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Abstract A method of determining both uniaxial tension
and compression stress-strain curves from the result of a sin-
gle four-point bending test was demonstrated. Stress-strain
curves of magnesium showing tension-compression asym-
metry due to twinning deformation and those of an S45C steel
due to the Bauschinger effect were calculated. The Mayville-
Finnie equation was modified slightly for this calcula-
tion. The calculation is sensitive to small change in the
slope of bending curve, revealing an aspect of inverse
problem.

Keywords Inverse problem · Four-point bending ·
Stress-strain curve · Twinning · Bauschinger effect

An inverse problem in elasto-plastic bending of a material
may be to determine uniaxial stress-strain (s-s) curve of the
material. This classical subject was discussed by Nadai [1].
Later, Mayville and Finnie studied this problem and derived
a formula [2]. Despite the potential of the formula and also
the usefulness of bending test, very few application has been
found.

Let us consider four-point bending of a prismatic bar
(Fig. 1). The bar is simply supported at points A and B,
and a load P/2 is subjected at points C and D equally.
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Pure bending with the radius of curvature ρ occurs between
C and D, where a constant bending moment of M = Pd/2
is subjected. The bending strains of the outermost surfaces
ε1 (compression) and ε2 (tension) are measured with two
pieces of strain gauge. Accordingly, two curves of bending
load vs. bending strain relation (P-ε curves) are obtained:
ε1 = ε1(P ) and ε2 = ε2(P ). The bar has a constant rectan-
gular cross section, where a local y coordinate is taken as in
Fig 2. Yield stress in compression is Y1 and in tension Y2.
A neutral axis NN is located at y = y0. When s-s curves
are asymmetric between tension and compression, the neu-
tral axis is away from the centroid axis at y = h/2 while
bending.

A P-ε curve can be derived readily from the exact shape
of s-s curve, if it is known. This is a forward problem
in bending. For example, a material with an ideal elastic-
perfect plastic s-s behavior illustrated in Fig. 3(a) shows
P-ε curves of Fig. 3(b). The calculation was carried out by
assuming that the modulus of elasticity E was 100 GPa,
the yield stresses Y1 in compression, 100 MPa, Y2 in ten-
sion, 200 MPa, and the dimensions, b=5 mm, h=1 mm,
d=10 mm. Properties of P-ε curves listed below are com-
mon to any elasto-plastic material for Y1 < Y2:

(i) The linear relationship in elastic bending is given by

P = bh2E

3d
ε. (1)

(ii) When the compression side starts yielding, tension
and compression curves branch off from the linear
relationship at a point where the load is P1 and the
strain is ε1 = Y1/E. Hence, P1 = bh2Y1/(3d).

(iii) When the tension side starts yielding, the two curves
change the slopes at a point where the load is P2 and
the strain is ε2 = Y2/E.
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Fig. 1 Four-point bending of a simply supported bar with two pieces
of strain gauge glued on the outermost surfaces

The inverse problem is to determine s-s curves from the
result of bending. Without solving the problem, we can
determine the values of E, Y1 and Y2 from P-ε curves. Let
us start from the P-ε curves of Fig. 3(b). The slope of lin-
ear relationship determines E as 100GPa from equation (1).
The first and second deflection point are found at 0.1 % and
0.2 % strain, so that Y1 and Y2 are determined as 100MPa
and 200MPa, respectively. However, the deflection under
the load P2 might be difficult to determine by eyes.

The fiber stresses σ1 and σ2 in Fig. 2 are yet to be
determined. The strains on the outermost surfaces are

ε1 = y0

ρ
and ε2 = h − y0

ρ
, (2)

and then the curvature is given by

1

ρ
= ε1 + ε2

h
. (3)

The equilibrium of the bending stress and that of the bend-
ing moment acting on cross sectional area A (see Fig. 2) are

∫
A

σdA = 0 and
∫

A

σ ȳdA = M, (4)
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Fig. 3 An elastic-perfect plastic stress-strain curve, (a), and bending
load-strain curves, (b)

where ȳ is the distance from the neutral axis, such that ȳ =
y−y0. Reminding ε = ȳ/ρ and using equations (2) and (3),

b

∫ h−y0

−y0

σdȳ = bρ

∫ ε2

−ε1

σdε = 0, and b

∫ h−y0

−y0

σ ȳdȳ

= bρ2
∫ ε2

−ε1

σεdε = M. (5)

Calculus of the first variation gives

σ1δε1 = 1

bh2
(2M(δε1 + δε2) + (ε1 + ε2)δM), (6)

σ2δε2 = 1

bh2
(2M(δε1 + δε2) + (ε1 + ε2)δM), (7)

which are equal to the expressions derived by Mayville
and Finnie in [2]. In these incremental forms the causal

Fig. 2 The cross sectional area
A of a bar (left) with distribution
of bending stress as depending
on the distance from neutral axis
NN (right)
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relationship between bending curves and calculated s-s
curves is not easy to grasp. In fact, P-ε curves were not
considered in the previous study.

Present study transforms the incremental equations into
a set of ordinary differential equations. Since the strains
ε1 and ε2 are functions of the single variable of load P, the
stresses are also the case. If we divide both sides of the for-
mulas by an infinitesimally small δP and take δP → 0,
we can replace the incremental terms by compliances of P-ε
curves defined as

dε1

dP
= C1 and

dε2

dP
= C2. (8)

Finally, equations (6) and (7) become

σ1 = d

bh2C1

(
P(C1 + C2) + ε1 + ε2

2

)
, (9)

σ2 = d

bh2C2

(
P(C1 + C2) + ε1 + ε2

2

)
, (10)

which can be solved as the simultaneous equations with
the curves ε1 = ε1(P ) and ε2 = ε2(P ). In elastic range
the formulas become well-known one in elastic bending
σ = 3Pd/(bh2), which is equivalent to equation (1).

In experiments, narrow bars were prepared from a sheet
of 99.8 % magnesium and that of S45C. The width and

strain, ε  (%)

0 1 2 3

0

50

100

10 1.5

tension compression

compression

tension

0.5

Lo
ad

, P
 (

N
)

Mg

1P

1Y

150

50

0

100

st
re

ss
, σ

  (
M

P
a)

200

(a)

(b)

uniaxial test

bending test

Fig. 4 Bending load-strain curves measured in a magnesium bar, (a),
and calculated stress-strain curves, (b)

thickness was 5.0 mm and 2.2 mm, respectively. The spec-
imens were annealed in order to remove their processing
histories. In Fig. 1, the span AB and CD was 45 mm
and 20 mm, respectively, and thus d = 12.5 mm. Uni-
axial push-pull tests were also carried out for specimens
of 6 mm in gauge with a hydrofluoric Shimadzu Ser-
vopulser EHF machine. Owing to large flexure of thin plate
samples, present bending test was limited below 1.5 %
strain.

P-ε curves of a magnesium bar are shown in Fig. 4(a).
The curve began with elastic bending, and then showed a
marked deflection at a point under the load P1 = 27 N,
which gives E=43 GPa from equation (1). The strain at this
point ε1 was 0.08 %. Then the yield stress Y1 is estimated as
34 MPa. These values agree with those in literatures [3]. As
the load was increased above P1, the strain in compression
became larger than that in tension for a given load P.

The s-s curves calculated from equation (9) and (10) are
shown as solid lines in Fig. 4(b), while the results of uni-
axial tension and compression testing as dotted lines. The
flow stress of the calculated curves agrees well with that
of measured one. It is known that magnesium is plastically
deformable at room temperature due to the mixture of slip
and twinning, and that the asymmetry is a typical nature of
twining in hexagonal metals and alloys [3].
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Fig. 5 Bending load-strain curves measured in two S45C bars, (a),
and calculated stress-strain curves, (b). Curves (I) were obtained in a
bar with no prestrain and Curves (II) with 2.3 % prestrain
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P-ε curves measured in S45C steel bars are shown in
Fig. 5(a). An annealed S45C is known to show yield point
elongation (YPE) followed by strain-hardening, which can
exhibit pronounced Bauschinger effect. Curves (I) were
measured in an as-annealed specimen to observe YPE, while
curves (II) were in a specimen with 2.3 % pre-strain to
observe the Bauschinger effect. As expected, the bending
curves (I) were equal between tension and compression, but
the curves (II) were well-separated between them.

The s-s curves calculated from the P-ε curves (I) and
(II) are shown in Fig. 5(b). The dotted line was obtained
by uniaxial testing when giving the pre-strain. The cal-
culated curves (I) agreed well with the YPE in measured
curve. A yield drop was revealed in the calculated curves.
A Bauschinger effect was clearly observed in the s-s curve
(II) in compression, where the yielding at Y1 corresponds
to the load P1 in P-ε curve (II). It is reasonable that the
yield stress in tension remains the same as that of the pre-
straining. These results show that this method is very useful
for observing Bauschinger effect.

It is seen that later parts of the calculated curves are
somewhat wavy. Coarse oscillation are seen in Fig. 4(b) and
Fig. 5(b)(I), while fine ones in Fig. 5(b)(II). The oscilla-
tion is not the stress-strain behavior of the material because
the curves are smooth when measured by uniaxial testing.
Experimental data has shown that the oscillation occurred
in the values of C1 and C2. That is, the calculation is sen-
sitive to the derivative of P-ε curves, which means that a
high-order precision is needed in the bending experiment.
This oscillation was not found in the previous study, since

the calculation of s-s curves was carried out in a few points
[2]. Some data processing to smooth the P-ε curves may be
effective to remove oscillation originating from instrumen-
tal errors; however, no data processing is given in the results
of Figs. 4 and 5.

Conclusively, it was demonstrated first that tension-
compression asymmetric s-s curves of pure magnesium and
those of S45C steel are determined from the result of four-
point bending tests. A set of simultaneous equations was
derived from the Mayville-Finnie equations. The calculated
s-s curves showed good agreement with the curves mea-
sured in uniaxial deformation. The calculation was found
to be able to follow closely both yield drop and yield point
elongation in steels. It was pointed out that the bending
test needs a high-order precision to avoid oscillation in
calculated s-s curves.
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