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Abstract Isochromatic patterns in the vicinity of fric-
tional contacts furnish vital clues for characterizing friction.
Though friction effects are evident in a diametrally loaded
circular disk, three-point loading provides better results
towards highlighting friction. In this paper, a new method
of characterizing friction at loading contacts using pho-
toelastic isochromatics patterns is presented. Location of
isotropic points (IPs) formed in three-point and four-point
loadings of circular disk is used as a main tool to quantify
the friction component using theoretical analysis. Bifurca-
tion of isochromatic fringe loops near the distributed loads
is explained by the presence of anti-symmetric Hertzian
shear traction in addition to Hertzian normal traction. The
classical solution by Flamant for point load at the edge of
half plane is used to derive stresses in circular disk for all
required loading configurations. A semicircualr ring under
three-point loading is examined using photoelasticity to
understand the isochromatics pattern theoretically by con-
sidering normal and shear traction components at loaded
regions.

Keywords Isochromatics · Friction · Hertzian load ·
Isotropic point (IP) · Flamant solution
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Introduction

Frictional contact loading accompanied by both normal and
shear stresses in general remains unknown for all finite con-
tacts. Only in some fortunate cases can one experimentally
access the existing state of stress. Pioneering work by Dally
and Chen [1] established the photoelastic technique to mea-
sure frictional contact forces at asperities. They were able
to recover the individual loads at the asperities from the far-
field fringes. There is a need to characterize the stress field
in the immediate vicinity of asperities to supplement contact
mechanics research. This paper makes an attempt to exploit
the distortions caused by friction on isochromatic patterns
in general and isotropic points (IPs) in particular. Hertzian
contact conditions with friction are modeled theoretically
for interpreting experimental isochromatics.

Earlier, few researchers used photoelasticity for study-
ing friction related problems. For example, Uemura et al.
[2, 3] determined coefficients of static and kinetic fric-
tion by measuring normal and shear traction components at
contact using photoelastic method and compared the coef-
ficients against those obtained by direct method. But they
did not describe the method to obtain the traction com-
ponents using photoelasticity. As another example, Maria
[4] explored the nature of singularity that arises during
frictional slip of a wedge on a half-plane using Mellin trans-
form and validated the analysis using isochromatic results.
Burguete and Patterson [5] studied a cylinder in contact
with half-space using stress freezing. They demonstrated the
control of inter-facial friction achieved by the photoelastic
stress freezing. Fedorchenko et al. [6] employed photoelas-
tic technique to investigate contact stresses in powder com-
paction. They obtained normal and frictional shear stress
distributions on the die walls from photoelastic results. Sim-
ilarly, Barbat and Rao [7] investigated the contact stresses at
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interface between synthetic sapphire die and work piece of a
strip drawing operation by studying isochromatics and iso-
clinics patterns of the transparent die. Foust et al. [8] used
photoelasticity to measure boundary tractions at a bolted
joint from which individual stress components were deter-
mined considering friction at the interface by formulating
the problem in the form of a series of Airy stress func-
tion. Recent work by Guan et al. [9] suggested substitutes
for photoelastic method to study relation between friction
coefficient and asperities inclination.

Conventional photoelastic understanding of a diametri-
cally loaded circular disk is limited to the central region
away from the loads. Point loads are assumed and the effect
of frictional contact loading is not important in conven-
tional analysis. As a historical prelude, the frontispiece in
the first volume of the 1941 classic text by Frocht [10] ana-
lyzed in detail on page 191, assumes frictionless supports
to study the IPs. However, there is a need for including
Hertzian loading zones including friction to better interpret
the isochromatic patterns near the loading zones. The impor-
tance of friction during loading and unloading are clearly
evident in many engineering applications such as fretting
[11] often leading to catastrophic crack propagation. It is
therefore interesting to predict the characteristics of isochro-
matics analytically to interpret experimental patterns. Here,
we revisit the problem considered by Frocht [10] experi-
mentally in order to recapture and reinterpret the effect of
friction on IPs.

Regarding the method of solution for stresses in plane
problems, generalized solution was established four decades
ago [12, 13]. The generalized solution was evolved from
many elasticians out of which Flamant solution gave ways
to solve many contact mechanics problems [14]. The classic
text by Coker and Filon [15] provides various ways of solv-
ing elasticity problems using photoelasticity in conjunction
with theoretical analysis. A few classical solutions for cir-
cular disk problems are recalled here. Michell [16] solved
the problem of circular disk under two collinear point loads
one acting at center and the other at periphery. Mindlin [17]
extended Michell’s solution to the disk with the inner load
acting at any radial position using inversion transformation.
Such simple solutions are seldom possible for non-circular
and annulus problems for which cases infinite series’ are
helpful. In this regard, Ma and Hung [18] solved circu-
lar disk under uniform pressure on part of its boundary
using series solution. Surendra and Simha [19] solved semi-
circular disk loaded symmetrically at its curved boundary
using a truncated series. Modeling real loads as Hertzians
is usual. As an example, Dini and Hills [20] analyzed
frictional dissipation during rough axisymmetric Hertzian
contact of a sphere with half-space by considering an oscil-
latory shear whose magnitude is always less than that causes
sliding.

Photoelastic technique was recently employed to ex-
plore similar parameters in stress analysis. For instance,
Ayatollahi et al. [21] and Mirsayar et al. [22] used pho-
toelasticity for analyzing singularity of stresses near bi-
material sharp notches. Further, Mirsayar [23] calculated
stress intensity factors for the inter-facial notch in a bi-
material joint of a Brazilian disk with square notch. Zakeri
et al. [24], using photoelasticity, studied T-stress in cracked
Brazilian disk loaded under mode-II.

The main aim of the present investigation is to introduce
a new method for quantifying friction at loading contacts
using information of IPs alone in the isochromatic fringe
field. This is achieved through the use of analytical solution
of circular disk under in-plane loading in conjunction with
photoelastic results of the disk under two different load-
ing configurations. The present work also aims to explain
splitting of fringes at close vicinity of distributed loading
contacts in an isochromatic field. Distortion caused by the
friction in case of a semicircular ring under a loading is also
studied. All the experiments are conducted at room temper-
ature. Analytical solutions for circular disk and semicircular
ring are derived within the scope of linear elasticity without
considering body forces.

Photoelastic Experiments

Photoelastic experiments conducted towards studying the
effect of friction on isochromatics patterns are explained
in this section. Conventional arrangement of circular polar-
iscope with quarter-wave plates on either sides of loaded test
specimen as shown in Fig. 1 is used to obtain isochromatic
patterns. A monochromatic light source which uses sodium
vapor is used as the first element of a polariscope as shown
in the figure. The orientations of polarizer and analyzer of

Fig. 1 Circular polariscope arrangement
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the polariscope are kept perpendicular to each other to get
dark-field fringes.

Specimen in all experiments is loaded using a lever-arm
mechanism mounted on the loading frame as shown in Fig. 1
to magnify the applied loads. Specimen is loaded at the top
by a steel bar which is hinged at one of its ends and weights
are placed at its other end. The self weight of the top steel
bar is balanced by a dead load placed near the hinged end.
Lever-arm ratio of the mechanism, is calculated to be 3.55
by measuring various distances along the loading bar.

Specimens Fabrication

The specimens were fabricated by cold casting. Two Per-
spex plates each of thickness 0.5 inch were used to prepare
the mold. Since the required thickness of all specimens used

(a)

(b)

Fig. 2 Fabricated specimens (a) Type-A: Circular disk of 60 mm
diameter and Semicircular ring of 100.5 mm ID and 241 mm OD (b)
Type-B: Circular disk in the fixture for four-point loading

in this paper was 6 mm, the two Perspex plates were fixed
to each other with a parallel separation of 6 mm. The plates
were clamped parallel at three of its sides. The fourth side
was kept open for pouring molten resin. The inner surfaces
of Perspex plates were smeared by silicon grease, a mold
releasing agent which also helped in obtaining a scratch-free
surfaces of specimens.

Epoxy resin (C21H25ClO5, polymer that contain an oxi-
rane group) and Triethylene Tetramine that hardens the resin
were taken in the ratio of 100 : 9 by weight. The commer-
cial name of the epoxy resin used is Lapox C-51 and that
of the hardener is Lapox K-6 both of which are purchased
from local manufacturer Atul Ltd. The hardener was added
to the resin slowly; and the mix was stirred with a glass rod
taking care to avoid air bubbles. The mixture was poured
into the mold kept vertically along its wall. The complete
setup was undisturbed for two days. Then the polymerized
sheet was taken out of the mold and following shapes and
sizes of test specimens were cut from the sheet by machin-
ing: A semicircular ring of outer diameter 241 mm and inner
diameter 100.5 mm and a circular disk of diameter 60 mm
for calibrating the material for material fringe constant fσ
as well as for new experiments, as shown in Fig. 2. Resid-
ual stresses were induced during machining which were
removed by the process of annealing. In the process, the
specimens were heated in an oven to softening temperature
of the material which is around 140 ◦C and soaked at this
temperature for 5 hours. The specimens were then cooled
to the room temperature at a rate of −3 ◦C/hour inside the
oven.

The set of specimens shown in Fig. 2(a) are used for
three-point loading configuration. We designate the speci-
mens by Type-A. And the specimen shown in Fig. 2(b) is
designated by Type-B which is used for four-point loading
as explained in section “Isochromatic Results”.

Calibration of the Specimens for fσ

Isochromatics are contours of (σ1 − σ2), difference of in-
plane principal stresses. According to second law of photoe-
lasticity, photoelastic fringe order N is related to (σ1 − σ2)

as follows.

σ1 − σ2 = Nfσ

h
(1)

where fσ is photoelastic material fringe constant which
is subjected to change over the time due to aging of the
material.

The two specimens mentioned previously were calibrated
at the time of experimenting for isochromatics. The theoret-
ical solution of circular disk under two diametral point loads
was used for calibration which is a usual practice [25]. The
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difference of principal stresses at the center of the disk is
given by:

σ1 − σ2 = 4P

πRh
(2)

where P is total applied load, R is radius of the disk and h is
thickness of the disk. From equations (2) and (1) and noting
that radii of the disks is R = 0.03 m, fσ can be written as:

fσ = 4P

πRN
= 42.44

(
P

N

)
N/m/fringe (3)

Various loads are applied incrementally and for each
load, fringe order at center of the disk is read manually
using method of compensation [25]. Compensation method
is used for finding the real value of fringe order when a
non-integer fringe order forms at a point of interest. We are
well aware that dark fringes in the dark-field set up corre-
sponds to integer fringe orders (N = 0, 1, 2, . . .) for which
optical axes of polarizer and analyzer must be 90◦ apart.
When the axes are aligned (0◦), the dark fringes correspond
to half fringe orders (N = 0.5, 1.5, 2.5, . . .). When the axes
of polarizer and analyzer are separated by, in general, θ , the
fractional fringe order of the dark fringes can be written as
Nfrac = 0.5−0.5×θ/90◦. Thus, when no dark fringe passes
through the point of interest, we can rotate the analyzer with
respect to polarizer to an extent that a dark fringe passes
through the point. If we note the angle of rotation and which
fringe order in dark-field set up moves to the point upon
rotation, we can determine the required non-integer fringe
order by adding or subtracting the fraction to the original
integer value. Adding or subtracting depends on whether the
rotation is clock-wise or counter clock-wise. This is how we
compensate for Nfrac in the method.

Fringe orders are read at the center of the disk while load-
ing (Nload) as well as unloading (Nunload) for all applied

loads (P ). Average fringe orders (Navg) are calculated as
(Nload + Nunload)/2 for all P and plotted along x-axis
as shown in Fig. 3. A straight line passing through ori-
gin is fitted to the experimental data of each specimen
using method of least-squares and superimposed in each
of the plots. MATLAB is used for curve fitting. The slope
of the straight-line fit is obtained to be 325.6 and 253.8
for Type-A and Type-B specimens respectively. The slope
values are substituted for P/N in equation (3) to get
required fringe constants f A

σ = 13819 N/m/fringe and
f B
σ = 10772 N/m/fringe. fA

σ will be used for plotting
isochromatic patterns from theoretical solutions in sections
“Three-Point Loading Results” and “Elasticity Solution
of Semicircular Ring”, and f B

σ will be used in section
“Four-Point Loading Results”.

Isochromatic Results

Isochromatics are recorded for three different experiments
which are as follows: Circular disk under three-point load-
ing, the disk under four-point loading and semicircular ring
under three-point loading. Three-point loading of the disk is
done by using a V-block as shown in Fig. 4. The included
angle of V-block is 90◦. The V-block is made of hardened
Cast Iron.

For a load of P = 790 N, isochromatics are shown
in Fig. 5. Note that the line markings appearing on the
specimen along its two perpendicular diameters are not
aligned with the symmetry of the loading. It can be observed
from the figure that zeroth order fringe (ZOF) forms along
periphery at top portion and it moves inwards at bottom
portion.

Isotropic point (IP) is an isolated point in isochromatic
fringe field where σ1 = σ2 or ZOF (N = 0) is formed.
Fringe order (N ) increases in any direction around, from
zero at IP. As a special case of ZOF, IP is in contrast to the
general nature of ZOF which may form along a curve.

Fig. 3 Calibration curves for fσ
of specimens materials, P versus
Navg: (a) Type-A (b) Type-B
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Fig. 4 Three-point loading of circular disk using V-block in
polariscope

There is an IP on the axis of symmetry below the cen-
ter, partially enveloped by first order fringe (N = 1) in
Fig. 5. Distance of IP from the center, yexpiso is measured
manually using a ruler by magnifying the image of isochro-
matics pattern. Magnification is calibrated by mapping the
disk diameter to its actual value of 60 mm. The distance
y
exp

iso relative to disk radius is calculated to be:

y
exp

iso

R
= 9.54

30
= 0.318 (4)

which will be used in section “Three-Point Loading
Results” for identifying friction coefficient at the supports
of the disk.

Fig. 5 Experimental isochromatics of circular disk under three-point
loading symmetric about vertical diameter

As the second experiment, circular disk under four-point
loading is considered. The disk is loaded using a fixture
shown in Fig. 2(b). The fixture is loaded from the top of the
fixture’s slider in a lever-arm mechanism using a top steel
bar as shown in Fig. 2(b). The fixture is made of mild steel
and its surface is painted. The top load on the fixture’s slider
is balanced by two reactions by the disk specimen at the bot-
tom portion of fixture’s slider. This is schematically shown
in Fig. 6.

Here, inclination of the reactions on to the slider are not
known a priori like in case of three-point loading. This is
why a general loading situation of non-zero friction is shown
in the figure. Isochromatics pattern of the disk under four-
point loading for a top load of P = 869 N is shown in Fig. 7.
There are two IPs formed along the horizontal diameter
symmetrically on either side of the vertical diameter of the
disk. First order fringe completely envelops the pair of IPs.
Similar to three-point loading case, here also ZOF moves
inwards from top and bottom portions between load points.

Ideally, the four-point loading shown in Fig. 2(b) and
consequently the isochromatics pattern in Fig. 7 are sup-
posed to exhibit four-fold symmetry (symmetric about hor-
izontal and vertical diameters of the disk or x and y axes).
Due to inevitable experimental inaccuracies, these symme-
tries are slightly disturbed. However, the positions of the
load points on the disk periphery could be determined by
manually measuring the inter-point distances using a ruler,
in the image of isochromatic patterns (Fig. 2(b)). The image
is magnified enough for improving measurement accuracy
and the magnification is calibrated by mapping disk diame-
ter in the image to actual value of 60 mm. Various distances

P

Q

2β

Q

Tan ( )μ−1

Fig. 6 Free-body diagram of fixture’s slider
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Fig. 7 Experimental isochromatics of circular disk under four-point
loading P = 869 N

in the magnified image including disk diameter is given
below, the symbols being referred to Fig. 8.

2R=16.4 cm, 2a=4.45 cm, AB=12.4 cm

BC=11.2 cm, CD=12.2 cm, DA=10.6 cm (5)

The magnitude and direction of the forces transmitted
from fixture’s slider to the specimen will be determined
in section “Four-Point Loading Results” using theoretical
interpretation of isochromatics pattern of Fig. 7. Each of the
two bottom reactions on the disk from the fixed pins of fix-
ture (Fig. 2(b)) are equal to the top ones due to the symmetry
about the x-axis.

As the third experiment, semicircular ring under three-
point loading is considered. Again, V-block is used for
bottom supports. Distance between the top edges of the V-
block is measured to be 72 mm. With this and knowing the
V-block angle to be 90◦ and outer diameter of the ring to be
241 mm, the included angle of support points on the ring’s

A

99o

99o

D C

B

2a

2R

Fig. 8 Cyclic quadrilateral formed by the four points of loading on
the disk periphery

outer boundary at its center is found to be 2βring = 34.8◦.
This included angle will be used in section “Results of
Analysis” for deriving analytical solution for the ring prob-
lem. To facilitate loading at the top, a calibration disk is
placed on the inner boundary of the ring which transmits
the load from top steel bar to the inner boundary. Load is
assumed to transmit between calibration disk and the ring
in Hertzian way through finite area of contact since the
surfaces are conforming type (concave-convex) but of dif-
ferent curvatures. A Hertzian load essentially has an elliptic
variation of load along contact length. It is defined for the
ring problem in mathematical terms in section “Results of
Analysis” as equation (33). For a top load of P = 790 N,
isochromatics pattern is shown in Fig. 9(a). The three-point
loading of the ring is shown schematically in Fig. 9(b) with
point loads in place of Hertzian loads.

Isochromatics pattern in the calibration disk from
Fig. 9(a) is as expected. Fringe pattern at close vicinity of
supports from the V-block edges, may not be so clear to
identify all the fringe orders formed, due to lack of required
resolution. However, fringe patterns in the calibration disk
and the ring at their contact are clearly identifiable and it can
be observed that maximum fringe order near the disk-ring
contact is N = 7 in both specimens. ZOF occupies most of
the region of the ring. No IPs can be observed in the ring.
First order fringe formed in the ring resembles the shape of
English alphabet ‘A’.

Elasticity Solution of Circular Disk under Periphery
Loading

Closed form elasticity solution of circular disk loaded at its
boundary is derived in this section. Firstly, expressions for
stresses in semi-infinite plate with point load with respect
to a general coordinate system, are derived. These general
expressions are then used to derive stresses in circular disk
under periphery loading making use of superposition prin-
ciple. Isochromatics are plotted for various loading cases
of point loads as well as Hertzian loads with focus on
three-point and four-point symmetric loadings.

Method

Surendra [26] proved that the solution for a circular disk
under any self-equilibrating in-plane oblique loads on its
periphery can be derived by superposing Flamant solu-
tions along with a hydrostatic solution. The same method
is used here which uses superposition principle, to derive
stress components for all the loading cases of circular disk
by using Flamant solution as the base. It will be evident
that the method is simple yet giving closed form solutions.
It is well known that a circular disk under two diametral



Exp Mech (2014) 54:1011–1030 1017

Fig. 9 (a) Isochromatics of
semicircular ring under
three-point loading using a
calibration disk and V-block (b)
Schematic of ring for load angle

(a)

R
P

o
Ri

2βring

(b)

point loads at periphery was derived by Hertz [12] as
follows.

A semi-infinite plane is assumed at each of the point
loads in such a way that its straight boundary is tangential to
the circular boundary of the disk, with the point load coin-
ciding with that on the semi-infinite plane. The two states
of stress due to the two point loads are superposed. The
resulting non-zero traction on the boundary of the disk is
annihilated using the hydrostatic solution. A similar proce-
dure is adopted here to obtain the solution of circular disk
under any periphery loading. Airy stress function is defined
for 2D elasticity problems without considering body forces
in terms of polar coordinates as follows [12].

σrr = 1

r2

∂2φ

∂θ2
+ 1

r

∂φ

∂r

σθθ = ∂2φ

∂r2
(6)

τrθ = − ∂

∂r

(
1

r

∂φ

∂θ

)

Flamant problem is a semi-infinite plane with a point load
on its straight boundary. The solution to the problem with
an inclined point load, is given [12] with respect to the coor-
dinate system shown in Fig. 10(a) in terms of Airy stress
function by:

φ(a)(r1, θ1) = −P

πh
r1 (γ + θ1) sin (γ + θ1) (7)

where h is the thickness of the disk and the superscript (a)
indicates that the solution corresponds to sub-figure (a).

Solution for the problem with respect to a different coor-
dinate system, for convenience while superposing, can be
obtained by sequence of rotations and translations of coor-
dinates. Since Airy stress function is a scalar function, it is
invariant with a change of coordinate system. If we were to
transform, instead of Airy function, the stress components
describing the solution, we had to transform the stress tensor
using appropriate equations [12]. In any case, coordinates in
which solution is described, need to be updated, whenever a
change occurs.

R

r

θ
θ

R

y

1

1

x1

γP γ
x2

y2

P γ

y

x3

3

3

P

3
y

x

(d)(c)(b)(a)

γP

θ
r

R

α

R

r1

Fig. 10 Normal point load at the boundary of a half plane (Flamant problem) shown with different coordinate systems and hypothetical circular
disk boundary
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The solution presented in equation (7) is gradually trans-
formed to required coordinates as explained in set of
equations (8). In brackets of each equation in equations

set (8), change of coordinates affected from previous coor-
dinate system is mentioned.

φ(a)(x1, y1)= −P

πh

(
γ + arctan

y1

x1

)
(x1 sin γ + y1 cos γ )

(
∵ r1 →

√
x2

1 + y2
1 , θ1 → arctan

y1

x1

)

φ(b)(x2, y2)= P

πh

(
γ + arctan

x2

y2

)
(y2 sin γ + x2 cos γ ) (∵ x1 → −y2, y1 → −x2)

φ(c)(x3, y3)= P

πh

(
γ + arctan

(
x3

y3 − R

))
((y3 − R) sin γ + x3 cos γ ) (∵ x2 → x3, y2 → y3 − R)

φ(c)(r3, θ3)= P

πh

(
γ+arctan

(
r3 cos θ3

r3 sin θ3−R

))
((r3 sin θ3−R) sin γ+r3 cos θ3 cos γ ) (∵ x3→r3 cos θ3, y3→r3 sin θ3)

φ(d)(r, θ) = P

πh

(
γ+arctan

(
r cos (α+θ)

r sin (α+θ)−R

))
((r sin (α+θ)−R) sin γ+r cos (α+θ) cos γ ) (∵ r3→r, θ3→α+θ)

(8)

Using equation (6), stresses corresponding to φ(d)(r, θ) are
derived which read after simplification:

[
σ̃ (d)

]
(r, θ) =

[
σ
(d)
rr τ

(d)
rθ

τ
(d)
rθ σ

(d)
θθ

]
= −2P × R cos γ − r sin (α − γ + θ)

πh
{
r2 + R2 − 2rR sin (α + θ)

}2

×
[

(r − R sin (α + θ))2 −R cos (α + θ)(r − R sin (α + θ))

−R cos (α + θ)(r − R sin (α + θ)) R2 cos2 (α + θ)

]
(9)

Flamant solution (equation (9)) in this form, will be
used to derive all further periphery loadings of circular
disk. To demonstrate the efficacy of the method described,
well-known solution of diametral compression of circular
disk (Hertz solution, [12]) is derived using equation (9) as
follows. Solution is written schematically as:

[
σ̃DiaComp

]
=

[
σ̃ (d)

]
α=0◦
γ =0◦

+
[
σ̃ (d)

]
α=180◦
γ =0◦

+P+P

2πRh

[
1 0
0 1

]

(10)

where the subscripts, given outside a tensor [.], indicates
substitution for the parameters. The same convention is used
throughout the paper for substitution. The last term in equa-
tion (10) is to annihilate the hydrostatic compressive stress
induced on the boundary due to first two (Flamant) terms.
γ = 0◦ for both the loads as they are normal to the bound-
ary. Since the two loads are acting diametrally opposite,
α = 0◦ for one load and α = 180◦ for the other. After
simplification, solution for diametral compression reads as
in equation (11) which exactly coincides with the solution
given in standard text [12].

σ
DiaComp
rr = −2P

πh

[
(R − r sin θ)(r − R sin θ)2

{
r2 + R2 − 2rR sin θ

}2 + (R + r sin θ)(r + R sin θ)2

{
r2 + R2 + 2rR sin θ

}2 − 1

2R

]

σ
DiaComp
θθ = −2P

πh

[
(R − r sin θ)R2 cos2 θ{
r2 + R2 − 2rR sin θ

}2
+ (R + r sin θ)R2 cos2 θ{

r2 + R2 + 2rR sin θ
}2

− 1

2R

]
(11)

τ
DiaComp
rθ = −2PR cos θ

πh

[
(R − r sin θ)(−r + R sin θ){

r2 + R2 − 2rR sin θ
}2

+ (R + r sin θ)(r + R sin θ){
r2 + R2 + 2rR sin θ

}2

]
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Three-Point Loading Results

Using Flamant solution (9), circular disk under three normal
loads on its boundary symmetric to y-axis is solved using
linear superposition principle as shown in Fig. 11. A semi-
infinite plate is assumed at each of the point loads and the
stresses are superposed after appropriate coordinate trans-
formations. This is realized by choosing right values for
rotation angle α and load angle γ in equation (9) (Fig. 10(d))
for each of the sub-problems and adding them up as follows.

[
σ̃ 3N(1)

]
=

[
σ̃ (d)

]
α=0◦
γ =0◦

+
[
σ̃ (d)

]
α=β

γ =0◦
P =Q

+
[
σ̃ (d)

]
α=−β

γ =0◦
P = Q

(12)

where γ = 0◦ for all the loads since they are acting
normal to the boundary. For the disk to be in static equi-
librium in this loading configuration (refer to Fig. 11(a)),
Q = −P/(2 cosβ). Superposed solution equations (12)
would leave a constant radial stress of magnitude (P +
2Q)/(2πRh) on the circular boundary as follows.

[
σ̃ 3N(1)

]
(r=R) =

[−P+2Q
2πRh 0
0 0

]
(13)

Observe that the residual stresses on the boundary after
superposing the Flamant problems do not depend on θ .
In general, any self equilibrating loading on the bound-
ary of the disk would induce a constant radial stress at
the boundary just after superposing the Flamant problems.
Magnitude of the residual radial stress at the boundary
would be

∑
P (N)/(2πRh) where

∑
P (N) is sum of all

normal components of the forces acting on the boundary.
Hydrostatic solution is used for annihilating the resid-

ual stresses on the boundary as it can serve the purpose in
all cases of self-equilibrating boundary loading. Airy func-
tion for hydrostatic state of stress (given in equation (14))
is φHy = c0r

2 where c0 is constant that can be so chosen

as to satisfy the boundary condition and is equal to
(P + 2Q)/(4πRh) for our problem.

[σ̃Hy ] =
[
σ
Hy
rr τ

Hy
rθ

τ
Hy
rθ σ

Hy
θθ

]
=

[
2 c0 0

0 2 c0

]
= P+2Q

2πRh

[
1 0
0 1

]
(14)

Superposing hydrostatic solution (equation (14)) with
equation (12) gives the required stresses, given below and
shown in Fig. 11 schematically, in the circular disk under
three-point normal loading symmetric about y-axis. Explicit
equations for stresses are not shown here since they are
unwieldy.

[
σ̃ 3N

]
=

[
σ̃ 3N(1)

]
+

[
σ̃Hy

]

=
[
σ̃ N(d)

]
α=0

+
[
σ̃ N(d)

]
α=β

P =Q

+
[
σ̃ N(d)

]
α=−β

P =Q

+
[
σ̃Hy

]
(15)

Isochromatics of the disk under three-point loading for
β = 120◦ and β = 135◦ are shown in Fig. 12 which are
obtained using equation (15) taking fσ = f A

σ from last
paragraph of section “Calibration of the Specimens for fσ ”.

From Fig. 12, clearly IP moves along axis of symmetry
from center of the disk when β = 120◦ towards periphery as
β is increased. Note that N = 0 also forms along through-
out boundary and there is only one IP in the disk under
the loading. The position of IP, in terms of its y-coordinate,
yiso is obtained by solving the following equation numer-
ically using MATHEMATICA software for various cases
of β.

σ 3N
rr (θ=π/2)= σ 3N

θθ (θ=π/2) when 90◦≤β≤120◦

(∵ τ 3N
rθ (θ=π/2)=τ 3N

rθ (θ=−π/2)=0)

σ 3N
rr (θ=−π/2)= σ 3N

θθ (θ=−π/2) when 120◦≤β≤180◦

(16)
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Fig. 11 Circular disk under three-point symmetric loading: Solution algorithm
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Fig. 12 Isochromatics of circular disk under 3 point normal loading for (a) β = 120◦ (b) β = 135◦

yiso is plotted against β in Fig. 13 to see the effect of β
when only normal loads are acting on the disk.

If we extend the analysis of three-point normal loading
to β < 90◦ which means that the support reactions are ten-
sile in order to maintain equilibrium, we can find that IP
does not occur in the disk for β < 90◦. From Fig. 13, IP
starts forming in the disk just after β = 90◦, moves rapidly
towards center with decreasing rate with β as β increases
to 120◦. When β varies from 90◦ to 180◦, IP moves from
center to lowest periphery almost with steady rate.

Now, the three-point loading of disk is analyzed with
β = 135◦ and the two bottom reactions are made arbitrary
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Fig. 13 Position of IP on y-axis of circular disk under three-point
normal loading for various β

to take friction into account, keeping the symmetry about y-
axis as shown in Fig. 14(a). μ is coefficient of friction at the
supports.

For the disk to be in static equilibrium in this loading
configuration, the top load P and each bottom load Q must
satisfy the following condition (Fig. 14(b)).

2Q cos (180◦ − β − arctanμ) = P

since β=135◦, 2Q cos (45◦ − arctanμ) = P

=⇒ 2Q
1√
2

(
1√

1 + μ2
+ μ√

1 + μ2

)
= P

∴ Q= P√
2

√
1 + μ2

1 + μ

(17)

Solution for the disk under oblique reactions at supports
is solved, again using superposition of Flamant problems
and hydrostatic term. Solution for pure tangential loading
on the disk boundary can be derived using just the Flamant
solution (equation (9)) with γ = 90◦. Difference between
the pure normal loading and pure tangential loading, using
Flamant solutions approach, is as follows. Self-equilibrating
pure normal loading induces uniform radial stress at periph-
ery whereas pure tangential loading does not induce any
amount of traction at periphery provided net moment due
to the loads is zero. To prove the last statement, one may
consider the disk under static equilibrium with four equal
tangential loads with alternating directions of clock-wise
and counter clock-wise equally spaced on the boundary.
Therefore, the residual traction on the disk boundary after
superposing three Flamant problems of one normal load
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Fig. 14 (a) Circular disk under three-point loading with the two arbitrary support reactions simulating the experimental loading (b–e) Solution
algorithm: Superposing Flamant problems and hydrostatic solution

and two oblique reactions, would be again a constant radial
stress of magnitude

∑
P (N)/(2πRh) where:

∑
P (N) = P +Q cos (arctanμ)+Q cos (arctanμ)

= P + 2Q/

√
1 + μ2

= P

(
1 + μ+√

2

1 + μ

)
. (18)

The stresses in the disk under oblique reactions is given
below only schematically as it is again unwieldy to present
complete expressions.
[
σ̃ 3pt

]
=

[
σ̃ (d)

]
α = 0◦
γ = 0◦

+
[
σ̃ (d)

]
α = 135◦
γ = − arctanμ
P = Q

+
[
σ̃ (d)

]
α = −135◦
γ = arctanμ
P = Q

+
[
σ̃Hy

]
(19)

The IP positions, obtained by solving equation (16), are
plotted in Fig. 15 with varying friction coefficient when the

disk is subjected to three loads. From the plot, it can be
inferred that yiso varies in a non-linear fashion with μ and
the curve of absolute value |yiso| as a function of μ, has
consistently increasing slope with a vertical tangent at the
end where the IP disappears. Experimentally measured posi-
tion of IP from Fig. 5 is drawn as an ordinate in Fig. 15 to
determine which μ value corresponds closest to the experi-
ment. And it is determined from Fig. 15 that μexp = 0.139.
Thus coefficient of static friction, that is aroused for the
three-point loading, is 0.139.

Isochromatics pattern for this particular case of μ =
0.139 is shown in Fig. 16 along with experimental result
reproduced from Fig. 5 for easy comparison. It can be
observed from the figure that theoretical isochromatics pat-
tern matches well with the experimental one validating our
method of calibrating friction using solely IP location. How-
ever, the fringe pattern may deviate slightly at close vicinity
of the load regions since the loads are modeled as con-
centrated ones in the analysis. It can also be inferred from
Fig. 16(a) that N = 0 moves away from the bottom periph-
ery towards the center of the disk for non-zero μ whereas it
forms along periphery for pure normal loading case. Since
|yiso| increases with μ from Fig. 15, we infer that IP moves

Fig. 15 Position of IP on y-axis
of circular disk under 3 point
oblique loading for various μ
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Fig. 16 Isochromatics of circular disk under three-point loading (a)
theoretical result with oblique reactions (μ = 0.139) (b) experimental
result

away from the center as μ increases. If we extend the
3-point loading analysis further for higher μ, at certain μ,
IP and N = 0 from bottom merge with each other beyond
which neither IP nor N = 0 forms inside the disk region.

Four-Point Loading Results

Circular disk under four-point loading symmetric about x
and y axes, shown in Fig. 17, is analyzed similar to the
three-point loading case. Each of the four loads are kept
inclined to keep the generality. Method of solving to arrive
to exact solution of the problem with point loads are very
similar to the three-point loading case.

It is solved first with pure normal loading which means
μ = 0 and Q = P/(2 cosβ) for various β taking

x

y

2β

2β

QQ
−1Tan ( )μ

Tan ( )μ−1

Q
−1

Q

−1

Tan ( )μ

Tan ( )μ

Fig. 17 Circular disk under four normal and four tangential point
loads acting in four-fold symmetric manner on its periphery

P = 869 N (same as the experimental load in Fig. 7 of
section “Isochromatic Results”), R = 0.03 m, h = 0.006 m
and fσ = f B

σ from last paragraph of section “Calibration of
the Specimens for fσ ”. Isochromatics patterns for two cases
2β = 90◦ and 99◦ are plotted in Fig. 18.

We can observe from the figure that there is only one
IP at the center in case of 2β = 90◦. Isochromatic pattern
has 8-fold symmetry as the loading dictates. There are two
IPs forming on x-axis symmetric about y-axis in case of
2β = 99◦. The distance of IP from center along positive x-
axis, xiso, when 2β varies from 90◦ to 180◦, is plotted in
Fig. 19. The characteristic of the curve in Fig. 19 is simi-
lar to that of three-point normal loading case in Fig. 13. The
xiso curve varies non-linearly initially and almost linearly
at higher β values. From the figure, we can conclude that
the symmetric pair of IPs move towards each other along
x-axis as 2β varies from 180◦ to 90◦. At 2β = 90◦ the
two IPs coalesce with each other forming one IP exactly at
the center of the disk. When we extend the analysis for 2β
varying from 90◦ to 0◦, the symmetric pair of IPs shift their
positions to y-axis and they move away from each other
along y-axis. The shift of IPs between the axes is expected
as the loading when 2β : 180◦ − 90◦, is mirror image of
that when 2β : 90◦ − 0◦, with the mirror being 2β = 90◦
case.

Let us consider non-zero friction coefficient (μ) at the
four load points on the disk, as shown in Fig. 17. To capture
only the effect of μ, we need to fix 2β. Using the measured
inter-point distances from equation (5) of Fig. 8, approxi-
mately 2β is fixed to be 99◦. And symmetric formulation
with μ �= 0 is used to predict the isochromatics pattern in
Fig. 7 using IPs information. Circular disk under 4 oblique
loads acting symmetrically on its boundary is solved for
various values of μ = 0, 0.01, 0.02, . . . , 1 by taking Q =
P/2/ cos (99◦/2 − arctanμ), P = 869 N, R = 0.03 m,
h = 0.006 m and fσ = f B

σ . In each case, position of
IPs, ±xiso is obtained by solving the problem numerically
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(a) (b)

Fig. 18 Isochromatics of circular disk under 4 point normal loading for (a) 2β = 90◦ (b) 2β = 99◦

using MATHEMATICA and plotted in Fig. 20. Experimen-
tally obtained value of xiso/R = 4.45/16.4 = 0.2713 from
equation (5) is provided as an ordinate in the plot which
meets the curve at μexp = 0.155 which is the required
active coefficient of friction between disk and fixture
surfaces.

Isochromatics for the particular case of 2β = 99◦
and μ = 0.155 is plotted in Fig. 21(a). Correspond-
ing experimental result is reproduced as Fig. 21(b) from
section “Isochromatic Results” for ease of comparison.

From Fig. 21(b), ZOF is moved inwards from periph-
ery at top and bottom portions which phenomenon is well
predicted by theory (Fig. 21(a)). In an overall sense, the the-
oretical result matches closely with the experimental one
again validating our concept of theoretical interpretation
using IPs.

Analysis of Isochromatics under Hertzian Loads

Figure 22 shows a magnified view of isochromatics pattern
near load region of circular disk under diametral compres-
sion which highlights the intricately artistic complexity of
an experimental fringe pattern culled from the archives of
the Photoelastic laboratory. This pattern clearly portrays a
bifurcation about the symmetric loading axis. The two dis-
tinctly clear isolated points occurring inside isochromatic
loops subtly suggest some frictional shear in addition to
the normal pressure. Conventional Hertzian analysis with-
out friction predicts a single isolated point directly beneath
the applied load along the axis of symmetry.

In this section, a theoretical interpretation by including
two symmetric frictional shear Hertzians in addition to the
normal stress Hertzian, is attempted to explain the splitting

Fig. 19 Distance of IP from
center of the disk along positive
x-axis for different β
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Fig. 20 Distance of IP from
center of the disk along positive
x-axis for different μ when
2β = 99◦
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of fringes at close vicinity of applied load in circular disk
under diametral compression and other similar situations.
For demonstration, circular disk under diametral compres-
sion is considered with each of the two loads as having
Hertzian normal and a bi-Hertzian tangential distribution, as
shown in Fig. 23. Due to symmetry of the problem about
x-axis, only upper half is shown.

Hertzian normal and tangential loads are expressed as
follows in terms of α which is an angular coordinate defined
along periphery from y-axis towards x-axis as shown in
Fig. 23 and is therefore equal to (π/2 − θ).

p(α) = −2P

πRδ

√
1 − α2

δ2 when − δ ≤ α ≤ δ (20)

f (α) =

⎧⎪⎪⎨
⎪⎪⎩

2F
πRδ/2

√
1 − (δ/2−α)2

(δ/2)2 when 0 ≤ α ≤ δ

−2F
πRδ/2

√
1 − (δ/2+α)2

(δ/2)2 when −δ ≤ α ≤ 0
(21)

Observe that the multipliers of the Hertzian functions in
equations (20) and (21) give the maximum magnitude of the
applied tractions and are so calculated that, by integrating
the functions along the loaded arc, we can obtain total loads
P and F as follows.∫ δ

α=−δ

p(α) Rdα = −P

∫ δ

α=0
f (α) Rdα = F = −

∫ 0

α=−δ

f (α) Rdα (22)

Stresses in the disk under the Hertzian loading is obtained
using again Flamant solution expressed in a general coordi-
nate system in section “Method”. Substituting p(α) Rdα for
P and taking γ = 0◦ in equation (9) makes it differential
stress tensor required to be integrated for complete normal
loading. Similarly substituting −f (α) Rdα for P and taking

γ = 90◦ in equation (9) makes it differential stress tensor
for complete tangential loading. Integrating the differential
stress components along the loaded arc, from −δ to δ (for
top load) and from (π − δ) to (π + δ) (for bottom load) as
follows,

[
σ̃Hertz(a)

]
=

∫ δ

α=−δ

[
σ̃ (d)

]
P=p(α) Rdα
γ=0◦

+
∫ π+δ

α=π−δ

[
σ̃ (d)

]
P=p(α) Rdα
γ=0◦

+
∫ δ

α=−δ

[
σ̃ (d)

]
P=−f (α) Rdα
γ=90◦

+
∫ π+δ

α=π−δ

[
σ̃ (d)

]
P=−f (α) Rdα
γ=90◦

(23)

would leave a uniform radial stress of −2P/(2πRh) on
the disk periphery. This indicates that the integration is
nothing but superposition of many Flamant problems as
expected. The integrals are evaluated individual component-
wise numerically using MATLAB. The residual radial stress
on the boundary is annihilated by superposing a hydro-
static tension to give the required solution for the circular
disk under diametral Hertzian compression and bi-Hertzian
shear, as follows.

[
σ̃Hertz

]
=

[
σ̃Hertz(a)

]
+ 2P

2πRh

[
1 0
0 1

]
(24)

Isochromatics are plotted taking P = 790 N, fσ =
13458 N/m/fringe, δ = 3◦ and F = 0.135P as shown in
Fig. 24(a). Only 13 fringe orders N = 0−12 are shown in
Fig. 24(a). In an overall sense, the fringe pattern is same as
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Fig. 21 Isochromatics of circular disk under (a) 4 oblique loads with
μ = 0.155 when 2β = 99◦, theoretical result (b) four-point loading,
experimental result

Fig. 22 Magnified view of Isochromatic fringe pattern near upper
load region of circular disk under diametral compression
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Fig. 23 Contact load modeled as Hertzian normal load coupled with
bi-Hertzian tangential load and viewed as superposition of the two

that of point load case (δ = 0◦) where shear tractions can-
cel themselves as they are equal in magnitude and opposite
in direction acting at the same point of loading. Isochromat-
ics pattern is magnified at the top load-region and shown in
Fig. 24(b) where fringe orders from N = 8 to N = 23 are
plotted.

Figure 24(b) presents a close-up of isochromatics
just underneath the Hertzian loading with friction. From
Fig. 24(b), N = 14 splits into two loops enveloped
partially by N = 13 and partially by itself. This phe-
nomenon cannot not be found in case of pure normal
loading whether the load is distributed or concentrated.
Therefore, splitting of fringes observed in Fig. 22 can
be attributed partially to shear caused by incipient sliding
traction along the contact though the loading is macroscop-
ically normal. The zoomed-in isochromatics of the disk
near the loading is produced for various tangential load val-
ues, F/P = 0.000, 0.001, . . . , 0.300 and animated into a
video CirHertzZoom 4.mpg which is provided as Online
Resource 1.

From the animation, set of fringes very close to the
loaded curve and those intersect the boundary, forms
directly beneath the loaded curve of the boundary. The
fringe order N decreases first from the periphery, reaches a
minimum value and increases to a maximum value and then
steadily decrease until center of the disk along y-axis. The
maximum point on the y-axis is where the splitting occurs.
At the point of minimum, a fringe-loop forms which is in
between the top portion of boundary and the split-fringe.
The point of minimum value moves inwards from bound-
ary as F/P increases from 0 to nearly 0.145 from where it
ceases to form single loop. Complete splitting of N = 14
can be observed at F/P ≈ 0.125. Nucleation of N = 15
inside N = 14 occurs when F/P ≈ 0.155. Observe that
N = 14 splits from its parent single loop whereas N = 15
nucleates by itself as two loops. At F/P ≈ 0.175, N = 15
starts merging with its other part and ceases to be two loops.
Within a short span of F/P ≈ 0.205−0.215, pair of fringe-
loops of N = 16 form and coalesce with its other part.
Further split-fringe can be hardly seen for N > 16. In addi-
tion to the above phenomena which occur more or less near
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Fig. 24 Isochromatics of circular disk under diametral Hertzian compression coupled with bi-Hertzian shear, F = 0.17P (b) Magnified view of
isochromatics near load region

the y-axis, almost for all F/P considered, evolution and
coalescence of a pair of fringe-loops can be seen close to the
boundary and farther from y-axis.

Elasticity Solution of Semicircular Ring

Semicircular ring under a symmetric loading on its curved
boundaries with traction-free straight edges shown in
Fig. 25 is solved for stresses in this section [27]. General for-
mulation and method of solving are extended here to solve
the problem on hand. Boundary conditions of the problem
are as follows.

o

y
θ

Ri

R

r

h(  )θ
k(  )θ

f(  )θ

g(  )θ

x

Fig. 25 Semicircular ring with boundary conditions

On the straight edges and on the line of symmetry

σθθ (r, θ=π/2)=0=τrθ (r, θ=π/2)
τrθ (r, θ=0)=0=uθ (r, θ=0)

}
when Ri≤r≤Ro

(25)

On the circular boundaries

σrr (r = Ro, θ) = f (θ)

τrθ (r = Ro, θ) = g(θ)

σrr (r = Ri, θ) = h(θ)

τrθ (r = Ri, θ) = k(θ)

⎫⎪⎪⎬
⎪⎪⎭

when 0 ≤ θ ≤ π/2 (26)

Method

Airy stress function for the problem is chosen from the
generalized solution given in the text by Little [13] as:

φ = c5
′
(

r

Ri

)
θ sin θ

+
−∞,∞∑

n=...,−2,−1,0,1,2,...

[
an

(
r

Ri

)n

+bn

(
r

Ri

)n+2
]

cosnθ

(27)

The only non-series term in the chosen stress function
which is Flamant term, (rθ sin θ) is considered to take care
of the fact that material is absent at the origin (center of
the ring). This term gives rise to singular stresses at ori-
gin. The other terms of the generalized Airy stress function
which also give singular stresses at origin, are not consid-
ered since their contribution to the solution can be easily
proved to be nil using the straight boundary conditions pre-
sented by equations (25). Using the same straight boundary



Exp Mech (2014) 54:1011–1030 1027

conditions, the following relations between the coefficients
can be derived.

bn = an+2 where n is even

nbn = (n+ 2)an+2 where n is odd (28)

Stress components can be derived from the stress func-
tion (27) using equation (6). Using the relations (28) in
the expressions for stress components and rearranging them
gives:

σrr (r, θ) = −
−∞,∞∑

n=...,−2,0,2,...

[n cosnθ + (n− 4) cos (n− 2)θ ] (n− 1)
an

Ri
2

(
r

Ri

)n−2

−
−∞,∞∑

n=...,−1,1,...

[
cosnθ + n− 4

n− 2
cos (n− 2)θ

]
n(n− 1)

an

Ri
2

(
r

Ri

)n−2

+ c5
′

Ri
2

2 cos θ

r/Ri

(29)

σθθ (r, θ) =
−∞,∞∑

n=...,−2,0,2,...

[cosnθ + cos (n− 2)θ] n(n − 1)
an

Ri
2

(
r

Ri

)n−2

+
−∞,∞∑

n=...,−1,1,...

[
cosnθ +

(
n

n− 2

)
cos (n− 2)θ

]
n(n− 1)

an

Ri
2

(
r

Ri

)n−2

(30)

τrθ (r, θ) =
−∞,∞∑

n=...,−2,0,2,...

[n sin nθ + (n− 2) sin (n− 2)θ] (n− 1)
an

Ri
2

(
r

Ri

)n−2

+
−∞,∞∑

n=...,−1,1,...

[sin nθ + sin (n− 2)θ ] n(n− 1)
an

Ri
2

(
r

Ri

)n−2

(31)

Now the set of unknown coefficients, an for n = . . . ,

−2,−1, 0, 2, 3, . . ., is to be determined using the four
conditions on curved boundaries given by the set of equa-
tions (26). This is done using collocation method. A finite
number of points b are chosen on each of the curved bound-
aries (only upper half is modeled due to symmetry) and the
corresponding boundary conditions are satisfied at each of
these points simultaneously, with a truncated series of stress
function, by formulating the whole problem at this stage as
a set of linear equations. Solving the linear equations gives
the finite number of unknowns an, coefficients of truncated
stress function. Thus the problem is solved.

The results are sensitive to the number of collocation
points b chosen, especially near the curved boundaries. By
increasing b we can improve accuracy of result.

Results of Analysis

To arrive to the result in Fig. 9(a), the loading on the semi-
circular ring is modeled as three-point Hertzian loading
as shown in Fig. 26(a). The Hertzian load acting at inner
boundary is assumed to be purely horizontal (y-component
of the traction is zero at any point) whereas the symmet-
ric pair of Hertzian loads acting on outer boundary are
kept arbitrary for analysis to identify friction. Correspond-
ing idealized loading model shown in Fig. 26(b) with all
point loads in place of Hertzian loads yields the following

relationship among the total load magnitudes using equilib-
rium equations.

Q cosβ + F sin β = P

2
=⇒ Q = P

2 cosβ
− F tan β (32)

Loading functions defined in equation (26) for upper
half of the curved boundaries, take the following form for

2β

2γo

o2γ

2γi

(a)

P

Q

F

F

Q

y

x

R

Ro

i

2β

(b)

Fig. 26 Semicircular ring under three-point loading (a) Hertzian loads
(b) 3 normal and 2 tangential point loads
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the problem of semicircular ring under three-point Hertzian
loading.

f (θ) = −2Q

πRoγoh

√
1− (θ−β)2

γo
2 when (β−γo) ≤ θ ≤ (β+γo)

g(θ) = 2F

πRoγoh

√
1− (θ−β)2

γo
2 when (β−γo) ≤ θ ≤ (β+γo)

h(θ) = −2P

πRiγih

√
1− θ2

γi
2 cos θ when 0 ≤ θ ≤ γi

k(θ) = −2P

πRiγih

√
1− θ2

γi
2

sin θ when 0 ≤ θ ≤ γi

(33)

where Q is given by equation (32), and γi and γo are semi-
Hertzian load angles of inner and outer loads respectively
as shown in Fig. 26(a). -ve sign for P and Q is due to com-
pressive nature of the loads and +ve sign for F is due to that
it is acting in the direction of increasing θ on the outer face
whose outer normal is directed towards increasing r .

Total b = 121 are chosen on each of the curved bound-
aries including end points and the problem is solved for
various values of F/P = 0.002, 0.004, . . . , 0.2 taking
Ro = 0.1205 m, Ri = 0.05025 m, h = 0.006 m,
β = 17.3829◦, 2γo = 1◦, 2γi = 6◦, P = 790 N and
f A
σ = 13458 N/m/fringe. The problem is modeled and

solved in vertical configuration of the ring so that the result-
ing stress function (equation (27)) becomes simple with
only even functions of θ . But the isochromatic results are
plotted with horizontal configuration of the ring by rotating
the stresses appropriately so that we can compare with the
experimental result easily. Hertzian angle for inner load is
chosen so much since the concave side of the ring is con-
tacting with convex side of the calibration disk and that for
outer load is chosen so small since the ring is contacting an
edge. The Hertzian angles of outer and inner loads does not
affect stress distribution in the ring in an overall sense until
certain magnitudes according to St. Venant principle. Maxi-
mum fringe order that forms near the contact decreases with
the load distribution angle.

Fig. 27 Isochromatics of
semicircular ring under three-
point loading (a) Hertzian loads
with F/P = 0.05, theoretical
result (b) experimental result

3
2
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1

0.05

0.05

0.01
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Isochromatics pattern for the case of F/P = 0.05
is shown in Fig. 27(a). Experimental isochromatics of
semicircular ring under three-point loading from section
“Isochromatic Results” is reproduced as Fig. 27(b) for
comparison.

In Fig. 27(a), a small noise at the curved boundaries
arises due to truncation of series of stress function and
collocation at finite number of points on the curved bound-
aries. Otherwise, the theoretical result captures almost all
the details of experimentally observed isochromatics pat-
tern. N = 1 forms a closed loop resembling the English
alphabet ’A’ which is in agreement with experimental result.
Since there are no IPs formed in this case, we can only arrive
to approximate F/P by qualitative observations. However,
using recent advances in digital photoelasticity (see, for
example, [28]), non-zero fringe orders can be located with
high accuracy. The results of digital analysis in conjunc-
tion with analytical solution derived here can be used for
theoretical interpretation.

Discussion

Location of ZOF and IPs, is independent of fσ , h and mag-
nitude of a reference load (= P in this paper) making
the method presented here an elegant one. Since all these
quantities are directly proportional to fringe order N , since
N at IP is zero they do not play any role. But IP loca-
tion does depend on loading configuration allowing us to
study its migration with loading configuration. This prop-
erty is not exhibited by non-zero fringe orders. All of them
vary linearly with the quantities mentioned. All these facts
are valid only in 2D analysis. In addition, state of stress is
independent of thickness (h) for given load per unit thick-
ness in plane problems. For given total load (in N), all
the three stress components vary as 1/h. However, when a
crack exists in the disk, fracture toughness does depend on
thickness, as for example studied by Aliha [29].

In four-point loading of circular disk, when tangential
components of loads are also considered along with nor-
mal components, ZOF moves inwards from top and bottom
as tangential component increases. And it is expected to
move outwards (outside the region of disk) from left and
right to form a complete ellipse. With the increase of tan-
gential component, eccentricity (slenderness) of the ellipse
increases. Shear traction associated with normal traction at
loading contact is found to cause splitting of fringes at close
vicinity of loaded boundary.

To transform state of stress in a semi-infinite plate due to
a point load, to a different coordinate system, we changed
the coordinates in Airy function which is the simplest pro-
cedure. Alternatively, one can follow the longer procedure
of transformation of stress tensor [30] to arrive to stress

components in a different coordinate system. Circular disk
under pure normal loading on its periphery can be derived
also with the help of Michell’s solution for circular disk
under two collinear point loads one at the center the other
at the periphery [16]. By superposing different variants of
Michell’s solution, we can solve any normal loading on
boundary of the disk. Singularity of stresses at the center
due to point load there, is completely removed as the point
loads from the different variants self cancel themselves giv-
ing rise to zero load at the center. For this, superposed loads
on the periphery must be self-equilibrating which is always
ensured. This method does not need hydrostatic solution for
annihilation of residual traction at the boundary since all the
sub-problems being superposed involve finite geometries,
have self-equilibrating loading and traction-free boundaries.

Analysis of circular disk under four normal loads in
section “Four-Point Loading Results” with 2β = 90◦ (8-
fold symmetry) is shown to have one IP at the center using
the animation (Online Resource 1). Also it has been shown
that same problem with a given 2β ( �= 90◦) gives rise to two
IPs with their separation varying with tangential loading. In
case of 2β = 90◦ there is only one IP forming at the center
for any amount of tangential component. Tangential loads at
the four contact points do not affect the position of IP in this
special case of 2β = 90◦. Therefore, 2βexp = 99◦ in case
of four-point loading explained in section “Isochromatic
Results” enables us studying IP location.

The loading configurations of circular disk analyzed in
this paper, can be extended to asymmetric loading type. For
example, three-point loading of the disk can be modified to
promote asymmetry by moving the top load point to some
other point on the periphery as shown in Fig. 28. This con-
figuration can be realized by using the same V-block for the
bottom supports and keeping the top loading bar inclined.
The V-block must be fixed to the loading frame to avoid
sliding of the block on the frame. In the asymmetric con-
figuration, the top load P , must also be inclined to radial
direction in order to balance the moment due to unequal sup-
port reactions. This implies a non-zero friction between disk
surface and the loading bar. Thus the asymmetric loading
introduces another degree of freedom of friction coefficient

 
QQ1 2

P
β

1−1−

Tan (   )

Tan (   )μ2Tan (   )μ1

−1μ3

Fig. 28 Circular disk under asymmetric 3-point loading
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into the problem. To find the magnitude of load (P ) that is
transfered between the loading bar and the disk using rigid-
body analysis of the loading bar, coefficient of friction at
the bar-disk contact must be given. Then, the equilibrium of
disk under three inclined forces with one force (P ) known
along with its inclination, gives three equations leaving one
parameter to vary. This is our current topic of research.

Regarding the feasibility of the three-point and four-point
loadings of the disk: one has to exercise enough care while
loading to avoid asymmetries. Also, V-block or four-point
fixture needs to be fabricated with sufficient accuracy on
surface roughness. Disk under diametral compression may
be far simpler. But, there are no isotropic points formed in
the disk and characterizing friction in this configuration is
seldom possible.

Conclusion

Isochromatics of circular disk under three-point loading
showed a deviation from exact radial distribution of fringes
at the supports. Using analytical solution for circular disk
loaded at its periphery in conjunction with the concept of IP
in experimental fringe patterns, the deviation of fringe pat-
tern at the supports is explained. A non-zero frictional shear
at the supports is found to cause the deviation. Analysis of
the disk under four-point loading with oblique loads empha-
sizes the presence of shear at the load points. Analysis of
semicircular ring under three-point loading with sharp sup-
ports also reveals the effect of friction qualitatively. Splitting
of fringes at close vicinity of distributed loads is explained
by the association of normal load with a distributed shear
load. It can be concluded that active coefficient of friction
can be determined by isochromatics pattern provided by
photoelastic technique.
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