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Abstract The effectiveness of optical (mostly interferomet-
ric) methods for the measurement of residual stresses is
largely demonstrated in literature. Nevertheless, these tech-
niques are still confined to optical laboratories due to their
high sensitivity to vibrations which makes it very difficult to
perform the measurement in an industrial environment. Dig-
ital Image Correlation (DIC) has recently been proposed as
a possible solution to this problem: this non-interferometric
technique is much less affected by vibrations, but its sensi-
tivity is relatively low, thus negatively affecting the accuracy
of results.

This work proposes to use a variant of Digital Image Cor-
relation, known as Integrated DIC (iDIC), in combination
with the hole drilling technique. Since iDIC directly incor-
porates in its formulation the displacement field related to
hole drilling, it overcomes most of the problems of stan-
dard DIC; in this way it is possible to obtain accurate results
without using interferometric techniques.

Keywords Residual stress · Hole drilling · Integrated
digital image correlation · Optical techniques

Introduction

The measurement of residual stress using the relaxation
approach in combination with optical techniques has been
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proposed by several authors in past years. Indeed, optical
experimental techniques (in particular interferometric ones)
are well suited for residual stress measuring owing to sev-
eral favorable characteristics: their high sensitivity (which
can also be fine-tuned in some experimental techniques), the
non-contact nature of the measurement and full-field data
acquisition make them serious competitors of the standard
strain-gauge-based procedure. Thus, several authors have
proposed different approaches to residual stress measur-
ing, mainly using holographic interferometry [1–4], grating
(moiré) interferometry [5–8] and speckle interferometry
[9–15]; orthotropic materials have also been considered [16,
17]. However, most of these approaches use the optical mea-
suring technique as a direct replacement of strain gauges [2]
or employ only few data points [3, 7, 8], thus not taking
advantage of the availability of a huge number of sampling
points that make it possible to use statistical approaches,
i.e. it makes possible the exploitation of data redundancy to
improve measurement accuracy and reliability [10, 11, 13,
18–21].

Even though the use of optical techniques is advanta-
geous with respect to strain-gauges—they have similar, or
higher sensitivity, they require little or no preprocessing of
the area where the measurement is to be performed, they
can be used in a wider range of temperatures—the use
of these techniques is mainly confined to optical labora-
tories. Indeed, high sensitivity to vibrations makes the use
of interferometric techniques very difficult in an industrial
environment.

Digital Image Correlation is a non-interferometric tech-
nique able to measure bi- and three-dimensional displace-
ment fields. It works by numerically correlating two images
(two couples of images in the 3D case) acquired before
and after motion under the assumption that pixel intensity
remains constant during the acquisition. Since this approach
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results in an under-constrained set of equations (see next
section), the solution is mostly obtained in the least square
framework, thus each measurement corresponds to a local
fit over a small (usually square) region, known as a block.
The resulting algorithm is clearly nonlinear because the
intensities at the inspected points (of the image to be com-
pared) depend on the displacement components, thus a
Newton-like algorithm (e.g. Levenberg-Marquardt) has to
be used.

Although some authors have proposed the use of DIC for
residual stress measurement [22–29], Digital Image Corre-
lation is not the best optical technique to be coupled with
hole drilling for residual stress measurement: indeed, due to
the least square approach, the standard deviation of the mea-
sured displacement components depends on the square root
of the number of points involved in the comparison; in pres-
ence of gradients (i.e. near the hole boundary, where most of
the signal related to the drilling is located) the block must be
small to enable the measurement to follow the fast variation
of the signal. Thus the standard deviation of displacements
is quite large; moreover the number of independent mea-
surements (to be used by the reverse calibration algorithm
to estimate residual stress) is relatively small when com-
pared to interferometric techniques and each of them is
somewhat biased [30] because the shape functions usually
employed by standard codes are unable to correctly describe
the residual-stress-related displacement field.

Better results can be obtained on moving from the
“local” approach (i.e. using completely disjoined blocks) to
a “global” DIC approach [31]. In this formulation, the dis-
placement field is described using a mesh, thus involving a
formalism identical to that used in the Finite Element field.
The algorithm tries to optimize the displacement of nodes
(which by themselves control the displacements inside the

elements via the shape functions); thus minimization affects
the full active area of the image (i.e. the region covered
by elements) at the same time. In other words, since nodes
are shared by adjacent elements, this approach results in a
global minimization. Although the uncertainty of displace-
ment is smaller when using the global formulation [32], the
aforementioned problem regarding the number of pixels per
block (element) is still present (even though it is less seri-
ous) thus making it difficult to follow large gradients in
any case. Figure 1 shows the measured εxx field (selected
because it better visualizes potential inhomogeneity) in an
experimental hole drilling test. The analysis was performed
using a global code; the results are generally correct, but
a more detailed inspection shows that a) at a low residual
stress level, a large part of the signal is located in a rela-
tively small area, i.e. near the border of the hole (where the
ements are smaller); b) it is possible to detect some errors
near the border of the hole, thus confirming the previous
discussion.

Integrated DIC (iDIC) was first proposed by Roux and
Hild [33] and its first application to residual stress is the
work of Gao and Shang [22]. It formally does not dif-
fer from a standard local DIC approach, but deserves a
special acronym because of a single, but significant, mod-
ification: instead of using general-purpose shape functions
to describe how the block of pixels moves and deforms,
it uses problem-specific shape functions (i.e. the expected
behavior of the problem to be studied is directly included
in the formulation). This allows us to overcome the diffi-
culties shown by all general-purpose codes in presence of
large gradients: indeed, by integrating the expected behav-
ior of the specimen inside the shape functions, the problem
of biased measurements is completely sidestepped and there
is no need for partitioning the domain into sub-regions, thus

Fig. 1 Residual stress analysis using a global-DIC code; experimental data, εxx field (Material of specimen is AISI 304, thus Young’s modulus
is about 200 GPa, whereas hole diameter and thickness are respectively 4 and 5 mm). Left: σy = 6 MPa, right: σy = 60 MPa. Note the noise
near the hole, clearly visible in the 6 MPa case, but detectable also in the 60 MPa case. Note also that even for a stress value as low as 6 MPa, the
stress-related strain pattern can still be recognized
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a huge number of pixels can be used for the analysis and
the problem of the large standard deviation of displace-
ments is completely solved. Moreover, the fitting algorithm
directly involves the stress components related to residual
stresses, thus allowing a direct measurement without any
post-processing (i.e. the code is significantly simpler than
coupling a standard DIC code with a-posteriori residual
stress fitting).

This article is organized as follows: in the next section
the general DIC formalism will be sketched and the modifi-
cations required to integrate the residual-stress-related dis-
placement field in the formulation will be presented. Then
the proposed formulation will be validated using numer-
ical generated images (Section “Numerical Validation”)
and experimental tests (Section “Experimental Validation”).
Section iDIC Vs Interferometric Analysis compares the
performance of iDIC with respect to speckle interferom-
etry, whereas some potential issues and the modification
required to avoid them are discussed in Section “Discus-
sion”. Finally, Section “Conclusions” presents some conclu-
sions.

i-DIC

The basic assumption of Digital Image Correlation is the
constancy in time of the intensity of each point of the
imaged object [34], i.e.

I (x, y, t) = I (x + ux, y + uy, t + �t) (1)

where (x + ux, y + uy) is the location at time t +�t of the
point which at time t was in (x, y). To satisfy this hypothe-
sis, some constraints on the illumination and characteristics
of the imaged surface have to be satisfied [35]—in short, the
illumination should be isotropic and constant in time and the
surface should present a non-periodic pattern—which can
easily be fulfilled with careful design of the experimental
setup.

Assuming the displacements to be small, the second
member of equation (1) can be expanded in Taylor series
truncated to the first order to obtain, after some easy
mathematical manipulations, the well-known optical flow
equation:

∂I

∂x
Vx + ∂I

∂y
Vy + ∂I

∂t
= 0 (2)

where Vx and Vy are the x and y components of velocity.
Equation (2) involves two unknowns, thus it is not pos-

sible to estimate the displacement field unless an auxiliary
constraint is added to the formulation. Several solutions
have been suggested to solve the so-called aperture prob-
lem, e.g. the local regularization constraint of Horn and
Schunck [36], or the combined Local and Global approach

of Bruhn et al. [37], but the most known approach to this
problem is probably the Lucas and Kanade (LK) formu-
lation [38], which minimizes, in the least square sense,
an error function on patches of pixels under the assump-
tion of an affine displacement model for the motion. The
LK approach allows development of general-purpose codes
either by following the displacement of each point inde-
pendently (i.e. analyzing a block of pixels centered at the
inspection point) or by writing a global function as previ-
ously described.

The most frequently used error functions are the Correla-
tion

χ2
CC(i0, j0, u, v)=1−

∑
k

∑
l I (k, l) J (k+ux, l+uy)

√∑
k

∑
l I

2(k, l)

√∑
k

∑
l J

2(k+ux, l+uy)

and the Least Square Difference

χ2
LSD(i0, j0, ux, uy)=

∑

k

∑

l

[I (k, l)−J (k + ux, l+uy)]2

where i0 and j0 are the coordinates of the pixel where the
measurement is performed, ux and uy the X and Y displace-
ment components to be measured, k and l range over the
rows (columns) of the block centered at (i0, j0) (or over the
pixel inside the mesh, in the global case) and finally I and
J are the intensities of the reference and target images (i.e.
the images of the specimen before and after motion).

To fit J to I, the error function has to be minimized; this
involves estimating the derivatives of χ2 with respect to the
parameters that control the displacement (i.e. the parameters
of the shape functions) and setting them to zero. The result-
ing solution system Ax = b can easily be estimated, with
A = ∑

i hihT
i , the known terms vector b = ∑

i (Ii − Ji)hi

and the vector hi depending on the derivatives of the image
intensity at the inspected points1 i.

In the previously discussed formulation, the intensity of
the test image was expanded in Taylor series. However,
it is also possible to expand in series the intensity of the
reference image I (or both [39]). The resulting algorithms
converge to the same result, but are quite different from
the implementation standpoint: indeed, since the reference
image does not change in time, the latter solution allows
somewhat faster execution of the iterative loop, because
intensity derivatives can be evaluated before entering the
main body of the procedure. However, the improvement
is not so significant because a) the most computationally
intensive step of the algorithm is the intensity interpola-
tion, which has to be performed in any case; b) the total

1To simplify notation, a single index was used to address pixel coor-
dinates. This is not a problem providing that we select a row/column
ordering, e.g. i = kw + l (row-major order), or i = k + hl (column-
major order), where k and l are the row and column indexes and w and
h are the width and height of the image.
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number of iterations is somewhat larger due to the constant
derivatives.

Note that the solution system appears to be linear, but
this is not the case. Indeed, both J and its derivatives with
respect to the x and y axes appearing in hi depend on the
unknown displacements (which control where these quan-
tities must be evaluated); thus, to achieve a solution, a
nonlinear iterative approach is required.

As previously noted, general-purpose codes use linear
(sometimes parabolic) shape functions [34]:

ux = p0 + (1 + p1)ξ + p2η +
[
p3ξ

2 + p4ξη + p5η
2
]

(3)

uy = q0 + q1ξ + (1 + q2)η +
[
q3η

2 + q4ξη + q5ξ
2
]

(4)

where ξ and η are the coordinates of a local system with the
origin at (i0, j0) and the pi and qi are the unknown param-
eters; thus, the mapping can be assumed to correctly follow
the real behavior only locally and several fits (elements)
have to be performed to describe complex fields. This is
not the case in iDIC: since it targets a well-defined prob-
lem, specific shape functions can be used to describe the
displacement field globally. Thus, there is no need to per-
form several local measurements and a truly-global solution
is obtained.

To convert the above-sketched general framework to an
iDIC approach, we have to replace the generic displace-
ment functions with residual-stress specific shape functions;
in fact, the displacement field induced around a hole by
residual stress relaxation is well known:

ur = A
(
σx + σy

) + B
[(

σx − σy

)
cos(2θ) + 2τxy sin(2θ)

]

(4a)

uθ = C
[(

σx − σy

)
sin(2θ) − τxy cos(2θ)

]
(4b)

uz = F
(
σx + σy

) + G
[(

σx − σy

)
cos(2θ) + 2τxy sin(2θ)

]

(4c)

where the A, B, C, F and G coefficients can be esti-
mated using Finite Element computations [10], or from the
theoretical solution given by Nelson et al. [3]:

A = r0

2E
(1 + ν)ρ B = r0

2E

[
4ρ − (1 + ν)ρ3

]

C = − r0

2E

[
2(1 − ν)ρ + (1 + ν)ρ3

]
F = 0

G = νt

E
ρ2 (5)

where ρ is the ratio of the hole radius r0 and the distance of
the current point from the center of the hole (0 ≤ ρ ≤ 1),
E is the Young modulus, ν the Poisson ratio, t the thickness
of the plate, r, θ and z the coordinate of the point in a cylin-
drical reference system and σx , σy and τxy the (orthogonal)
stress components.

The in-plane displacement components (equations (4a)
and (4b)) can easily be projected in the x and y directions
using a standard rotation matrix to finally obtain the sought
for shape functions:

ux(x, y, σx, σy, τxy) = u0 + Puσx + Quσy + Ruτxy (6a)

uy(x, y, σx, σy, τxy) = v0 + Pvσx + Qvσy + Rvτxy (6b)

where Pu, Qu and Ru (Pv , Qv and Rv) are calibration coef-
ficients depending on point location, material properties and
hole geometry:

Pu = [A + (B + C) cos(2θ) − C] cos(θ)

Qu = [A − B cos(2θ)] cos(θ) + C sin(2θ) sin(θ)

Ru = +2 [(B + C) cos(2θ) + B] sin(θ)

Pv = [A + (B + C) cos(2θ) + C] sin(θ)

Qv = [A − (B + C) cos(2θ) − C] sin(θ)

Rv = −2 [(B + C) cos(2θ) − B] cos(θ) (7)

Note that equations (6a) and (6b) include two parameters
(respectively u0 and v0) to account for rigid body motion of
the specimen during testing.

Once the shape functions (6) are known, the develop-
ment of the algorithm exactly follows the standard LK
formulation; the normal equation solution matrix and the
known-terms vector can be estimated as explained above,
providing we write

hi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Ji

∂ξ
∂Ji

∂η

Pu

∂Ji

∂ξ
+ Pv

∂Ji

∂η

Qu

∂Ji

∂ξ
+ Qv

∂Ji

∂η

Ru

∂Ji

∂ξ
+ Rv

∂Ji

∂η

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8)

where, similarly to equation (3), ξ and η are local variables
in the reference system located in the reference image (dξ =
dx, dη = dy) and we have omitted the dependency of the
calibration coefficients Pu, . . . , Rv on point i.

Validation

Validating a residual stress measurement algorithm is not
easy. It would require performing the measurement on a
specimen with known residual stresses (i.e. knowing the
complete history of its technological treatments). Thus I
opted for a two-step approach, first using numerically gen-
erated images, then performing a semi-experimental vali-
dation, i.e. an experimental campaign employing externally
applied loads after residual stress relaxation.
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Fig. 2 Example of a simulated
speckle field. Left: undeformed
speckle field; right: after stress
relaxation. To make the
stress-induced displacement
field apparent, unrealistic
material parameters were used
for the generation.
(σx = 100 MPa, σy = 50 MPa,
τxy = 20 MPa, E = 1000 MPa,
ν = 0.3. Pixel size: 8 μm)

Numerical Validation

It is well known [40, 41] that generating images for DIC
testing is not easy due to the sensitivity of the algorithm
to errors induced by polynomial interpolation. To solve
this problem I followed an analytical approach: the speckle
field was described as the summation of several bell-shaped
functions, randomly “sprayed” on the surface:

B(r) =
{

s
[
1 − (r/a)2]3

r ≤ a

0 elsewhere
(9)

where a is the radius of the speckle, s is a scale factor
(0 < s ≤ 1) and r is the radius from the center of the blob.
Consequently, the intensity distribution is a continuous,
known, analytical function resulting from the summation
of all the B functions. Generating an image requires sam-
pling the field on a grid of points and mapping (through
the residual stress displacement field) the estimated intensi-
ties to the destination image [42]. This procedure is highly
computation-intensive because each pixel has to be super-
sampled; moreover, each intensity estimation requires deter-
mining the list of the bell-shaped functions involved in the
computation. However, by construction this procedure does
not introduce any distortion in the speckle field. Figure 2
shows an example of the generated images before and after
stress relaxation. To make the tress-induced displacement
field apparent,2 unrealistic parameters were used (in partic-
ular the Young modulus is about two orders of magnitude
smaller than the typical values for metals). By examining
specific speckle patterns it is quite easy to detect how the
specimen deforms under loading.

Figure 3 shows the results of the validation analy-
sis (performed using steel-compatible parameters: E =
2The maximum displacement of the set of images used in the val-
idation is about one pixel, which makes it impossible to detect the
differences by the naked eye.

208 GPa, ν = 0.3): a monoaxial (σ1 = 200 MPa)
stress field was rotated using ten-degree steps starting
from 0 up to 90◦. After analyzing each of the synthe-
sized images with the proposed algorithm, results were
graphed as a function of the loading angle. The figure
clearly shows the accuracy of the proposed algorithm:
indeed, the estimated stress components (the square, circu-
lar and triangular markers, used respectively for σx , σy and
τxy) exactly follow the theoretical behavior (the continu-
ous line), the errors being smaller than 1 MPa. It should
be noted that the algorithm is robust against noise: to sim-
ulate realistic data, the lower three bits of the image data
were perturbed by adding uniform white noise, but the
large number of pixels involved in the computation (∼
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Fig. 3 iDIC reliability test (synthetic images). Applied stress is
always the same (200 MPa), but using a different orientation (from 0
to π/2 by π/18 (10◦) steps)
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3 MPixel) makes the algorithm apparently insensitive to this
perturbation.

Figure 4 confirms the robustness of the iDIC approach:
a set of monodimensional residual stress images were syn-
thesized starting from 10 up to 800 MPa (Young’s modulus:
70 GPa, Poisson’s ratio: 0.3, hole radius: 3 mm, quantiza-
tion: 12 bit); on observing Fig. 4, it is apparent that iDIC
was able to reliably estimate the residual stress with very
small deviations from the theoretical value. As a compar-
ison, Fig. 5 graphs the absolute errors in residual stress
estimation for iDIC and for the standard approach (i.e. resid-
ual stresses are estimated by reverse calibration using as
input either the u or v displacement field estimated by a stan-
dard DIC code). Even though errors are very small for both
approaches, iDIC is significantly more accurate; moreover,
the error range is clearly correlated with stress level in the
standard approach, while it remains stable in the iDIC case.
Note that the noiseless version of the images was used dur-
ing error estimation, thus Fig. 5 may be viewed as a lower
limit of the errors one should expect during a residual stress
test.

Experimental Validation

As previously noted, experimental validation requires
knowing the expected residual stress values. To this end it
is necessary to completely remove (e.g. by annealing) all
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Fig. 4 iDIC range test: estimated residual stress Vs theoretical values
(Synthetic images). Material parameters: E = 70 GPa, ν = 0.3. Note
that the iDIC code is able to measure from tiny to very large resid-
ual stresses with high accuracy (no modification of the software or
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Fig. 5 Absolute errors in residual stress estimation using iDIC and
the standard approach (i.e. general purpose DIC analysis coupled with
a-posteriori reverse calibration). The noiseless version of the set of
images used for Fig. 4 was employed

stresses eventually induced during the manufacturing of the
specimen and artificially inject known ones. Both points
are somewhat critical because the former may alter the
metallurgical characteristics of the material (e.g. its grain,
the orientation of the fibers), whereas the latter requires
accurately loading the specimen above the yield point, tak-
ing into account work hardening and potential instabilities.
Thus, the induced stress values are usually not so accurate
as we would like them to be. An alternate approach, able
to better control the induced stress level, can be obtained
by locally relaxing the specimen by material removal.
The full procedure can be summarized in the following
steps:

1. drill the hole in the specimen; in this way the residual
stresses eventually present are released;

2. acquire the reference image;
3. apply a known stress state (either by using a load cell

or with strain gauges glued to the specimen far from the
hole);

4. acquire the new image (note that differently from the
previously discussed procedure we are working in the
elastic range);

5. perform the analysis.

This procedure is clearly erroneous because it corresponds
to a tensile test of a plane with a hole. However, there exists
a close relation between the residual stress field around a
hole and the corresponding distribution on an infinite plate
with a hole under tension: in fact, it is possible to obtain one
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Fig. 6 Image of the specimen
used for validating the iDIC code
using tensile induced “residual
stresses”. Left: experimental
setup; right: specimen

from the other by summing (subtracting) the displacement
field of an infinite plane in tension:

u
p
x = σx − νσy

E
x + τxy

2G
y

u
p
y = τxy

2G
x + σy − νσx

E
y (10)

Thus, the problem appears to be solved and the test can
be performed. The proposed procedure has been used in
various works (e.g. Baldi [43], Valentini et al. [16]); in
particular, it gently fits for all interferometric approaches
because the removal of the always present spurious drift,
usually performed by least square fitting a plane to the
phase field, automatically removes the displacement field
(equation (10)). This is not really the case in the pro-
posed iDIC approach: since the displacement field is never
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Fig. 7 Estimated residual stress Vs theoretical values (experimental
data). Note that above 60 MPa (stress at infinity) plasticity starts to
affect results (Yield stress of AISI 304 is 215 MPa at 0.2 % offset)

explicitly computed (we are directly fitting the stress com-
ponents) there is no way to subtract a-posteriori the spurious
displacement field (equation (10)). The only solution for
obtaining a working algorithm is by including the appro-
priate correction factors in the shape function formulation;
following this approach the various calibration coefficients
become

P ′
u = Pu + x

E
Q′

u = Qu − νx

E
R′

u = Ru + y

2G

P ′
v = Pv − νy

E
Q′

v = Qv + y

E
R′

v = Rv + x

2G
(11)

where the prime flags the corrected coefficients.
Figure 6 shows the specimen used to perform experimen-

tal validation of our code: a 4 mm hole was drilled in an
AISI 304 plate (section: 60 × 5 mm). Then the surface was
painted to obtain a random speckle pattern. The specimen
was installed in our testing machine (MTS Landmark 370)
and loaded from 0 to 30 kN using 3 kN steps. It should
be noted that each loading step can be viewed as a com-
pletely independent test since each image (acquired after
loading) was processed against the unloaded case without
any information from the previous analyses. Figure 7 shows
the results of the numerical processing, the square markers
being iDIC estimates, while the continuous line corresponds
to the theoretical value. It is apparent that the iDIC-based
code was able to correctly estimate the stress values even for
very low loading levels.3 The result is even more remarkable
when considering that no previous mechanical characteriza-
tion was performed on the specimen, thus both the Young
modulus and Poisson coefficients are approximate values
(E = 200 GPa, ν = 0.3).

3Note that AISI 304 yields at 215 MPa, thus the deviation from lin-
earity above 60 MPa visible in the graph is due to plasticity starting to
affect the displacement field.
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Fig. 8 Four-point-bending
loading system

iDIC Vs Interferometric Analysis

To asses the accuracy of the proposed methodology, some
experimental tests using both interferometric methods (in-
plane and out-of-plane ESPI) and integrated Digital Image
Correlation were performed. Because of the vibrations
induced by the hydraulic system, it is not possible to use
the servo-hydraulic testing machine employed in the previ-
ous section. Thus I opted for the four-point-bending system
shown in Fig. 8: the loading frame is coupled to the micro-
metric loading screw by means of a spherical joint, thus
(small) misalignments of the specimen will be automatically
compensated; moreover, the fixed frame is mounted on a
optical class rotating stage to allow alignment of the speci-
men with the plane of the optical beams; finally, the applied
load is monitored by an in-house-built load cell (not visi-
ble in the image) mounted between the fixed frame and the
loading screw.

Figure 9 (left) shows the acquired phase modulo 2π

field using an in-plane-sensitive ESPI setup. The optical
configuration is a standard Leendertz configuration (dual-
illumination-, single-observation-direction method [44])
using a (symmetrical) illumination angle of about 18
degrees. A strain gauge was glued to the back side of the
specimen to directly measure the stress level in the cen-
tral area. The four-point bending configuration ensures a
constant stress state in the region between the inner con-
straint, thus the above-described correction (equation (10))
applies. Figure 9 (right) shows the phase field after removal
of the linear displacement component (note that the phase-
unwrapped data were re-wrapped to simplify comparison).

Although a low sensitivity configuration was used, I had to
low-pass-filter the raw data to allow the unwrapping algo-
rithm to work correctly due to the incipient decorrelation at
the boundaries; thus the upper limit of the measuring range
of the experimental technique is quite near the current stress
value (100 MPa).4

Figure 10 (left) shows the wrapped phase field related to
an out-of-plane ESPI experiment. The data analysis, apart
from the higher quality of the fringes due to the smooth
reference used in this optical configuration, shows an exper-
imental problem not easily detectable in the previous exper-
iment: indeed, even though the specimen is relatively thick,5

it behaves like a plate, as is highlighted by the anticlastic
shape it assumes under bending (see Fig. 11). The stress
concentration factor around a hole of a plate in bending
depends on the ratio of the hole radius to the plate thickness
with an asymptotic value of about 1.8 (assuming ν = 1/3)
[45]. This means that

– the displacement field around the hole is significantly
different from the assumed plane-strain model; this is
particularly significant in the orthogonal direction with
respect to the bending plane (the regions around the

4It should be noted that decorrelation is induced by both the large in-
plane motion and by large rotation of the normal to surface caused
by the externally applied bending load. No decorrelation occurs in the
area near the hole, thus the measurement range of a true residual stress
measurement is significantly larger.
5To reduce decorrelation problems in the in-plane ESPI test the speci-
men was made of steel (high Young’s modulus) and is relatively thick
(section is 25 × 3 mm).
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Fig. 9 Residual stress
measurement using in-plane
sensitive ESPI. Left: acquired
phase modulo 2π field; right:
the same data after removal of
the interpolating plane

top and bottom of the hole in our case). Since σy (in
current loading configuration) is mainly affected by dis-
placements in these areas, its value will be incorrectly
identified by both the interferometric and the digital
correlation methods;

– the linear correction described in the previous section
takes into account in-plane motion; the out-of-plane
component compensation requires using a parabolic
term both in the vertical and horizontal directions.

Figure 10 (right) shows the re-wrapped phase field after
correction: a fast review of literature [3, 20, 21] shows that
it is qualitatively correct even though it is affected by the
aforementioned problem.

Figure 12 compares the σx measurements when esti-
mated using iDIC, in-plane ESPI and out-of-plane ESPI: all
three experimental approaches are very accurate, the largest
error being about 2 MPa. iDIC errors are generally better
than those of out-of-plane ESPI and comparable with those
of in-plane ESPI. It should be noted that if comparison is
performed on the σy , errors are very large due to the problem
discussed above: in-plane ESPI is the most affected opti-
cal configuration because it estimates the influence of σy

indirectly (through the effect of transversal contraction on X
displacements); out-of-plane ESPI benefits from its mixed
(in-plane and out-of-plane) sensitivity; finally, iDIC is sig-
nificantly less erroneous, probably because it fits both X and
Y displacements.

Discussion

The numerical and experimental validations of the previ-
ous section show that the proposed iDIC approach allows
measurement of residual stress values with high reliability
and accuracy. However, some details must be pointed out:

– From a practical viewpoint, the proposed experimen-
tal procedure cannot be performed as described. In fact,
the calibration coefficients (equation (7)) depend on
the relative position of the point where the coefficients
Pu . . . Rv are estimated with respect to the center of
the hole. Although in the previously described vali-
dation the specimen was drilled before acquisition of
the reference image, in a true residual stress measure-
ment the hole is drilled after acquisition of the reference
image, thus it is not possible to correctly locate the
center of the hole in the reference image. However,
the problem can easily be solved by swapping the role
of the reference and test images: in this case the hole
exists, thus center and radius are known and the cal-
ibration coefficients can be estimated. The previously
described procedure can be performed with no modifi-
cation, except for a post -processing step for reversing
the sign of the resulting residual stresses.

– As previously noted, DIC codes use a Newton-like iter-
ative procedure to estimate displacements. This class
of algorithms requires a starting point, which should

Fig. 10 Residual stress
measurement using out-of-plane
sensitive ESPI. Left: acquired
phase modulo 2π field; right:
the same data after removal of
the anticlastic displacement field
(Illumination angle: ∼ 63.5◦)



388 Exp Mech (2014) 54:379–391

Fig. 11 Residual stress measurement using out-of-plane sensitive
ESPI: unwrapped phase field. Taking into account that the sensitiv-
ity vector is mostly in the out-of-plane direction, it is apparent that
the specimen undergoes an anticlastic deformation under bending, i.e.
it behaves like a plate. Note the small unwrapping errors at the right
boundary of the image

be near enough to the one sought; thus a simpler,
less accurate, pre-processing step is usually executed
using a matching-block algorithm (without taking into
account deformations) or by the digital equivalent of
speckle photography (FFT algorithm).6 However, sev-
eral empirical tests performed on synthetic images with
random stress fields showed that this is not the case with
the proposed iDIC algorithm, providing that rigid body
motion has been correctly estimated. Indeed, even for a
residual stress value as large as 800 MPa, the iDIC code
converges to the correct value starting from σx = 0,
σy = 0, τxy = 0 (see Fig. 4). Thus, no preliminary
estimate is required for the stress values. On the con-
trary, a modest error in the rigid body displacements
makes it difficult to obtain convergence to the correct
values. The solution to this problem is a pre-processing
step to measure rigid body motion: actually the sim-
ple estimation of the displacements of the four corners
of the active area, performed using a matching-block
algorithm (without taking into account deformations),
suffices to provide an estimate accurate enough to
achieve convergence. Note that both the complexity and
computational loads added by this pre-processing step
are completely negligible.

– The proposed algorithm is potentially usable in
an industrial environment (it needs only portable
instrumentation that allows repositioning of the camera

6An alternate solution uses a pyramidal approach, i.e. the reference
and test images are repeatedly compressed using a Laplacian filter to
construct two pyramids of images. An optical flow analysis is executed
for each level of the image stack, using the previous estimate as the
starting point of the successive, more accurate, computation.

and/or drilling system). If this is the case, it is quite
probable that the previously summarized requirements
regarding specimen illumination will not be fulfilled. A
partial solution can be obtained by including a global
scale factor and a global offset of the intensities in the
error functional [46]. Using this approach, the sum of
the square differences error function becomes

χ2
LSD =

∑

k

∑

l

{
[αI (k, l)+β] − J (k + ux, l + uy)

}2

where α scales the intensities of the reference image
and β adds a global offset. Using this approach, both
images are modified: the intensities of reference image
I are (globally) scaled and shifted respectively by α and
β, whereas the test image J is moved and deformed by
the displacement field. From a formal viewpoint, the
solution system gains two rows and two columns (it
becomes a 7 × 7 square matrix); indeed, assuming the
rows (and columns) related to α and β to be respectively
the first and second, hi becomes:

hi =

⎧
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Fig. 12 ESPI Vs iDIC: accuracy comparison. Results of the iDIC
method are comparable to those of the interferometric methods. Note
that absolute errors are very low for all three experimental methodolo-
gies, the largest error being about 2 MPa for the out-of-plane ESPI at
70 MPa (Note that the scale used to plot errors is ten times larger than
the one used for stress values)
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whereas b = −∑
i Jihi .

– The formulation can be further refined by taking into
account the rigid body rotation ω around the center of
the hole (i.e. by writing u = u0 + ω × r). With this
approach, the shape functions (equation 6) become:

ux = u0 − ωη + Puσx + Quσy + Ruτxy (13a)

uy = v0 + ωξ + Pvσx + Qvσy + Rvτxy (13b)

and the new term (related to the ω degree of freedom)

∂Ji

∂ξ
η + ∂Ji

∂η
ξ (14)

has to be inserted in the hi vector given above (equa-
tion (12); note that the ξ and η coordinates appearing in
equation (14) must be related to a local reference sys-
tem with the origin located at the center of the hole).
However, the estimated ω was very small in all tests
that we performed and no significant variation of the
results was observed, thus the inclusion of the rigid-
body-rotation degree of freedom in the formulation is
not strictly required.

– It is well known that polynomial interpolation signifi-
cantly affects the accuracy of DIC codes [40, 47–49].
This is also the case with the proposed formulation,
with a significant difference: all the related articles in
literature flag the B-Spline cubic approximant as the
best cubic polynomial. Actually, an empirical compari-
son performed employing some of the most commonly
used polynomials7 shows that between the cubic poly-
nomial the best accuracy is obtained by the Lagrangian
interpolant; moreover, using a quintic polynomial pro-
vides no significant improvement.

– Throughout this article reference has consistently been
made to the theoretical coefficients related to the hole
through case (equation (5)); however, this is in no way
required by the proposed approach: it is well known
that in the blind-hole case the displacement field can
still be written using equations (4a)–(4c), provided we
use a set of A . . . G coefficients related to the specific
hole geometry: using Finite-Element-estimated calibra-
tion coefficients [50, 51], iDIC is able to measure
residual stress in the blind hole configuration (and give
the correct estimate for σy in the previously discussed
cases).

– Although it has not been discussed, it is quite easy to
formulate the iDIC algorithm (equations (6a)–(7)) in
terms of P = (σx + σy), Q = (σx − σy) and τxy .
However, empirical tests show no significant difference

7Bilinear, cubic interpolant, cubic and quintic Lagrangian interpolant,
cubic and quintic B-spline approximant.

between the two approaches: results of the two formu-
lations agree within the limit of the numerical tolerance
used in the iterative loop.

Conclusions

In this work an integrated DIC approach for residual stress
measurement is analyzed. The hole-drilling-related dis-
placement field is well known, thus it is possible to replace
the standard shape functions of the block with specific
functions, obviously augmented by a rigid translation com-
ponent and (optionally) illumination parameters and rigid
body rotation to account for rigid body motion during
drilling and potential drift of the illumination. Sampling of
multiple locations to follow the data is no longer required
and the full image constitutes a single patch whose defor-
mation is controlled by five (eight) parameters: the three
residual stress components, the two in-plane rigid transla-
tions and optionally the intensity compensation coefficients
and rigid body rotation. Since the uncertainty of the method
directly depends on the number of pixels involved in eval-
uation of the error function, this approach results as being
quite effective and allows replacement of interferometric
techniques with Digital Image Correlation. The advantages
are significant: DIC does not require coherent illumination
and is much more robust against vibrations, thus making
possible the use of optical methods in industrial environ-
ments. Computation time is very short: a complete analysis
of a 2048×2048 image requires only a few seconds, a large
fraction of which is required to pre-compute the calibration
coefficients.

A final note: it is worth noting that DIC sensitivity is
always measured in pixels and is always the same (about
1/100 of a pixel) irrespective of the real pixel size. This
is completely different from the case of interferometric
techniques, where sensitivity is mainly controlled by the
wavelength of the light source. From a practical viewpoint
this means that it is possible to tune sensitivity by select-
ing the magnification of the telecentric lens and vice versa
(i.e. it is possible to adjust the hole diameter to the optic);
moreover, it is possible to perform measurements also at
microscale, providing there is a suitable imaging system and
a random speckle pattern.
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