is adjusted automatically on the reference nearfield image
using the optimized homography operator computed from
real images, as described in section “Farfield/Nearfield
Image Registration”. The multiscale images and corre-
sponding mesh positions are plotted in Fig. 9. The corre-
sponding measured FE-DIC displacement fields along the
tensile direction are presented in Fig. 10. It can be seen, even
in the bare eye, that the displacement is more regular when
using nearfield images.

Choice of the Nearfield Region of Interest

The identifiability of a constitutive parameter from full-field
measurements obviously depends on the sensitivity of the
field with respect to the sought parameter. The stacking
sequence, the geometry and/or the loading play here a great
role. In the following, the configuration of an open hole
specimen subjected to a simple tensile test is evaluated.

The sensitivity of the displacement field u with respect
to the constitutive parameter pi can be simply estimated
from a couple of finite element computations using finite
differences. An homogeneous orthotropic linear elastic is
used to model the plate. To be representative, the applied
boundary conditions are directly extrapolated from the FE-
DIC farfield measurements. The constitutive parameters p
are set to reference values. The latter were obtained clas-
sically by performing tensile tests on standard coupons
(DIN EN ISO 527-4) [3, 4, 48]. Secondly, one computes
the sensitivity δu/δpi . Figure 11 presents the sensitivity
maps corresponding to the four in-plane elastic parameters
(El, Et , νlt , Glt ).

As expected in such a simple case, these maps highlight
that the close vicinity of the hole is particularly relevant for
identification purposes. The nearfield images will thus focus
on this local area in order to get a higher displacement res-
olution (see Fig. 9). Moreover the sensitivity analysis also
exhibits that it will be much easier to identify the longi-
tudinal Young modulus El than the other parameters. In
particular, a change of the transverse Young modulus Et will
hardly affect the displacement field in a very narrow region.

Error Analysis of the Real Images

An a priori performance analysis is performed on the real
images, in order to assess the efficiency of the multiscale
approach. A typical FE mesh is built for the simulation.
It is irregular but structured and made of 4-noded bilin-
ear elements whose size ranges gradually from 2.8 mm to
0.64 mm near the hole. Therefore the spatial resolution for
the DIC displacement measurement varies from 33 to 145
(respectively 7 to 30) pixels in the nearfield (respectively
farfield) image. In this case, the FE mesh is assumed to be
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Fig. 7 Experimental setup. The
two digital cameras are facing
the specimen: their optical axis
is perpendicular to the laminate
plane. Here, a translation stage
is used to retract the nearfied
camera in order to capture the
farfield image

optimized for the simulation. As a consequence, only the
ultimate error is considered in this section. From the real ref-
erence images If

0 and In
0 , two series of synthetic deformed

images are generated by a subpixel shift in the Fourier space
whose magnitude ranges between 0 and 1 pixel. A FE-DIC
measurement is then performed at both scales. The ulti-
mate random error σult and systematic error (bias) μult

are thus computed from the discrepancy between measured
and prescribed displacement fields, as described in section
“Separate Analysis of Multiresolution Images” for each
value of the shift. The evolution of these two quantities is
plotted in Fig. 12 as a function of the shift magnitude in
pixel. Note that for the farfield images, only measurement
values inside the ROI corresponding to the nearfield images
are considered in the error calculation. First, with the FE-
DIC approach, typical bell-shaped and S-shaped curves are
obtained for random and systematic errors respectively. This
results is in good agreement with the litterature on subset
based methods [42]. By using such a multiscale approach,
the gain is hence double, since it takes advantage of both
(a) the improvement of the image resolution (number of
pixel/mm) and (b) the improvement of the DIC spatial reso-
lution in pixel in the image (number of pixel/element width),
for a given mesh. This corresponds respectively to (a) a ver-
tical and (b) a horizontal translation between nearfield (red)
and farfield (black) curves, in Fig. 6. Thanks to that, the ratio
between nearfield and farfield uncertainties is more than one
order of magnitude for an image resolution ratio of only 5.

Application to the Identification of Elastic Properties

Many techniques have been proposed to identify con-
stitutive parameters from full-field kinematical measure-
ments [8]. Among them, the Virtual Fields Method [49–51],
the Equilibrium Gap Method [52–54] or the Finite Ele-
ment Model Updating [6, 20, 22, 55] have for instance been
used for composite materials. In the following, the latter
technique is chosen. The objective here is to show how mul-
tiscale measurements can improve the performance of such
an identification technique.

Identification from Multiscale Measurements

The Finite Element Model Updating (FEMU) method is
a popular, intuitive and versatile identification technique
[8, 21]. It consists in updating a set of p constitutive param-
eters p in a FE analysis in order to reduce, in the least
squares sense, the distance R(p) between the measured and
the simulated quantities.

p� = arg min
p∈Rp

‖R(p)‖ (19)

Different optimization techniques, norms ‖.‖ and cost
functions may be used to exploit measured displacement
fields [6, 8, 11, 21, 22]. For instance, in [6, 22] strain
fields are compared. In the following, we rather compare
directly the displacement fields to avoid the amplification of

Fig. 8 Images taken at different
scales. A zoom on a particular
region is shown to compare the
corresponding spatial
resolutions



Exp Mech (2015) 55:121–137 131

Fig. 9 Multiscale digital
images with corresponding
finite element mesh. The yellow
lines correspond to the ROIs

the measurement noise linked to a numerical differentiation
[11, 56]. This calls for a strengthened emphasis on the
boundary conditions. The identification of the elastic mod-
uli requires moreover the minimization of the difference
between the applied resultant load (measured by a load cell)
and the simulated one. In this case, a hybrid residual vector
R(p) is generally built as follows:

p� = arg min
p∈Rp

√
‖Ru(p)‖2 + ‖Rf (p)‖2 (20)

where the displacement and force residuals read:

Ru(p) = us(p) − um

‖um‖ (21)

Rf (p) = Fs(p) − Fm

Fm

(22)

where u denotes the displacement dof vector and F the
resultant force while .m and .s stand respectively for

the measured and the simulated quantities. A Levenberg-
Marquardt algorithm is usually used to solve the mini-
mization problem (19). Instead of using this L2-norm, one
could alternatively solve a weighted least squares problem.
In particular, the FE-DIC correlation matrix M is related
to the inverse of the covariance matrix for the degrees of
freedom [17]. The use of M allows thus for a convenient
weighting of the degrees of freedom [20, 55]:

p� = arg min
p∈Rp

√
‖Ru(p)‖2

M + ‖Rf (p)‖2
2 (23)

where the M-norm is defined as ‖Ru‖2
M = R�

u MRu. It
should be noted that the matrix M is symmetric and posi-
tive by construction. When invertible, it can be decomposed
using the Cholesky decomposition as follows M = LL�.
Thus the M-norm of Ru can be written using the L2 norm
as ‖Ru‖M = ‖L�Ru‖2 which makes it compatible with
a standard implementation of the Levenberg-Marquardt
algorithm.

Fig. 10 Vertical y-component
of the displacement field (in
meter) measured by FE-DIC
from farfield (left) and nearfield
(right) images
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Fig. 11 Displacement sensitivity maps with respect to the four parameters to identify: (from left to right) El , Et , νlt and Glt

A simple standard monoscale FEMU approach is first
applied. It exploits as usual exclusively the farfield FE-DIC
measurements. On the one hand, the displacement field is
measured using FE-DIC. On the other hand, a FE simula-
tion if performed. The plate is meshed with the same mesh
(optimized for simulation) as in section “Error Analysis of
the Real Images” (see Fig. 9). As mentioned earlier, the sim-
ulated displacement field strongly depends on the chosen
boundary conditions. To minimise the impact of this part
of the modelling, the measured displacements on the nodes
of the upper and lower boundaries are imposed as Dirichlet
boundary conditions in the simulation. The reaction force
F can then be computed for the current set of constitutive
parameters. As mentioned in section “Separate Analysis of
Multiresolution Images”, the use of a locally refined mesh
is relevant for the simulation. Nevertheless, it has to be
coarse enough to measure accurate FE-DIC displacements.
Indeed, a displacement field corrupted by large uncertain-
ties will obviously yield large uncertainties on the identified
parameters [20].

To avoid such a delicate compromise, a multiscale FEMU
approach is thus developed. Like previously, farfield mea-
surements are used to define Dirichlet boundary condi-
tions in the FE simulation. They are indeed mandatory

to compute the reaction Fs(p). However, the FEMU now
takes advantage of nearfield FE-DIC measurements. Once
the simulation mesh adjusted on the reference nearfield
image following the multiscale registration technique (see
Section “Farfield/Nearfield Image Registration”), one mea-
sures better resolved nodal displacements um|near in a
restricted region where it is particularly sensitive to the
sought parameters (see Section “Choice of the Nearfield
Region of Interest”). As a first step, in this multiscale
approach of FEMU, only those nearfield measurements
are compared to the simulated displacements. The residual
vector Ru(p) turns to:

Ru(p) = us(p) − um|near

‖um|near‖ (24)

Finally, a flowchart of the principal steps in the mul-
tiscale measurement and identification algorithm is pro-
vided in Fig. 13. The strategy (global DIC measurements,
optimizations, homography, image synthesis...) has been
implemented in the Matlab environment. It takes less than
3 minutes to perform the overall multiscale identification
strategy on a laptop with an Intel®Core™i5 2.53 GHz CPU
and 8 Go memory.

Fig. 12 Random (left) and
systematic (right) errors (in μm)
as a function of the prescribed
shift in pixel with the
unstructured mesh
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Fig. 13 Flowchart of the
multiscale procedure

A priori Analysis of the Identification Robustness

In this section, the uncertainties associated to the identi-
fied parameters from synthetic images are compared. At
each scale, an image is generated by warping the real
reference images (Fig. 9) with a displacement correspond-
ing to the solution of the FE model with a known set
of parameters denoted pref . Both identification procedures
are then applied to these two image pairs. To compare
the approaches, the relative error between the reference
pref and the identified parameters p� is quantified by
e(p�) = ‖pref − p�‖/‖pref ‖. The standard and multi-
scale approaches give respectively e(p�) = 2.08 × 10−3

and e(p�) = 3.15 × 10−4. Thus the identification accu-
racy is improved by almost one order of magnitude on e(p)

with only a ratio of 5 between the image resolutions, in the
proposed multiscale method.

In addition, in order to further compare the robustness
of the methods, the impact of the image noise is evalu-
ated. A Gaussian noise, with zero mean and a standard
deviation ranging from one to twelve gray levels, is added
to the farfield and the nearfied images. For each level of
noise, both the identification methods are run for 20 ran-
dom samples. The evolution of the standard and multiscale
identification errors are plotted in Fig. 14 as a function of
the image noise. It can be seen, that the proposed multiscale
procedure reduces also the sensitivity of the identifica-
tion with respect to image noise roughly by one order of
magnitude.

Finally, the use of the M-norm helps to further improve
the identification accuracy (e(p�) = 1.58 × 10−4 compared
to 3.15 × 10−4 previously) and the noise robustness of the
identified process.

Identification from a True Experimental Image Sequence

The ten pairs of images recorded during the tensile test
(see section “Analysis of Real Images”) are used to mea-
sure both farfield and nearfield displacement fields. The
FEMU procedure is initialized using the elastic parameters
identified classically (reference values): El = 21.53 GPa,
El = 20.59 GPa, νlt = 0.15 et Glt = 3.54 GPa [57].
Figure 15 shows the evolution of the parameters identified
with both standard and multiscale FEMU methods, at the
nine last load steps.

Fig. 14 Relative error e(p) of the identified parameters as a func-
tion of the image noise for the standard single-camera identification
technique (FEMU) and the proposed multiscale identification method
(MS-FEMU) with the cost function expressed in the L2-norm and
M-norm. (note that the errorbars are also in logscale)
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Fig. 15 Identified parameters
from different loading
magnitude. From top left to
bottom right: Et ÃÂ; ElÃÂ;
vlt ÃÂ; Glt standard FEMU
(solid line) and MS-FEMU
(dashed line)

As envisioned from the sensitivity analysis (Fig. 11),
the identification results demonstrate that the longitudinal
modulus can correctly be estimated from both FEMU anal-
yses. At the first loading steps, the multiscale approach
produces more realistic values for all the parameters. More-
over, except for the transverse modulus Et , the values
of the parameters are close to the reference ones. It is
worth remembering that the sensitivity of the displace-
ment field with respect to this parameter is lower than for
the other parameters, and that the highest sensitivities are
restricted to a very small area. It is therefore logical that
both approaches fail to provide relevant results for this
parameter. On the other hand, the evolution of the identified
parameters as a function of the loading step is much more
regular with MS-FEMU than with standard FEMU, in par-
ticular at the first steps, where the signal to noise ratio is
bad. This is in accordance with the uncertainty analysis of
Fig. 14.

Paradoxically, the identification of the elastic proper-
ties of a composite laminate is quite a tricky problem.
In order to stay in the elastic domain (including in the
hole vicinity), the loading must be sufficiently low, which
leads to small strain levels. The resulting signal to noise
ratio makes standard FEMU fail to identify accurately
elastic parameters. Conservely, high levels of loading,
inevitably lead to material degradations (at least locally)
which invalidate the elastic assumption. In this regard, the

proposed multiscale identification technique is a good alter-
native since is proved to reduce significantly the noise
sensitivity.

A complete analysis of the results reveals that the param-
eters seem to evolve significantly at a very early stage of
the loading. The shear modulus Glt continuously decreases
all along the tensile experiment. This could be related to
the development of damage in the plate. The model consid-
ered herein (orthotropic linear elastic) is unable to model
this phenomenon which is in addition most prominent in
the nearfield region [58]. This may explain the reason why
the parameters identified from the mono and the multiscale
approaches can not be compared for the higher loading
steps.

The difference between measured displacements um and
the displacements us(p�) simulated with the optimized
parameters p� does give an interesting indicator of the
relevance of the elastic assumption. Figure 16 shows the
corresponding discrepancy maps for the set of parame-
ters identified with the multiscale approach at both scales
and at two distinct loading steps (2 kN and 5 kN). Dis-
crepancies are present but hardly visible at 2 kN, but they
are significant at 5 kN. Those maps simply confirm that
the chosen model is (obviously) not able to describe the
observed behavior throughout the tensile test, particularly
in the vicinity of the hole where damage is known to
localize.
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Fig. 16 Discrepancy maps of
the vertical component of the
displacement between
measurement and simulation
with the identified parameters
for two extreme load
amplitudes, 2 kN (a and c) and
5 kN (b and d) for both the
standard single-camera (a and
b) and the proposed multiscale
(c and d) FEMU.

(d)(c)(b)(a)

Conclusions

Connection between simulation and full-field measurement
was originally a critical task. With the advent of finite ele-
ment based digital image correlation methods [16–18], it is
now possible to bridge efficiently both of them with a com-
mon language: a finite element mesh [20, 55]. However,
choosing an appropriate mesh and / or spatial resolution
may be quite tricky because of the spatial resolution /
uncertainty compromise [12, 42]. In addition, this choice is
also constrained by hardware limitations. Moreover, in the
context of identification, the spatial resolution is often lim-
ited because the field of view generally needs to include
the boundaries of the specimen [10]. At the same time, a
high spatial resolution is required in the regions where the
displacement is sensitive to the parameter to identify. And
in some cases (which is the case of the real experiment
here), these region are very small. All these remarks led us
to devise both a new DIC methodology and an associated
FEMU technique able to take the best of images taken at two
different resolutions. Thus, in this paper, (a) a dedicated DIC
method was proposed for the automatic and accurate regis-
tration of the farfield image in the nearfield image and (b)
an hybrid multiscale cost function was used in the FEMU
technique. Finally, to assess the effectiveness of the pro-
posed multiscale approach, multi-resolution speckle pattern
images were synthetized from a mechanical analytical field
in order to simulate the whole chain from acquisition to the
identification of elastic properties.

The results show that the proposed multiscale method
significantly improves both measured displacements and
identified parameters. It is shown that even with a ratio
of 5 between the image resolutions, the measurement and
identification uncertainties can be reduced by one order of
magnitude which is one of the most interesting ouput of the
study. Not only the uncertainties are reduced, but it is shown
that the proposed method is also more robust with respect to
image noise by approximately one order of magnitude. This
noise robustness can be further reduced by using a weighted
M-norm as in [20].

Besides the case of more than two cameras or larger res-
olution ratios, there is a large number of work prospects,
such as using other enhanced identification methods [10,
20], extension to stereo-DIC which is of great interest for
more complex structures [9, 23]. It may also avoid the
movements of the nearfield camera between two shots. Ulti-
mately, such multiscale methods will make sense when
trying to identify multiscale simulation models including
local non-linearities, like for instance damage [59, 60].
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