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Abstract The measurement of three dimensional displace-
ment fields from tomographic image registration, or Digital
Volume Correlation, usually operates over two volumes that
have been reconstructed from numerous radiographs at the
elementary voxel scale. It is shown herein that a single
“reference” (i.e., fully reconstructed) volume, and very few
radiographs of the deformed configuration may be sufficient
to evaluate 3D displacement fields. The proposed algorithm
can reduce the needed number of projection data by several
orders of magnitude as shown on an experimental data set.

Keywords Digital volume correlation · Computed
tomography · Tomographic reconstruction · Radiography ·
3D imaging

CT and DVC in Experimental Mechanics

Computed Tomography (CT) has been a revolution in mate-
rials science [1]. Accessing the intimate microstructure of
solids in a non destructive way has opened new horizons [2–
4]. Progress toward higher performances is still extremely
active, and concerns about all frontiers [5], namely, smaller
length [6] and time [7] scales can be resolved nowadays,
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small absorption imaging thanks to phase contrast [8], com-
bined use of tomography and diffraction to extract crystal
orientations [9], energy resolved tomography to get chem-
ical information [10], and more generally multi-modalities
are a promising field of development.

At the same time X-ray Computed Tomography (XCT)
becomes accessible as a lab-scale equipment and not
only at synchrotron facilities. Moreover, their state-of-the-
art performances may in some cases compare well with
synchrotron tomography. Last, the recent development of
extremely powerful Graphical Processing Units (GPUs),
and the ability to make use of their potential for 3D-image
reconstruction makes real-time reconstruction accessible.
All these arguments explain the amazing developments of
tomography in the recent years [4].

All the previous developments are making in situ test-
ing not only possible [11, 12] but will allow for significant
progress to be achieved [3, 13]. 3D imaging in a non-
destructive manner of mechanical tests allows different
mechanisms to be observed and quantified, even though
they remain invisible to the bare eyes of experimentalists.
One additional step consists of evaluating the in situ 3D
kinematics of the tested material. This can be achieved by
tracking individual features (e.g., secondary particles) or
digital volume correlation for full field-measurements.

Digital Volume Correlation, or DVC, aims at capturing
the way a solid is being deformed under a specific external
load [14–16]. It is the three dimensional counterpart of dig-
ital image correlation [17, 18]. Based on the registration of
two volumes (i.e., 3D-images), a space resolved displace-
ment field can be estimated very accurately. The exploited
property is that the microstructure responsible for the image
contrast is preserved in time, and hence gray level patterns
can be traced from the reference to the deformed configura-
tion. DVC can be seen as a way to image 3D-motion (i.e.,
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the so-called optical flow). As such, it is a natural com-
plement to CT and in situ tests giving access to its time
evolution if the microstructure is preserved.

One potential limitation of DVC is that the estimate of
the three dimensional displacement field has to be based
on two reconstructed volumes, each being acquired inde-
pendently. Although recent progress has been achieved in
ultra-fast tomography [7], for very high brightness syn-
chrotron beamlines, standard tomography requires several
tens of minutes, and hence, it is to be assumed that the
sample remains motionless during one entire scan, an
assumption that may be extremely limiting.

The present paper aims at introducing a new methodol-
ogy to save acquisition time to measure displacement fields
in a solid (i.e., akin to DVC at a much faster pace). First,
a very brief overview of DVC and image reconstruction is
given to introduce the notations. It also presents the rationale
behind the proposed projection-saving strategy. Second, the
proposed approach is presented and some details about the
GPU implementation are provided. Third, an experimen-
tal synchrotron-based case issued from a mechanical tensile
test performed on a nodular graphite cast iron specimen [19,
20] is used to assess the performance of the approach. The
displacement resolution as a function of the number of pro-
jections is evaluated. Fourth, a discussion on possible ways
to improve the proposed methodology is developed.

Overview of DVC and Image Reconstruction

Digital Volume Correlation

Two scans are acquired at two stages of loading of a spec-
imen. The volumes are subsequently reconstructed from
these raw data. The first one is considered as the reference,
f1(x), and the second one f2(x) is acquired after a mechan-
ical loading has been applied to the specimen (i.e., the 3D
image in the deformed configuration). These 3D images
encode the details of the microstructure through the gray
level f1 or f2 at discrete points (or voxels) x (Fig. 1(a)).
This microstructure is assumed not to vary during load, and
hence the two images are related by the so-called texture (or
gray level) conservation

f2(X) = f1(x) (1)

where the reference, x, and deformed, X, coordinates are
related either by a Lagrangian displacement field u(x)

X(x) = x + u(x) (2)

or its Eulerian counterpart U(X)

x(X) = X + U(X) (3)

DVC aims at estimating u, or U , from f1 and f2. Let
us stress that although it is traditional to consider the
Lagrangian displacement field in solid mechanics [21], for
reasons that will become clearer later on, we opt here for the
Eulerian version. DVC in the same way as its two dimen-
sional variant Digital Image Correlation, or DIC [17, 18]
consists of repeated resolution and correction steps. Correc-
tions update the trial displacement field V to compute an
artificially deformed image from the reference one f̃V such
that

f̃V (X) = f1(X + V (X)) (4)

The objective of the resolution steps is reaching full 3D
coincidence of f2 and f̃V . It is achieved through the global
minimization of

T (V ) = ‖f2 − f̃V ‖2
ROI (5)

where ‖ . . . ‖ROI is usually the L2 norm computed here with
a uniform measure over the region of interest (ROI) in the
deformed configuration, X. Assuming a small incremental
correction on V , a linearization of the argument of the norm
is performed. Let us emphasize that the above Euclidian L2

norm is the best suited one for white Gaussian noise. When
noise correlations are known, or when the noise probability
density function is not Gaussian, a different adjusted norm
may be proposed. In the case of CT images, the reconstruc-
tion step introduces correlations from the approximately
white noise that is present in the radiographs, but their form
is too complicated (e.g., not spatially invariant) to be cor-
rectly accounted for. Therefore, although convenient, the
chosen Euclidean norm is not the best choice. It will be
seen that the proposed approach allows for a more suited
treatment of noise.

To make the problem well-posed, regularization is
needed. The simplest choice is to restrict V to belong to a
vector space of low enough dimensionality. One natural and
convenient choice is to search V through the decomposition
on a set of well chosen basis fields, Ψ i , for instance finite
element shape functions [22]

V =
∑

aiΨ i (X) (6)

where ai are the amplitudes to be determined. Minimiza-
tion of T (for the L2 norm) leads to linear systems in the
unknown corrections Δai gathered in vector {�a}
[M]{�a} = {m} (7)

with

Mij =
∫∫∫

ROI
(∇f̃V · Ψ i )(∇f̃V · Ψ j ) dX (8)

and

mi =
∫∫∫

ROI
(∇f̃V · Ψ i )(f̃V − f2) dX (9)
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X-Ray Computed Tomography

The two considered images are three-dimensional and
assumed to be obtained from X-Ray CT, that is they are
computed from sinograms, i.e., s1(r, θ) and s2(r, θ). The
latter ones are computed from 2D radiographs, I (r, θ),
recorded at position r of a detector, for a sample rotated by
an angle θ . The sinogram is defined as

s(r, θ) = − log

(
I (r, θ)

I0(r)

)
(10)

where I0(r) is the bare incident beam intensity, which
would be received by the detector if no sample were
present.1 In the simplest geometry, which is appropriate for
synchrotron facilities, the source is located far away from
the detector so that the beam can be considered as parallel.
Radiographs are acquired for different orientations θ of the
specimen as it is rotated along an axis perpendicular to the
beam axis. The sinograms are related to the local absorption
coefficient, f (x), by

s(r, θ) =
∫∫∫

f (x)δ(Π(Rθ · x) − r)) dx (11)

where Rθ describes the rotation transformation of the spec-
imen on the rotation stage, and Π the projection operator on
the detector plane generally set normal to the beam axis. The
number of projection angles that usually spans a π -radian
interval, has to be high enough to correctly reconstruct the
volume image f from the sinograms s. The rule is that the
maximum displacement of a physical point imaged at two
consecutive angles should not exceed one pixel on the detec-
tor. If the maximum distance of a point from the rotation
axis is Δx/2 when expressed in detector pixels, the number
of projections should thus be of the order of nθ = (π/2)Δx .
The linear operator allowing for the reconstruction of f is
the inverse Radon transform, and is denoted here T

f = T[s] (12)

while the direct projection (Radon transform) is denoted
s = P[f ]. For a divergent beam (relevant for lab tomo-
graphs) a similar algorithm for reconstructing the volume
can be devised [23].

1Note that in practice, a dark-field image is subtracted to the recorded
intensity I , and several measurements of flat-fields I0 may be acquired
so that the relevant estimate of I0 may be obtained from linear
interpolation between closest past and future flat-fields.

Projection-Saving Potential

In the following, 3D finite element meshes are chosen over
which the displacement is projected. More precisely, the
sum of squared differences between the corrected reference
volume and the deformed volume are minimized over all
displacement fields that can be decomposed as a sum of
finite element shape functions for structured or unstructured
meshes.

The uncertainty of measured displacements σu is dictated
by the ratio α of the number of available information (i.e.,
voxels) per kinematic degree of freedom [22, 24]. Noise
sensitivity scales as σu ∝ α−1/2. Hence, a fine spatial
resolution implies a small mesh size (i.e., many kinematic
DOFs) and thus large uncertainties. Conversely, a small
uncertainty on the displacement value implies a poor spa-
tial resolution. Thus a compromise is to be chosen. In any
case, the minimum cube element size that is usually con-
sidered is of the order of a = 10 voxels. This involves
α = a3/3 ≈ 333 voxel per scalar kinematic degree of
freedom.

When α < 1 the number of unknowns would be greater
than the number of equations, and hence the problem is
under-determined. When α > 1, there are more equations
than unknowns, so that there is generally no solution com-
patible with all constraints, but a solution for instance in
the least squares sense exploits redundancy to reduce the
impact of noise. For DVC, α � 1 or in other words
there is much less information to be measured in the dis-
placement field than available in the entire image. Con-
sequently, much less radiographs are needed to evaluate
displacements U than to reconstruct the 3D image f2. The
expected gain is a reduction in the number of voxels by
(at most) a factor α, and a little less if some redundancy
is preserved to limit noise sensitivity. With the above cited
numbers a gain by more than 2 orders of magnitude may be
anticipated.

Projection-based Digital Volume Correlation (P–DVC)
Procedure

Displacement Evaluation

The first step of the proposed analysis is to completely
reconstruct the 3D image f1 = T[s1] in the reference
configuration. It is proposed to save on the number of pro-
jections (i.e., radiographs) of the volume in the deformed
configuration. Therefore the sinograms are assumed to be
available only for a reduced set of angles, denoted s2(r, φ).
This set is defined for the same detector pixels, r , but a sub-
set of angular values φ of cardinality nφ much smaller than
the number nθ required to reconstruct f2. Hence, it would
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not be possible to compute f2 entirely from the sole sino-
grams s2. However, most of the microstructural details are
known from f1, and it is assumed that its evolution due
to mechanical load requires much less information to be
accurately captured. It is proposed, see Fig. 1(b), to deter-
mine the displacement field U through the registration of
radiographs

U = arg min
V

⎛

⎝
∑

φ

∥∥∥s2(r, φ) − Pφ[f̃V ]
∥∥∥

2

⎞

⎠ (13)

The procedure used to solve the above problem (13) pro-
ceeds along the same lines as earlier presented for DVC,
namely, starting from an approximate displacement field
V = ∑

aiΨ i (X), a correction to the degrees of freedom
Δai is looked for in the form of small perturbations. Based
on the chosen kinematic basis (6), the incremental change
of image f1 is computed

gi(X) = ∇f̃V (X) · Ψ i (X) (14)

Note that gi has the same support as the basis function
Ψ i and hence for a finite-element basis, it is sparse. The
projection of the incremental corrections are denoted by

zi(r, φ) = Pφ[gi] (15)

The linearized problem is thus expressed as

{�a} = arg min
{b}

(∑
φ

∥∥∥s2(r, φ) − Pφ[f̃V + ∑
i bigi(r, φ)]

∥∥∥
2
)

≈ arg min
{b}

(∑
φ

∥∥∥s2(r, φ) − Pφ[f̃V ] − ∑
i bizi (r, φ)

∥∥∥
2
)

(16)

so that {�a} is the solution to the following linear system

[N]{�a} = {n} (17)

with

Nij =
∑

φ

∫∫
zi(r, φ)zj (r, φ) dr (18)

ni =
∑

φ

∫∫
(s2(r, φ) − Pφ[f̃V ])zi(r, φ) dr (19)

The photon noise on the detector can be considered as
Poissonian whose variance increases with the intensity I .
Assuming that this variance is a small perturbation with
respect to the incident beam intensity and that the typical
absorption is not extreme, the noise on the sinogram s is
white of variance proportional to η2 = σ 2(1 + I0/I) =
σ 2(1 + es). To account for this noise, the least squares reg-
istration is performed on the sinogram s using a weight
inversely proportional to the variance on each detector pixel,
e.g., proportional to (1 − tanh(s/2)). Let us underline that
this treatment of noise is now performed in a satisfactory
way, in contrast to DVC performed on reconstructed images,
where the actual image noise correlation induced by the

reconstruction step are always ignored. Thus although this
is not the main motivation of the present study, noise is more
appropriately accounted for.

If multiple loading steps are considered, all acquired
radiographs have to be related to the reference state. This
may appear as increasingly difficult because of the larger
displacement amplitudes involved. However, as for standard
DVC, the difficulty may not be the ill-posedness of the prob-
lem, but rather having an appropriate initial displacement
guess allowing for convergence of the DVC algorithm. To
overcome this limitation, a classical procedure of DVC (and
DIC) is to initialize the displacement of step n by that
of step n − 1. This is usually quite efficient and involves
no extra cost [25]. Otherwise a multiscale procedure will
be discussed in Section “Multiscale Approach” as a pos-
sible extension (not yet tested). For classical DVC/DIC,
such a procedure is a very powerful tool to reach conver-
gence. Hence the true limitation may come from a change
in the microstructure that forbids a good match between
the deformed and reference cases. In such a case, every N

steps, one may “refresh” the reference image by performing
a complete tomography.

GPU Implementation

The above algorithm has been implemented on a GPU,
which is well-suited to such treatments, and allowing one to
benefit from its very high computing power. The implemen-
tation is mainly based on the CUDA language to take full
advantage of the power of Nvidia GPUs. Most of the execu-
tion time is utilized for the construction of matrix [N] and
vector {n}. In terms of distribution, each CUDA group com-
putes zi(r, φ) for all r crossing non-zero Ψ i , for a given
node i and projection angle φ. CUDA threads have then
to compute the partial contribution for a given r . In a sec-
ond phase, contributions for a given angle φ are obtained
by simple scalar products between the images zi(r, φ),
which may have different supports. To get the best of the
dedicated hardware and cache memory, f̃V is stored as a
texture.

For a 200 × 340 × 400-voxel reconstruction, it takes
approximately 0.5 sec on an Nvidia GTX 680 board to get
the contributions to [N] and {n} for each projection for a
mesh comparable to that shown in the following example.
The proposed algorithm is observed to converge exponen-
tially fast with the (very favorable) material microstructure
and (rather coarse) mesh presented hereafter, giving a sta-
tionary solution after a number of iterations ranging from
10 to 30 (due to the need for relaxation in some cases).
The chosen stopping criterion is defined as ‖ΔV ‖ < 10−2

voxel.
For the studied example, a reconstruction based on a

classical filtered back-projection, implemented on the same
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GPU, requires 3.2 s. A CPU (not GPU) version of the global
DVC computed over the same volume and mesh, requires
37 s to compute the displacement field. The proposed anal-
ysis depends very much on the number of radiographs,
nφ , used. The larger nφ , the longer the computation. Some
operations (loading of data into memory, correction of the
reference volume) are independent of the number of projec-
tions nφ , while others are simply proportional to nφ so that
the total computation time is expected to be an affine func-
tion of nφ . For nφ = 600, the computation time is 53 min
(for 12 iterations), while for nφ = 2 (11 iterations) the dis-
placement field is obtained in 31 s. It is worth emphasizing
that for nφ = 2, the computation time is actually smaller
than that of a classical DVC analysis (although it is fair to
stress that the latter is not GPU optimized).

Analysis of Cast Iron Specimen Tested In-Situ

P-DVC is tested when based on a nodular graphite cast iron
specimen whose tomography has been acquired at the Euro-
pean Synchrotron Radiation Facility (ESRF) in Grenoble
(France) [19, 20]. This material has a high volume frac-
tion of graphite (14 vol. %) with nodule size of the order
of 50 μm, and an equivalent distance between nodules.
The sample shape is parallelipedic, 1.6×0.8 mm2 in cross-
sectional area and 10 mm in length, with a rough surface.
It is loaded in situ with a specially designed tensile testing
machine [12]. Two scans are acquired, one in the reference
state (for an applied tensile load of 22 N), and one under a
151 N tensile load.

Tomography is performed with a monochromatic beam
(energy 60 keV). A very good contrast in absorption
between carbon and iron is observed with such a wave

(a) (b)

Fig. 1 Schematic representation of the data flow for the measurement
of the displacement field via DVC. The classical procedure is shown
in (a) where DVC consists of measuring the displacement field U so
that the reference reconstructed volume advected by the displacement,
f̃U , matches the deformed one. The proposed Projection-based DVC
(P-DVC) is shown in (b), where the displacement field is determined
so that the projection of f̃U can be registered onto the measured radio-
graphs, s2. The benefit of the proposed procedure is a drastic reduction
in the number of needed projections nφ

Fig. 2 (a) Region of interest of the reference reconstructed volume
and (b) mesh composed of 303 tetrahedra (T4 elements) used in the
analysis

length. The detector is a 2048 × 2048-pixel CCD camera
imaging a scintillator. The voxel size is equal to 5.1 μm. 600
radiographs are acquired to reconstruct each volume. One
dark-field (without beam), and 7 flat-fields (images of the
incident beam without specimen) have been acquired. The
flat fields are evenly distributed along the rotation from the
start to the end of the 180◦ scan. The sinograms are obtained
from the natural logarithm of the ratio of the radiographs
(after subtracting the dark-field), over a linear interpolation
of the flat-fields (themselves corrected by the dark-field)
at the corresponding angle. This treatment is the standard
procedure [23] and hence for short we will refer to these
processed radiographs as projections or sinograms.

Figure 2(a) shows the reconstructed volume in the
Region Of Interest (ROI) of 180×330×400 voxels (along
the x, y and z directions respectively). The graphite nodules
are very clearly apparent in the shown section.

An unstructured mesh is used to describe the kinematics.
It is composed of 303 tetrahedra, with linear interpolations
of the displacement field. Based on the number of voxels
per element, the average element would be equivalent to a
423 voxel cube. It is important to note that the sample is
strictly contained within the mesh so that the residual, i.e.,
difference between actual and computed projections, could
be decreased as much as possible.

On this precise example, redundancy can be estimated,
namely, the number of voxels is nvox ≈ 2.4 × 107. The
number of scalar degrees of freedom is ndof ≈ 300. In
each projection, the number of useful pixels is at most of
the order of npro ≈ 1.5 × 105 (note that this estimate is
based on the widest possible projection). Therefore, using
a standard DVC approach based on the above mesh, the
redundancy parameter would be αDV C = nvox/ndof ≈
80, 000. Using the P-DVC approach, redundancy is αP =
npronφ/ndof ≈ 500nφ . Hence for nφ = 2, the gain with
respect to standard DVC is very significant (a factor of
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(a) (b)

(c)

Fig. 3 x-component of the displacement field as estimated by P-DVC
with different numbers of projections, nφ when the “deformed” state
is identical to the “reference” one . (a) nφ = 48, (b) nφ = 6, (c) nφ = 2

80), yet redundancy remains large (103) and hence noise
sensitivity is not expected to be a drastic limitation.2

Resolution Analysis

To estimate the displacement resolution of the proposed pro-
cedure, the analysis is first applied using the reference state
as the deformed one without any additional noise or motion.
Hence, the expected real displacement field is U = 0. In
spite of the fact that this case appears as trivial since the
sinogram s2 is extracted from the original sinogram used to
compute the reference volume, the projection and the recon-
struction are not exactly inverse operators. Hence the re-
projection of the reconstructed volume s′(r, φ) = Pφ[T[s]]
differs from s(r, φ). Different reasons contribute to this dis-
crepancy. Some correspond to experimental imperfections

2The reason why the above estimate of αP does not match with αDV C

for nφ = 600, is that a complete cylinder containing the specimen is
counted for αP , whereas the voxel count for αDV C is based on the
actual shape of the specimen.

(e.g., global beam intensity modulation, detector noise or
nonlinear response, inadequate flat-field, dead detector pix-
els). Others may be due to discretization errors at voxel
scale, or to approximations used in the reconstruction proce-
dure that do not account for multi-spectral beams, scattering
or phase contrast effects. The fact that only a few projection
directions are considered may further amplify the weight of
some of these factors such as noise that is already present in
the considered radiographs (note that no additional noise is
considered).

Figure 3 shows the x-component of the displacement
field for three sets of used projections, nφ = 48, 6 and 2.
The average displacement is very close to 0 as expected. The
standard deviation of the nodal displacement, σU , provides
a more interesting information concerning the resolution.
It constitutes a lower bound to the actual uncertainty that
incorporates in particular the imperfection of the reconstruc-
tion procedure. The systematic change of this resolution as a
function of the number of projections is shown in Fig. 4. As
expected, the resolution decreases with the number of pro-
jections nφ . These fluctuations have been characterized for
each space direction independently. It is observed that the
(x, y) components are larger than the z one, which is consis-
tent with the fact that the reconstruction/projection steps are
responsible for a significant part of the remaining residual.
In both reconstruction and projection operations, sub-pixel
interpolations are to be used in the x and y directions. Ide-
ally, that should not be the case along the rotation axis z in
the absence of noise.

As soon as noise comes into play, a non-zero displace-
ment along z will be estimated calling for an interpolation
procedure but this effect is less pronounced along z than in
the (x, y) plane where the inverse Radon transform cannot
be avoided. It is of interest to stress that from nφ = 12 to 48,
the uncertainty is almost constant (in particular in the direc-
tions perpendicular to the rotation axis) and of the order of
0.1 voxel.

As earlier mentioned, the mesh contains the entire sam-
ple. This implies that the elements that reach the bounding
box have much less microstructural features within their
volume (part of it being outside the actual sample). To quan-
titatively evaluate this effect, a label is assigned to each
node, nf ace, that counts the number of external faces the
node belongs to. Hence for an internal node nf ace = 0, and
for a face, edge or corner node respectively, nf ace = 1, 2 or
3. The standard deviation of the displacement when sorted
according to nf ace is shown in Fig. 4(b). It is observed
that the higher nf ace, the larger the standard resolution.
This effect is classical for digital image or volume correla-
tion [26], but the fact that the region of interest is larger than
the actual sample further amplifies this effect. It is observed
that the resolution can be reduced by close to a decade, when
moving from the corner to an internal node. For internal
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Fig. 4 Resolution analysis.
(a) Standard deviation of the
nodal displacement σU vs. the
number, nφ , of used projections.
(b) σU as a function of the
number of different faces the
node belongs to. Different
symbols refer to different
numbers of used projections nφ

nodes and a number of projections equal to nφ = 2, the bulk
uncertainty is of the order of 0.1 voxel. When nφ = 96, the
uncertainty would amount to 0.04 voxel. For classical DVC,
the level of uncertainty estimated for such an element size
amounts to 0.02 voxel [20].

Hence, as information used to measure the displacement
field is reduced the resolution degrades. However, it is fair to
note that the amount of exploited data is in that case reduced
from 600 to 2 projections, that is a 300-fold reduction. In
comparison, the increase in uncertainty is modest.

Evaluation of Artificial Rigid Body Motion

Before studying the actual deformed image, a second test
case is analyzed where a known rigid body motion is arti-
ficially applied to the sample. First it is to be noted that
translations would not be discriminating as it would simply
translate the projections (sinograms) in their plane, hence
mainly testing 2D image correlation. For similar reasons, a
rotation along the z-axis would simply amount to selecting
different φ projection angles. Only rotations along an axis
in the (x, y) plane are of interest. A rotation by 0.2◦ along
the y-axis has been selected.

Fig. 5 Standard deviation σU of the difference of nodal displacement
between measured and prescribed displacement field, for a rigid body
rotation along the y-axis, vs. the number, nφ , of used projections

The difference, δU , between the measured displacement
and the known field, δU = Umeasured −U imposed is charac-
terized by its fluctuations (or standard deviation). Figure 5
displays the change of standard deviations of the three com-
ponents of displacement with the number of projections
used. The fluctuations are the lowest along the rotation axis,
which is consistent with the fact that the prescribed dis-
placement itself vanishes along that direction. For the other
components, the fluctuations are somewhat larger but they
remain essentially at a few hundredths of the voxel size or
below. The fluctuation is larger along the axes where the
second moment of the displacement is the largest. It is also
worth emphasizing that the uncertainty increases (modestly)
with nφ in contrast to what could have been anticipated. One
possible origin of this observation is round-off errors, but
this question remains to be clarified.

Evaluation of Actual Displacement Field due to Loading

The deformed state is now considered as that for which
the applied load was 151 N. The quality of the registra-
tion on the sinograms is first evaluated. Figures 6(a) and (b)
show the two projections when nφ = 2. It is to be stressed
that sinograms are usually shown with one axis along the
angular direction. However, since only two angles are con-
sidered here, it was chosen to show the two sinograms
s2(r1, r2, φ), (i.e., the radiographs scaled by the bright-field,
and using a log scale for the gray level) for the two φ

angles. Figures 6(c) and (d) show the corresponding resid-
ual images, i.e., the differences of projections s2(r, φ) −
Pφ[f̃U ] for the two angles. Ideally, these differences should
be 0 if the registration were perfect. It is observed that
most of the two residual fields are very close to 0. A small
border (outside the region of interest) shows roughly the
raw sinogram difference for the corresponding angles. The

ratio
∥∥∥s2(r, φ) − Pφ[f̃U ]

∥∥∥
2
/ ‖s2(r, φ)‖2, is of the order

of 2.2 % over the region of interest. Note that when no
displacement occurs,

∥∥s1(r, φ) − Pφ[T[s1]
∥∥2

/ ‖s1(r, φ)‖2

amounts to 1.6 %. The latter value gives the absolute limit
that could be achieved if the displacement field were ideally
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Fig. 6 (a), (b) Two sinograms
s1(r, φ) obtained for the two
angles used for the registration.
(c), (d) Corresponding residuals
s2(r, φ) − Pφ[f̃U ] for the same
angles. Note that the Region of
Interest extends from
60 ≤ r2 < 460, so that the top
of these images shows roughly
the raw difference of sinograms
s2(r, φ) − s1(r, φ)

Fig. 7 Displacement field along
the tensile axis Uz in voxels as
estimated by the proposed
methodology with two
reconstructions and with
different numbers of projections.
(a) Classical DVC, (b) nφ = 600,
(c) nφ = 48, (d) nφ = 2

(a) (b)

(c) (d)
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measured and if no noise were present in the projections.
Hence, the registration of the sinograms can be considered
as very good.

In contrast with the previous case, the exact displace-
ment field is not known. Two references can be considered,
namely, the first one is that obtained from a classical
DVC procedure, UDVC, based on the two reconstructed 3D
images. The second one is obtained with the present algo-
rithm but taking into account the whole set of projections,
i.e., nφ = 600. The latter displacement field is denoted
U600. These two fields are used as references for other eval-
uations of the displacement field based on a variable number
nφ of projections ranging from 96 to 2. Figure 7 shows the
measured displacement field with the same range for differ-
ent values of nφ . Only the component of the displacement
along the tensile axis, z, is shown, but the overall good
agreement is general, even when the number of projections

(a) (b)

(c) (d)

Fig. 8 Contours of the component of the displacement field along the
tensile axis Uz in voxels in the mid-thickness (y, z)-plane as estimated
with different numbers of projections. (a) Classical DVC, (b) nφ =
600, (c) nφ = 48, (d) nφ = 2

is reduced to its absolute minimum, 2. Note that the dis-
placement is shown on three faces where the uncertainty is
expected to be larger than in the bulk.

For a more quantitative judgement, Fig. 8, shows for
the same parameters, contours of the same displacement
component in the mid-thickness (y, z)-plane. The overall
agreement is generally quite good, but edges and corners are
significantly more perturbed.

To estimate the systematic error and standard uncertainty
of a given evaluation, U as compared to the reference field
U ref , the difference, δU = U − U ref , is considered. Its
space-average 〈δU 〉 and RMS level σ 2

U = 〈(δU)2〉 − 〈δU 〉2

are computed. Figure 9 shows these quantities as a function
of nφ when U ref = UDVC. The systematic error is generally
in the few hundredths of voxel range, about 0.05 voxel (apart
from one case, nφ = 3 where one corner node had a clearly
wrong estimate), see Fig. 9(a). Thus it may be concluded
that the proposed estimation is essentially unbiased. The
actual limitation for the displacement measurement is the
standard uncertainty. Figure 9(b) shows that σU decreases
from nφ = 2 to reach very quickly a plateau regime at
σ ≈ 0.25 voxel where apparently the number of projections
does not seem to play any role.

Figure 10 shows the same quantities for U ref = U600.
The overall shape is quite comparable (including the odd
corner node for nφ = 3). However, it may be noted that
the systematic error is slightly reduced down to a level
of about 0.02 voxel. More strikingly, the fluctuations now
approximately display a power-law decay up to the largest
number of projections (excluding the reference), where
roughly σU ∼ n

−1/2
φ . Hence the saturation of σU based

on UDVC is due to systematic differences between classi-
cal DVC and the procedure used herein. Although these
methodologies are comparable in spirit, the detailed way of
handling imperfections of data acquisition, approximations
used in the reconstruction, and discretization errors in the
reconstruction are the most severe sources of uncertainty.
Ironically, the motion of the specimen itself has a more lim-
ited influence. Let us also stress that the noise present in
the radiographs is treated in a proper way within P-DVC,
whereas the correlations induced by the reconstruction are
ignored in classical DVC.

To further analyze the standard displacement uncertainty
Fig. 11 shows the average of σU for both reference fields
U ref , after having sorted nodes according to the number
of faces they belong to. As in the previous subsection, it
is observed that inner nodes nf ace = 0 are much more
accurately determined than corner nodes. For two projec-
tions, inner nodes show only about 0.2-voxel uncertainty.
It is observed again that nφ essentially controls the dis-
tance to U600, but only mildly affects the difference with
UDVC.
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Fig. 9 (a) Systematic error and
(b) fluctuation of displacement
fields estimated using nφ

projections based on UDVC as a
reference

Fig. 10 (a) Systematic error
and (b) fluctuation of
displacement fields estimated
using nφ projections based on
U600 as a reference

Fig. 11 Standard deviation of
U − U ref based on (a)
U ref = UDVC and (b)
U ref = U600. The standard
deviations are estimated for
subsets of mesh nodes belonging
to a given number of faces nf ace

(a) (b)

It worth noting that a large part of the displacement in
this experimental case is a rigid body rotation. It is therefore
interesting (but demanding) to study the estimated overall
tensile strain, 〈εzz〉. Figure 12 shows the tensile strain εzz

estimated from the displacement of the inner nodes (such
that nf ace = 0). The strain is plotted as a function of the
number of projections nφ , together with the estimate based
on the full DVC analysis considered as a reference, and indi-
cated as a dotted line. Based on the uncertainty reported
for Uz, and the sample length (i.e., 400 voxels), the strain
uncertainty ranges from 5×10−4 for nφ = 2 to 2×10−4

for nφ = 600. Considering those levels of uncertainty, all
estimates are consistent.

Possible Improvements

Reconstruction Strategies

In the present study, the reconstruction algorithm is cho-
sen to be the standard Filtered Back-Projection (FBP) [23].
It is the most commonly used algorithm as it combines
simplicity and speed of execution. However, the quality
of the reconstruction is not the best that can be achieved
and alternative techniques designated under the name of
Algebraic Reconstruction Technique (ART) are available as
more accurate but more costly procedures [23]. Although
different variants exist, they typically aim at iteratively
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Fig. 12 Estimated tensile strain based on inner nodes (nf ace = 0) as a
function of nφ . The dotted line corresponds to the result obtained with
classical DVC

reducing the reconstruction residual s − Pφ[T[s]]. As it
was observed that this difference was one of the major lim-
itations of the proposed procedure, resorting to such an
algorithm is presumably a good way of enhancing the qual-
ity of the displacement measurement. Such a progress is
also expected to come together with an extra cost, due to the
iterative nature of these algorithms. However, if a series of
images is to be analyzed, the investment made to achieve the
best quality out of the reference image is performed once
for all and the subsequent use of this reference volume for
the entire series will distribute the extra cost to numerous
images.

Moreover, the present cost of an FBP reconstruction is
negligible as compared to the cost of the correlation proce-
dure (mainly due to the cost of gradient projections). That
of an ART iteration should be comparable to the cost of one
projection as used in the displacement analysis but has to
be repeated over the complete set of projections (i.e., 600
angles in the present example), and often about 10 ART
iterations are to be performed before reaching a stationary
solution. Hence, this direction is worth being investigated
especially when the FBP reconstruction is facing difficul-
ties for the reconstruction (e.g., because of nonuniform
angular sampling, or high level of noise). In other cases,
resorting to an ART strategy may induce an extra cost
that may not be compensated by the extra quality of the
reconstruction.

Last, it may also be a way to identify biases in the acqui-
sition of the raw radiographs by considering the irreducible
residuals. Such an identification may provide a much better
way of handling further comparisons. However, this implies
to revisit the details of the reconstruction procedure includ-
ing phase contrast, nonlinearities of the detector, which may
be demanding in terms of resources.

Multiscale Approach

One of the most limiting difficulty in DVC is that conver-
gence requires a good initial guess for the sought displace-
ment. Otherwise, the risk of being trapped in secondary
minima increases fast with the distance of the initial dis-
placement field to the actual solution. One effective strategy
to avoid or limit such local trappings is to first solve the
DVC problem based on smoothed images as obtained from
a low pass filter. After convergence, the obtained displace-
ment is used as a starting point for a new DVC problem
where more details are restored in the images. This pro-
cedure is iterated down to the full image. This pyramidal
approach has been shown to be very useful for a wide
category of problems in DIC and DVC analyses [18, 22, 27].

For the present algorithm, the same procedure could
be applied as obtaining a coarse reconstruction can easily
be achieved using FBP (or ART) algorithms. It may also
decrease the number of iterations needed to reach a steady
state solution, and is therefore an appealing strategy. How-
ever for the test case studied herein the strain level was small
enough not to require such a multiscale approach.

Regularization Strategy

In the field of DIC and DVC, the benefit of using an
elasticity-based regularization has been demonstrated as
giving rise to significantly better results in terms of stabil-
ity, and larger basin of attraction for the actual solution,
and in terms of regularity of the obtained displacement
field [19, 24, 28, 29]. It allows ill-conditioned modes to be
efficiently dealt with, i.e., those that correspond to the lower
eigenvalues of matrix [M] (equation (8)). Those modes are
expected to be encountered especially for face, edge and
corner nodes, those that have been seen to be responsi-
ble for the worst uncertainty in the previous analysis. In
the present case, four faces are free surfaces, and thus the
use of vanishing tractions may be a very appropriate way
of handling the poor conditioning of these modes, if some
approximate elastic properties are available. In the present
case one could consider to penalize a non-zero traction vec-
tor on the free surfaces, the latter traction being computed
from the finite element discretization and an estimate of the
Poisson’s ratio of the material. A very large weight given to
this constraint would enforce the appropriate boundary con-
dition on those elements where information is lacking. Such
an attempt has not been explored further in the present study
so that reported results are representative of the sole P-DVC
procedure.

It is also to be noted that regularization can be under-
stood through the temporal axis [30, 31]. When a series of
states are to be characterized, prescribing a specific regular-
ity in the time evolution of all degrees of freedom (be they
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of kinematic type or others) is a natural way of reducing the
uncertainty and promote robustness.

Conclusion

It has been shown that global DVC applied to CT volumes
could be performed based on a drastically reduced number
of projections (here by more than 2 orders of magnitude)
yet preserving subvoxel resolutions. The new formulation,
which is written in terms of the raw data of CT (i.e., the
sinograms), is based upon the complete reconstruction of
one volume in the reference configuration and the volume
in the deformed configuration only needs a limited number
of projections. The lower the latter the poorer the displace-
ment resolution. However, very reasonable results have been
obtained even with only two projections. With the proposed
algorithm, only one complete scan is needed to assess the
displacement resolution.

The present approach, which is referred to as projection-
based DVC (or P-DVC), has been applied to analyze one
step of a tensile test on nodular graphite cast iron. Meshes
based upon 4-noded tetrahedra encompass the considered
sample. The measured displacement fields obtained with P-
DVC are very close to those measured with standard T4-
DVC in which two full CT scans are considered. This result
validates the P-DVC algorithm.

The proposed methodology has been implemented on a
GPU board allowing displacement fields to be measured
on several mega-voxel regions of interest within about 30 s
computation time. The computation time is proportional to
the number of projections, nφ , and hence the smaller the
number of projections, the smaller the computation cost.
The P-DVC technique opens new possibilities to character-
ize the time evolution of systems that have been imaged
in their reference state, and this without requiring any
upgrading of existing equipment.
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sionnelle de champs cinématiques par imagerie volumique pour
l’analyse des matériaux et des structures. Inst Mes Métrol 4:43
–88

17. Sutton MA, Orteu J-J, Schreier H (2009) Image correlation for
shape, motion and deformation measurements: basic concepts,
theory and applications. Springer, New York

18. Hild F, Roux S (2012) Digital image correlation. In: Rastogi P,
Hack E (eds) Optical methods for solid mechanics. A full-field
approach. Wiley, Weinheim
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