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Abstract This paper discusses an experimental method to
characterize thin films as they are encountered in micro-
electronic devices. The method enables the measurement of
the stress and strain of pressure deflected bulged membranes
without using a priori defined bulge equations. An enrich-
ment to the Global Digital Image Correlation method is
detailed to capture the membrane strain and curvature while
robustly dealing with acquisition noise. The accuracy of
the method is analyzed and compared to the standard bulge
test method. The method is applied to a proof of princi-
ple experiment to investigate its applicability and accuracy.
Additionally, it is shown for two experimental cases that
the method provides accurate results, although the bulge
equations do not hold.
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Introduction

Thin films are key in miniaturizing components in con-
sumer electronic devices. It is known that the properties
of most thin films are size dependent, since their intrin-
sic microstructural length scale is of comparable size to
the design length scale [1, 2]. Moreover, the processing
techniques, and the adjacent materials, also influence the
mechanical response [3, 4]. It is therefore important to per-
form an in-situ characterization of these films, i.e. with the
selected manufacturing processes as used in the device.

The bulge-test is a well known technique for testing thin
film properties, especially at small scales [1]. In a bulge-
test, a membrane of specific shape (rectangular, circular)
is deflected under pressure. The deflection and pressure
can be converted into stress and strain using shape spe-
cific equations. Generally, bulge equations are derived using
energy minimization methods [5–7] resorting to approxi-
mate membrane displacement fields. In these derivations
several assumptions are used to make the system solvable.
Although these assumptions may be clearly specified, they
are often only approximately fulfilled and hence the result-
ing error/uncertainty on the estimates of the mechanical
properties of these films is difficult to evaluate.

For micro-electronic systems the miniaturized rectangu-
lar bulge equations developed by Vlassak et al. [8, 9] are
popular. The reason is that, for these systems, it is possible
to manufacture the rectangular membranes with high pre-
cision by back etching a Si wafer using KOH (potassium
hydroxide), thereby improving the accuracy significantly.
Vlassak et al. have shown that for rectangular membranes
(width 2a along the x direction, length 2b along the y axis,
and thickness t), with sufficiently large width-to-length
aspect ratio b/a > 6, the center part of the membrane
closely approximates a plane-strain state and deflects cylin-
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drically. The bulge equations then obtained to compute the
stress and strain from the pressure and deflection are,

κxx = 2δ

a2 + δ2
, (1)

σxx = P

tκxx
, (2)

εxx = 1

aκxx
sin−1 (aκxx)− 1, (3)

where, P is the pressure and δ the deflection at the cen-
ter (or apex) of the membrane and κxx its curvature along
direction x. Equation (2) is also known as the hoop stress
equation, and is derived from static equilibrium assuming
negligible flexural moment. Equation (3) is purely geo-
metrical and based on the assumption that the membrane
deflects to a circular profile. It has been shown that this
method is accurate for films with large width-to-thickness
ratios a/t > 1000 (depending on the level of strain) because
these thin films approximate a free rotating hinge at the
boundary [10]. Thicker films conform poorly to the circular
deflection profile that connects the two edges. In partic-
ular close to their edge, flexural moments are the largest
and hence the evaluation of the curvature from equation (1)
may lead to significant errors. Alternatively, as long as the
film edges are removed from the analysis, the hoop stress
equation, equation (2) may still be valid.

More importantly, all bulge equation methods are limited
to homogeneous, unstructured membranes, with specific
shapes. Nonetheless, in current microelectronic applications
more complex thin film shapes are often found [11, 12],
even with multiple layered and structured heterogeneous
thickness materials. Since a bulge-equation based method
can only provide a global (or averaged) material response, it
would not apply to such thin films.

In this paper, a new method is proposed for measuring
thin films that are loaded with a pressure medium similar to
the bulge test method. In this new method, full-field Optical
Confocal Profilometry is combined with dedicated Global
Digital Image Correlation (GDIC). The proposed method
enables the full-field strain and curvature fields to be mea-
sured for any type of deformed sample measured with a
profilometric full-field technique.

Using the fact that the pressure is uniform under the sam-
ple, the full-field membrane stresses are derived from the
pressure and curvature if the bending stresses are negligible
and the local stress state (e.g., plane-strain, biaxial load-
ing) is known (section Curvature, Stress and Strain). The
proposed method utilizes the wealth of full-field data that
allows for noise attenuation, resulting in improved accuracy
in cases where the bulge equations apply, as discussed in
section Accuracy Analysis. Moreover, the proposed method
is direct, i.e. measuring the local stress and strain with-
out assuming any global deformed shape. The method is

therefore more widely applicable in terms of e.g. membrane
thickness, membrane shapes, and structured membranes, as
demonstrated in section Demonstration Experiments.

Methods

The proposed method has been developed for thin films as
they are used in micro-electronics applications. For these
films, the small strain regime is usually the most relevant
for service conditions. This regime also implies small cur-
vatures, which puts high demands on the used experimental
technique. Therefore, a microscopic surface profilometry
technique (such as confocal profilometry or phase shift
interferometry) is chosen as a measurement method. This
type of system measures the “surface profile” of the sample,
which is the height of the sample at every pixel location.
The resulting data are images (i.e. 2D matrices), where the
pixel information is not a gray value but height. As a result,
in this study, GDIC is applied to identify the 3D displace-
ment vector field, from (2D) height-images, and therefore
called Quasi-3D. Such a Quasi-3D GDIC method has been
used before on Atomic Force Microscopy data [13]. Addi-
tionally, the proposed method aims to capture the curvature
field, which is the second derivative of the position field. It
is well known that noise has a detrimental effect on deriva-
tives. It is therefore imperative to deal with the acquisition
noise robustly, for which particular choices are made in the
GDIC procedure.

Global Digital Image Correlation

Digital Image Correlation (DIC) in general consists of mea-
suring the displacement field between two images obtained
from two increments of loading in an experiment [14–
16]. The first image is usually a picture of the reference
configuration f , and the second image a picture of the
deformed configuration g. If the pictures capture a (speckle)
pattern, which is deformed with the underlying sample,
then the gray level conservation for a pixel at location x
reads

η(x) = f (x)− g(x + u(x)ex + v(x)ey), (4)

where u and v are the in-plane components of the dis-
placement respectively in x and y direction, and η is the
acquisition noise. In the case of profilometric data, the
pixel values contain height information, which may evolve
between two measurement increments. Thus the gray level
conservation is rewritten as “topography” conservation,

η(x) = f (x)− (
g(x + u(x)ex + v(x)ey)−w(x)

)
, (5)

where w denotes the out-of-plane displacement, and η now
represents noise, but also height distortions not captured in
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w. Note that the topography is in data structure similar to a
2D image, thus the position vector remains 2D,

x = xex + yey, (6)

in contrast with the 3D displacement vector,

u(x) = u(x)ex + v(x)ey + w(x)ez. (7)

To write the problem in terms of a limited number of
unknowns, the displacement field is obtained through
the minimization of a functional over of subspace of
functions ϕ,

u(x) ≈ u∗(x, λ) =
3n∑

i=1

λiϕi (x), (8)

where λ is a column vector with the degrees of freedom
for a chosen set of basis functions ϕ, detailed later on. The
displacement field u∗ is then obtained by minimizing the
squared residual with respect to λ,

λ = argmin
λ

(�) = argmin
λ

∫

	

(
η(x, λ)

)2 dx, (9)

where η is now dependent on the degrees of freedom
through the substitution of equation (8) into equation (5).

For this purpose, an iterative procedure is performed,
where λ consists of a current value λk , and an unknown
iterative update δλ

λk+1 = λk + δλ. (10)

where k denotes the current iteration. The update is found
by solving the linearized form of equation (9),

∀j
3n∑

i=1

∫

	

(ϕj ·G)(G·ϕi ) dx δλi =
∫

	

ϕj ·G(f − g̃) dx,

(11)

where G is the image gradient, defined below, and,

g̃ = g
(

x + u∗
(

x, λk
)

ex + v∗
(

x, λk
)

ey
)
− w∗ (

x, λk
)
,

is the corrected version of g(x) using the current estimate of
the displacement field. Equation (11) is usually written in
matrix form,

M δλ = b, (12)

where the tangent matrix M and the right-hand member b
are conceptually similar to established GDIC [16, 17]. The
main difference is the vector G, which is the image gradient
enriched with an out-of-plane component

G = ∂f

∂x
ex + ∂f

∂y
ey − ez, (13)

and the three-dimensional nature of the basis functions

ϕ = ϕxex + ϕyey + ϕzez. (14)

To build g̃(x), the image g(x) needs to be estimated at
locations x + u2(x), for which a cubic spline interpo-
lation scheme is used, where u2 denotes the in-plane
displacement field. This interpolation is not exact, and
is a source of error [18, 19]. Interestingly, the out-of-
plane component does not enter the interpolation scheme,
and does not suffer from interpolation errors in a direct
way.

The iterative system is solved until convergence is
reached. The chosen criterion is such that the norm of the
degree of freedom increments, δλ, becomes sufficiently
small, i.e. ‖δλ‖ < 10−6.

The implementation used in this paper is considered
a “global” DIC method because the system is minimized
globally, instead of minimizing each zone of interest inde-
pendently. However, the out-of-plane enrichment can also
be applied to “local” DIC methods by following exactly the
same procedure.

Basis Functions

In a general DIC problem, a displacement vector is to be
determined for each pixel in an image. This makes the
problem ill-posed, even when not considering image noise.
The solution is to reduce the number of unknowns to less
than the number of pixels, for instance as was done in
equation (8). If there is uncorrelated (i.e. white) noise,
then using more pixels per unknown will further reduce
the noise sensitivity, thereby improving the accuracy. How-
ever, using too few unknowns restricts the kinematics of
the solution, which decreases the accuracy. For that rea-
son, it is important to use a basis that adequately captures
the full kinematics of clamped bending membranes, inside
the Region Of Interest (ROI), with a minimum number of
degrees of freedom. Inspired by continuum solutions for
loaded plates, a 2D polynomial basis is used. The C∞ con-
tinuity property of polynomials makes these functions well
suited for calculating curvature fields, noted that polynomi-
als of at least second order are required to be sensitive to
curvature.

The basis functions are vector functions where one com-
ponent of the field is expressed as the product of two terms
of a polynomial series,

ϕx = ϕy = ϕz = χaζ b, (15)

where χ and ζ are normalized coordinates for x and y such
that −1 ≤ χ, ζ ≤ 1. The complete basis is formed by
using all combinations of a and b up to a certain order p,
see Fig. 1 for some examples. Each basis function is used
three times, each with its own degree-of-freedom (for each
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Fig. 1 Example 2D
basis-functions ϕ

component of the displacement vector). For example for
p = 2,

u∗ = λ1χ
0ζ 0 + λ2χ

0ζ 1 + λ3χ
1ζ 0

+ λ4χ
0ζ 2 + λ5χ

1ζ 1 + λ6χ
2ζ 0,

v∗ = λ7χ
0ζ 0 + λ8χ

0ζ 1 + λ9χ
1ζ 0

+ λ10χ
0ζ 2 + λ11χ

1ζ 1 + λ12χ
2ζ 0,

w∗ = λ13χ
0ζ 0 + λ14χ

0ζ 1 + λ15χ
1ζ 0

+ λ16χ
0ζ 2 + λ17χ

1ζ 1 + λ18χ
2ζ 0.

This particular decomposition into separate degrees of free-
dom for each component of the displacement vector is one
of the possible ways to define the basis functions. In par-
ticular, this will give 3 basis functions for p = 0, 9 basis
functions for p = 1, 18 basis functions for p = 2, 30 basis
functions for p = 3, etc.

Because of the fact that the matrix elements Mij involve
the scalar product of pairs of functions with a “weight”
that is the tensor G ⊗ G, there is no gain in choosing an
orthogonal polynomial basis. The same space of function
will be generated by the above polynomials and say Leg-
endre polynomials of the same order. Hence the resulting
displacement, and convergence rate is independent of the
particular choice provided the generated space is the same.

Curvature, Stress and Strain

Let us revisit the assumptions in the bulge equations dis-
cussed in the introduction. Equation (1) is a purely geomet-
rical formulation to obtain the curvature from the deflection,
assuming the membrane deflects according to a circular pro-
file. For thin membranes and deflections larger than the
membrane thickness this assumption holds, attributing to
the established accuracy of the bulge test method. However,
with the GDIC method discussed in this paper the curvature
tensor κ(x) at each pixel location can be computed without
resorting to the circularity assumption (see also [20]), by
first defining

κ(x) = ∇n(x), (16)

where n(x) is the normal vector, which in turn is the gradient
of the position field z(x) (corrected for rotations)

n(x) = ∇z(x)
||∇z(x)|| . (17)

The position field is measured as the topography g(x), how-
ever, it also includes the additional pattern. The membrane
topography (i.e. the required position field) is more accu-
rately obtained by by applying the measured displacement
field to the initial (flat) membrane position. Because the dis-
placement fields are forced to be smooth, by the polynomial
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basis, noise in the curvature is here controlled by the basis
order, as will be shown further down.

Equation (3) is a similar geometrical formulation as
equation (1), which expresses the strain as function of the
curvature assuming a circular deflection profile. For thicker
or inhomogeneous membranes the circular deflection pro-
file assumption is violated, especially at the membrane
boundary and heterogeneous points. However, the GDIC
method recovers the displacement field, from which the
strain field is easily obtained without assumptions, by e.g.
computing the Green-Lagrange strain tensor E in the mem-
brane plane.

Equation (2) is a simple balance equation evaluated with-
out recourse to the small displacement hypothesis. It is valid
as long as the bending moment can be neglected, but the
actual size of the membrane does not come into play. Its
validity depends on the flexural moment within the region
over which the curvature is evaluated. However, the flexural
moment is proportional to the change in curvature, which is
measured and thus can be assessed.

At the apex of bulged square membranes, the pressure is
balanced with membrane stresses in two directions. If the
curvatures in both directions are equal then the principal
stresses are also equal if the material is isotropic,

σxx = σyy = P

2t κ
. (18)

If a part of the membrane deforms axisymmetrically, the
principal stresses of that membrane part are related to the
meridional and circumferential curvatures [21, 22],

σm = P

2t κc
, (19)

σc = P

t κc

(
1 − κm

2κc

)
. (20)

where m and c denote the meridional and circumferen-
tial directions respectively. For kinematically more complex
cases, closed-form expressions cannot be obtained, and
numerical schemes are required, such as Finite Element
Method Updating [23].

To conclude, the assumption of neglecting flexural stiff-
ness remains in the proposed methodology, yet only for
relating stress to curvature. The assumption is appropriate
if a restrained region is analyzed, such that the change in
curvature is insignificant over the analyzed region.

Experimental Procedure

Two types of samples are used in the present paper, a square
(1×1 mm2) membrane and a rectangular (1×6 mm2) mem-
brane (Fig. 2). Both samples are manufactured by deposition
of a 100 nm thick Si3N4 layer on a monocrystalline 200 µm
thick Si wafer. A freestanding membrane is created by back

KOH etching the wafer up to the Si3N4 layer. The mem-
brane dimensions are chosen such that the bulge equations
are known to perform well [8], enabling a comparison with
the GDIC method presented in this paper.

These samples are processed with high precision micro-
manufacturing techniques, resulting in a surface roughness
that is smaller than measurable with the used optical pro-
filometer. Since a height correlation is to be performed on
these samples, a height pattern is required. This pattern
is created by coating the membrane surface with a col-
loidal suspension of Ag particles (80–500 nm diameter)
dispersed in ethanol. After evaporation of the suspending
fluid, the deposited particles (or rather clusters of particles
as they tend to aggregate) showed enough physical adhe-
sion to withstand the bulge test without detaching from nor
moving on the surface. Note that the basis functions in
the GDIC method have support over the entire ROI, allow-
ing the GDIC method to work efficiently with relatively
sparse patterns. The sparse pattern allowed the evaluation
of the unloaded freestanding film with and without the pat-
tern. Application of the pattern did not cause a measurable
deformation, confirming the insignificant influence on the
mechanics.

To test the membranes a custom made low profile bulge
test apparatus is specifically designed to allow for optical
access to the sample surface (Fig. 3). The apparatus con-
sists of two ethanol filled stainless steel chambers of 270 ml
and 30 ml respectively Fig. 3(c), (d), which are connected
with a valve. The sample is mounted on the smaller chamber
with an interchangeable sample holder Fig. 3(b). Addition-
ally, the apparatus is equipped with three pressure sensors
with respective pressure ranges [0–5], [0–15], [0–50] bar
Fig. 3(f). The pressure sensors are high performance milli-
volt output transducers from GE Sensing, with an accuracy
of 0.04 % of their rated maximum. The two large range sen-
sors are mounted on the smaller chamber while the most
sensitive sensor is mounted on the larger chamber. The pres-
sure difference is applied with a piston radius of 1.6 mm,
connected to the smallest chamber, driven by a linear actu-
ator with a closed-loop DC motor Fig. 3(e). The actuator
steps in 50 nm increments with a total stroke of 25 mm, and
a maximum applied force of 70 N. The two chamber design
allows experiments in two pressure ranges, i.e. by closing
the valve to the second chamber the most sensitive pres-
sure sensor is naturally protected from overloading, while at
the same time, the effect of the piston motion on the pres-
sure is amplified. Finally, a heating stage Fig. 3(g) serves
to keep the entire system at a constant temperature, slightly
above the room temperature (∼28◦C), to eliminate pressure
changes due to thermal expansion.

The bulge test apparatus fits under the Sensofar Opti-
cal Profilometer, which is used to measure the surface
roughness of each pressure increment. The experimental
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Fig. 2 The two sample types
used in the experiments, the
Si3N4 membrane is 100 nm
thick in both types, (a) a drawing
of a rectangular membrane
(1×6 mm2), (b) a photograph of
a square membrane (1 × 1 mm2)

200µm

6mm

10mm

5mm

1mm

(a) (b)

procedure is controlled via custom NI LabVIEW code that
follows a user-defined pressure loading curve in a closed
loop, with intermittent pressure hold periods for the profile
measurements. The height profile is captured by a Sen-
sofar Plµ2300 Optical Confocal Microscope using a CCD
camera (definition: 557 × 557 pixels) with a Nikon EPI
50x objective lens, resulting in a square field of view of
184 × 184 µm2. The objective lens has a numerical aper-
ture of 0.80, which together with the monochromatic blue
light (λ = 470 nm) results in an in-plane resolution of
358 nm (i.e. slightly larger than the resolution of one pixel
of the CCD sensor (332 nm)). For the patterned mem-
branes discussed in this paper, the out-of-plane resolution
has been measured to be ∼20 nm from the RMS of the dif-
ference between two height profiles of the same area on the
sample. The difference between in-plane and out-of-plane

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 3 The bulge test apparatus with, (a) the sample, (b) the sample
holder, (c) the 270 ml chamber, (d) the 30 ml chamber, (e) the linear
actuator connected to the piston, (f) the three pressure sensors, (g) the
heating stage

resolution will also be apparent in the accuracy analysis of
section Accuracy Analysis.

Virtual Experiment

In this paper, proof of principle experiments on square and
rectangular membranes are performed. To make a thor-
ough evaluation of the accuracy of the method, virtual
experiments are used. A virtual experiment is a synthetic
procedure that produces similar data as expected from the
real experiment, yet, with the additional knowledge of the
reference.

To create realistic virtual height profiles, the virtual
experimental procedure consists of deforming a real exper-
imental height profile f Fig. 4(b) with an FE displacement
field Fig. 4(c) to obtain a virtual deformed height profile g

Fig. 4(d). Different increments in the FE simulation are used
to obtain the incremental pressure height profiles similar to
a real experiment.

Two different FE geometries are used, corresponding to
the rectangular Fig. 2(a) and to the square Fig. 2(b) mem-
brane. In the FE simulations, a dense mesh is chosen to
match the pixel discretization level of the height images.
This results in a mesh of approximately 50,000 3D 4-node
bilinear Mindlin shell elements, which is densest at the field
of view (FOV) and opens towards the boundaries. Note that,
for illustrative reasons, the grid shown in Fig. 4(c) is not the
actual used mesh, which would be too dense to show any
meaningful detail.

At this stage it is possible to determine the order of the
basis functions required to accurately capture the kinematics
in the virtual experiment. Figure 5 shows the mean abso-
lute displacement error between the FE displacement field
ufem and displacement fields approximated with increasing
polynomial order u∗. An error measure is introduced as the
average of the lengths of all difference vectors between the
FE displacement field and the approximated displacement
fields, evaluated over all pixels k,

Eu = 1

n

n∑

k=1

(‖ufem(xk)− u∗(xk)‖), (21)
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Fig. 4 The reference profile f (x) and the deformed profile g(x) are
measured with the experimental setup (a),(b),(e). Additionally, the ref-
erence profile is virtually deformed with an FE displacement field (c)
to obtain a virtually deformed profile (d), which approximates the real
experiment

where the norm is defined as the Euclidean norm of, in
this case, the difference vector. As expected, the mean abso-
lute error decays for increasing order, and reaches an error
level of less than one nanometer for sets of basis functions
with p ≥ 4. Since this error is smaller than the resolution of
the measurement system, it is chosen to truncate the series
of basis functions at p = 4.

Accuracy Analysis

Error Fields

The use of the virtual experiment allows for direct com-
parisons between the results obtained with the proposed
GDIC method and the FE reference solution. Similarly to
equation (21), a pixel-wise displacement error is computed
as the vector difference between reference and the displace-
ments estimated by GDIC. The different components and
magnitude of the displacement error fields are shown in
Fig. 6 for the correlated ROI. More importantly, Fig. 6(a)
shows that the maximum error in displacement is approx-
imately 10 nm while the average absolute error is much
smaller. Even though there is no noise present in this vir-
tual experiment, the result is based on a real experimental
image f with the same pixel discretization and pattern as the
real experiment. Note the difference in the in-plane accuracy
versus the out-of-plane accuracy Fig. 6(b)–(d). The error
in w is approximately 20 times smaller than in u and v.
This coincides with the observed accuracy of the confocal
microscopy set-up itself.

Error vs. Number of DOFs

The error sources in DIC are in general threefold:

1. acquisition noise or pattern changes;
2. subpixel interpolation;
3. displacement approximation.

To minimize the impact of the second error sources, a local
cubic spline subpixel interpolation method is used. More
interestingly, the first and third error source are dependent
on the chosen basis. Using too few (or incorrect) basis
functions will introduce systematic errors because the kine-
matics of the experiment cannot be captured. Conversely,
giving the system more freedom, allows the solution to be
sensitive to noise, resulting in statistical errors.

In Fig. 7(a), (b), image correlations are performed on
virtual experiments for an increasing number of degrees of
freedom, for various levels of (white) noise added to the

Fig. 5 The mean absolute error
as a function of polynomial
order obtained by comparing the
FE displacement field with
approximated displacement
fields with increasing
polynomial order
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deformed profile g. The virtual experiment method allows
the application of artificial acquisition noise by adding gen-
erated noise fields to the images. The various noise levels
are quantified as the standard deviation of the white noise,
relative to the image gray level dynamics. It is clearly shown
that for the noise-free situation, increasing the number of
degrees of freedom only improves the result, while when
noise is included, an optimum accuracy is found using a
conservative number of degrees of freedom (i.e. 10 to 20
DOFs). These results demonstrate that choosing the right
kinematic basis for the GDIC procedure enhances the accu-
racy. The preferred basis is the one that captures the full
kinematics with the minimum number of degrees of free-
dom. The applicability of a narrow basis, which is ideal in
terms of accuracy and robustness, is limited to experiments
within the range of this narrow basis. In contrast, the poly-
nomial basis, discussed in this paper, is applicable to many
types of experiments, provided they have slowly varying
displacement fields, making the proposed method relatively
general.

In a real experiment, no reference case exists. Therefore,
the recommended procedure to select a proper set of basis
functions, is to perform the correlation for increasingly rich
sets of basis functions. The residual Fig. 7(c) will decrease
for richer bases (if converged), yet the decrease will flatten
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Fig. 6 Error in the estimated displacement fields for the ROI for
a full 4th order set of shape functions without additional noise.
The Euclidean norm is used as the vector norm shown in subfig-
ure (a). Note that the accuracy of the out-of-plane displacement is
approximately 20 times better than the accuracy of the in-plane dis-
placement, which coincides with the observed accuracy of the confocal
microscopy set-up

at some level of richness. At this point, adding more degrees
of freedom to the system tends to make the correlation less
accurate due to noise sensitivity. Another method for evalu-
ating the chosen basis, is by examining the residual field. A
correlation with too few basis functions will result in a resid-
ual field exhibiting long wavelength modulations, while the
residual field for an appropriate basis will only contain the
acquisition noise, and thus will resemble white noise.

Demonstration Experiments

Proof of Principle Experiments

To investigate the accuracy of the method on real cases, four
experiments are performed: two experiments deal with rect-
angular membranes, and two with square ones. The samples
are chosen for allowing optimal accuracy when using the
bulge equations, to make a fair comparison with the dis-
cussed GDIC method, see section Experimental Procedure.
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Fig. 7 Effects of increasing the number of degrees of freedom on (a)
the error in displacement, (b) the error in curvature, (c) the residual
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Fig. 8 Measured stress strain response for two square and two rect-
angular 100 nm thick membranes. The GDIC method and the bulge
equations perform equally well for such thin membranes

The membranes are pressurized with the bulge test appa-
ratus to a pressure of 1 bar in 100 increments (above
atmosphere), and then unloaded to 0 bar in 20 increments.
One increment takes approximately 90 seconds including
the pressure change, and scanning of the confocal micro-
scope. On each of the recorded images the polynomial
GDIC procedure is performed with all basis functions up to
p = 2 for the square membranes (i.e. 18 DOFs). For the
rectangular membrane the DOFs that operate in y-direction
are removed leaving 15 DOFs.

Figure 8 shows the stress and strain results after process-
ing the topographies with both the GDIC method and the
bulge equations. The square membrane response is more
stiff, which is expected since it is in a more confined biaxial
strain state when compared to the plane strain state at which
the rectangular membrane is deformed. Consequently, the
obtained moduli are the plane strain modulus and the biax-
ial modulus that are directly related to the Young’s modulus
(E ≈ 234 GPa) and the Poisson’s ratio, (ν ≈ 0.16) and are
as expected for these thin Si3N4 films. For the square mem-
branes the stress-strain curves in both x and y-directions are
shown, using κxx and κyy respectively. The curves overlap
showing that the membranes are not anisotropic, at least not
within the membrane plane. More importantly, the figure
shows that both the bulge equations and the GDIC method
give the same results, confirming the validity of the method.

Beyond the Bulge Equations

The previous results show that the method is comparable to
the accuracy obtained by using the bulge equations. How-
ever, the goal of this method is to go beyond the validity
regime of the bulge equations. Therefore, the GDIC method
is applied to data of thicker membranes which are created
by the virtual experiment framework.

A number of virtual experiments are performed (see
section Virtual Experiment). All virtual experiments use the
same linear elastic material properties with Young’s mod-
ulus of 235 GPa. Figure 9 shows the stress strain response
taken from the center of membranes for all virtual experi-
ments. As expected the bulge equations start deviating from
the correct response for thicknesses above 2 µm, for this
1 mm wide membrane. In contrast, applying the GDIC
method to the same data shows correct stress strain response
up to thicknesses of 20 µm. The GDIC method considers
only the membrane inside the ROI, and thus is much less
restricted by the flexural stiffness assumption.

For even thicker membranes the stress across the thick-
ness is far from uniform, and no longer satisfies the assump-
tions made in equation (2). It may be possible to obtain a
corrected stress from the curvature for thicker membranes,
but this requires a modification that is outside the scope of
this paper.

Inhomogeneous Films

The previous results use only the stress and strain at the cen-
ter of the membrane, but the GDIC method gives full-field
stress strain results. To show that the GDIC method captures
features in the membranes, the virtual experiment frame-
work is again applied to generate experimental data. In this
case a 24 µm wide strip along the y-axis is modeled using
a Young’s modulus of Estr. = 235 GPa, while the remain-
ing membrane material is modeled three times with different
moduli, i.e. Emem. = [130, 170, 235] GPa.

The generated topography images are processed with the
GDIC method twice, once masking the structure, and once

Fig. 9 GDIC method and the
bulge equations applied to
virtual experimental data with
the same material properties, but
with various membrane
thicknesses. The GDIC results
do not deviate from the
reference elastic response up to
a thickness of 20 µm
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Fig. 10 GDIC applied to three
heterogeneous membranes,
where only the Young’s
modulus of the membrane
material is varied, and the center
strip of material has a constant
modulus of 235 GPa. Note that
the method can capture full-field
strain (a) and curvature (b)
fields. The red dots in (a), (b)
show the location where the
stress-strain depicted in (c) is
taken
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masking everything but the structure. For all three virtual
experiments the stress-strain curves are collected in one
point on the structure and in two points on the membrane
(See Fig. 10). This shows that it is possible to obtain the
correct stress strain results for two different materials from
a single full-field measurement.

With the proposed method it is always possible to obtain
curvature fields and strain fields. However, obtaining the
stress fields relies on applying either equations (2), (18),
or (19), which are only valid for particular cases (e.g.
plane-strain, biaxial, or axisymmetric states).

Discussion and Conclusions

The global DIC method has been extended to images con-
taining height profiles, relaxing the brightness conservation
principle and enabling for quantitative measurement of in-
plane and out-of-plane displacements. This extension is
useful for any topographic measurement, in particular opti-
cal confocal profilometry, but also e.g. Scanning Probe
Microscopes like Atomic Force Microscopy. Furthermore,
the out-of-plane quantity is not limited to topography, it can
be any measured field, e.g., temperature [24].

In the proposed GDIC method the image pattern and the
quantified out-of-plane displacement field are both taken
from the same topographical data. In order to avoid interfer-
ence between them, a separation in length scales is required
between the length scale of the out-of-plane displacement
fluctuations and the pattern length scale. For the presented
case of bulged membranes this separation of length scales

is achieved by applying low order polynomial basis func-
tions with support over the entire region of interest and by
controlling the surface marking with a deposition of small
clusters of nanoparticles. Considering that the membrane
mechanics are the goal of the analysis, it is important that
the added pattern does not mechanically influence the mem-
brane. For the discussed cases it was shown that the pattern
did not significantly influence the mechanics.

The introduced polynomial basis is particularly suited
for the bulging of membranes, and not limited to square
or rectangular membranes. The polynomial basis functions
have a wide support and capture the membrane kinemat-
ics with only a few degrees of freedom. This makes the
method highly robust with respect to noise, but also with
respect to the initial guess. Moreover, the measured dis-
placement fields are C∞ continuous, making them ideal for
the calculation of curvature fields.

Through the use of virtual experiments, where the input
(FE) displacement field is known, the reference solution can
be compared with the measured (via GDIC) displacement
fields, through which the accuracy of the method was ana-
lyzed. The accuracy depends on the level of the acquisition
noise and the richness of the kinematics that is controlled
through the number of basis functions. Too restricted kine-
matics will give inaccurate results because the kinematics
of the experiment is not adequately captured; too rich kine-
matics will make the solution sensitive to noise also leading
to inaccurate results.

In a real experiment no reference displacement field
exists to asses if an optimal basis is applied. To identify this
optimum, it is suggested to perform DIC calculations for
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increasing number of degrees of freedom until the residual
field stabilizes. The residual field should always decrease
for increasing number of degrees of freedom, but when the
residual decrease becomes small, it suggests that modes
that cannot be measured are progressively included thereby
inducing a degradation of the conditioning of the tangent
GDIC problem, and hence an increased noise sensitivity.

The proposed method recovers the displacement fields,
from which strain fields are trivially computed, regard-
less of the shape or thickness of the membrane. Moreover,
the proposed method recovers curvature fields, and it is
shown that for particular cases (i.e. plane-strain, biaxial, or
axisymmetric strain-states) the stress fields can be recov-
ered. Consequently, the bulge membrane shape can be any
shape, and as long as the interrogated area fulfills one of
these particular strain-states, then it is possible to obtain the
stress in that respective area. For cases with more complex
kinematics, a coupling with numerical method is to be made
in order to obtain the stress.

As a proof-of-principle, bulge test experiments are per-
formed for 100 nm thick Silicon Nitride films. Both the
GDIC method and the plane-strain bulge equations are
applied to the data, and give comparable results. This shows
that the GDIC method at least matches the accuracy of
the bulge equations for this particular case. However, the
applicability regime of the GDIC method is much less
restrictive.

The method applies the same assumption (negligible
flexural moments) as the plane-strain bulge equations to
obtain stresses. However, by considering only a small por-
tion of the membrane, the assumption is less restrictive.
Therefore, application of the method to inhomogeneous
membranes with less restrictions on the membrane thick-
ness has shown to accurately recover the stress-strain
response of the various materials in the field of view. Con-
sequently, the proposed method is less restricted in terms
of membrane thickness, membrane homogeneity and mem-
brane shapes, thereby, alleviating these shortcomings of the
original bulge test.
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