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Abstract This paper presents an effective methodology to
characterize all the constitutive (elastic) parameters of an
orthotropic polymeric foam material (Divinycell H100) in
one single test using Digital Image Correlation (DIC) in
combination with the Virtual Fields Method (VFM). A
modified Arcan fixture is used to induce various loading
conditions ranging from pure shear or axial loading in
tension or compression to bidirectional loading. A numeri-
cal optimization study was performed with different loading
angles of the Arcan test fixture and off-axis angles of the
principal material axes. The objective is to identify the
configuration that gives the minimum sensitivity to noise
and missing data on the specimen edges, which are the two
major issues when identifying the stiffness components
from actual DIC measurements. Two optimized Arcan test
configurations were chosen. The experimental results
obtained for these two optimized test configurations show
a significant improvement of the measurement accuracy
compared with a pure shear load configuration. The larger
sensitivity of the pure shear test to missing data as opposed
to the tensile test is also evident from the experimental data
and confirms the analysis from the optimization study. The
recovery of missing data along the specimen edges is a
promising way to further improve the identification results.

Keywords Full-field measurements . Digital image
correlation . Virtual fields method . Polymeric foam

Introduction

Lightweight sandwich structures are being increasingly used
for a variety of applications including wind turbine blades,
marine and aerospace structures, and applications for gen-
eral transportation purposes. The core materials used in such
sandwich structures are commonly polymer closed cell
foams, such as e.g. PVC, PMI or PET foams. Ideally,
polymer foam core materials are considered as homogenous
isotropic materials. However, in practice most polymer
foams display both heterogeneous and anisotropic material
behaviour due to the density variations and directionality of
foam cells developed during the manufacturing process.
Therefore accurate experimental characterization of the me-
chanical behaviour of polymeric foam materials is essential
for their efficient use in sandwich structures, as well as for
the development of accurate numerical models on the ma-
terial and structural levels. The mechanical behavior of
polymeric foams for simple stress states including uniaxial
tension, compression and shear has been studied extensively
in the literature [1–4]. However, to identify all elastic stiff-
ness parameters, these studies rely on the use of several tests
including uniaxial tension, compression and shear, along
with point-wise or area-wise deformation measurement in-
strumentation like extensometers or strain gauges. More
recent work by Zhang et al. [5] and Taher et al. [6] charac-
terized the H100 Divinycell PVC foam using Digital Image
Correlation (DIC). The results of these two studies show a
good agreement with the datasheet from the manufacturer
[7], and it is further demonstrated that the use of the DIC
technique makes it possible to eliminate the influence of
parasitic effects due to the stiffness difference between the
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extensometer and the foam. However, a significant amount
of time and effort was spent on designing the different test
specimen shapes needed to reach a uniform stress/strain
state in the gauge area. To circumvent this problem, differ-
ent methodologies have been proposed to solve the inverse
problem, which is defined as the identification of a set of
constitutive material parameters from the measurement of
kinematic quantities (displacements, strains, etc.), some load
information and the knowledge of the geometry and bound-
ary conditions. Among these inverse approaches can be
mentioned the finite element model updating technique
[8], the constitutive equation gap method [9], and the Virtual
Fields Method (VFM) [10].

The Virtual Fields Method is an effective test technique
to characterize the material properties directly from full-field
measurements. This method takes advantage of the hetero-
geneous strain fields obtained through full-field measure-
ment techniques, such as Digital Image Correlation (DIC)
[11], speckle pattern interferometry [12] or grid methods
[13], for instance, and uses only one single test to identify
all the material constitutive parameters. The effectiveness of
the method is underlined by the fact that it does not require
the use of iterative direct problem solutions to solve the
inverse problem. Thus, the VFM approach is much less time
consuming than e.g. classical finite element model updating
approaches, and the VFM associated with full-field defor-
mation measurements is becoming widely used for the ex-
traction of constitutive parameters for composites and other
types of materials. However, there have been relatively few
studies concerning polymer foam materials using this tech-
nique. As an illustration, the first attempt at identifying
Poisson’s ratios of standard low-density (homogeneous)
polyurethane foams by using DIC and VFM was only
published recently [14].

One of the most important issues in such inverse proce-
dures is to choose a suitable test configuration. Since the
heterogeneous stress/strain fields play an important role in
the identification procedure, it is very important to have a
test configuration that activates all the sought constitutive
parameters of the materials under investigation (i.e., the
actual stress/strain fields must be sufficiently sensitive to
variations of each of the sought parameters). Optimization
of the test configuration for VFM identification was firstly
proposed by Pierron et al. (2007) [15]. The idea was to find
an optimized specimen length and a material orthotropic axis
angle so as to minimize a cost function based on the sensi-
tivity to noise of the sought material stiffness components.
Recently, a refined test configuration design procedure was
proposed by Rossi and Pierron [16]. The study used the grid
method as the full-field technique and simulated the whole
measurement and identification chain, including image
forming and grid method algorithm. This study provided a
significant improvement of the optimization procedure by

introducing the many different types of error sources into
the cost function. However, this approach was not fully
validated experimentally. Moreover, it used a specific test
fixture, namely the unnotched Iosipescu test as in [15],
and it is important to extend the optimization to other
test configurations and full-field techniques, like DIC.
Also more experimental work needs to be done to vali-
date the optimization study.

This paper presents a methodology developed to identify
all the orthotropic elastic parameters of polymer foams in
one single test using Digital Image Correlation in combina-
tion with the Virtual Fields Method. A modified Arcan
fixture [6, 17] was used to provide loading in different
directions. The loading angle and the off-axis angle of the
material principal direction are used as the two design
variables. Noise and missing data effects are introduced as
the two main error sources to construct the cost function to
optimize the test configuration. After deciding on the opti-
mized test configurations, experimental validation was un-
dertaken on both optimized and poor test configurations.
The results are compared with the reference parameters
obtained using the conventional uniaxial testing procedures.

Test Setup

Test Specimen and Modified Arcan Fixture

The material studied in this paper is the closed-cell cross-
linked Divinycell H100 PVC foam manufactured by DIAB
[7]. All specimens in this study were prepared from one
60 mm panel. It has been shown [5] that this material has
orthotropic/transversely isotropic properties due to the dif-
ferent lengths of the foam cells in the rising (through-thick-
ness) and in-plane directions, respectively, generated in the
manufacturing process. This can also be observed from
microscopic images [5]. Therefore the material principal
axes are defined as the above two directions. A modified
Arcan fixture was used to characterize the constitutive
parameters of the foam. This fixture has been developed
recently to identify orthotropic material parameters [6, 17].
It has an S-shape composed of two arms (shown in Fig. 1).
By connecting different loading holes on the arms, more
complex loading conditions can be introduced compared
with the conventional Arcan fixture. Besides the different
combinations of shear and tensile loads, the modified Arcan
fixture can also introduce compression loading. A previous
study using this modified Arcan fixture provided very reli-
able test results for a PVC foam material [6, 17]. However,
since the PVC foam is orthotropic, the use of multiple tests
to obtain the stiffness parameters is time consuming, as both
through-thickness and in-plane specimens have to be pre-
pared. Furthermore, different specimen shapes are needed to
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ensure a well defined stress/strain state in the gauge area of
the shear, tension and compression test specimens.

In this study there is no need to attempt to obtain
homogeneous stress/strain fields, since DIC combined
with the Virtual Fields Method allows for the identifica-
tion of constitutive parameters from heterogeneous strain
fields. On the contrary, heterogeneity is required for the
simultaneous identification of all stiffness components.
This is very important as it provides much more freedom
to choose loading and boundary conditions as well as
specimen geometry in the mechanical test. Here a small
20×20 mm2 rectangular block was used to induce a
heterogeneous strain field dominated by shear and longi-
tudinal tensile stresses (bending). Compressive stress con-
centrations occur near the ends of the bonded region.
Since this material has different mechanical properties
in the through-thickness (1) and in-plane (2) directions,
all the orthotropic stiffness components should be in-
volved in the full deformation maps of this test. It should
be noted that there is some density variation inside the
foam panel due to the manufacturing process, especially
towards the top and bottom surfaces of the panel. There-
fore the foam specimens with different off-axis angles θ
were cut with high precision using a 3-axis CNC milling
machine from the central part of a thick foam panel so
as to avoid including material from the top and bottom
surfaces. Material direction 1 is the through thickness
direction and material direction 2 is the in plane direc-
tion. After milling, the two sides of specimens perpen-
dicular to the x-axis were bonded to aluminium tabs
using Araldite epoxy adhesive (visible in Fig. 2) and
fixed into the S-shape modified Arcan fixture.

DIC Testing Setup for the Multi-axial Arcan Test

2D digital image correlation was used to capture the defor-
mation of the foam specimens. A random grey scale pattern

was applied onto the specimen surface using spray paint. An
Aramis 4 M system [18] was used to capture a series of
images during deformation and to perform correlation be-
tween the deformed and undeformed images. The basic idea
is to divide each image into many small computational units
called facets or subsets. The displacement was computed at
the centre of each facet by correlating the random speckle
pattern. The strain components can then be obtained by
numerical differentiation. A larger square facet includes a
wider variation in grey levels and reduces the noise in the
results. However, the spatial resolution is reduced when
increasing the facet sizes. Here a particular set-up (Fig. 3)
was used to measure the heterogeneous deformation fields
on the two back-to-back specimen planes.

F

Fig. 1 Modified Arcan fixture with multiaxial loading
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Fig. 2 Schematic of the test

Fig. 3 2D DIC measurement set-up
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Two cameras with a resolution of 2048×2048 pixel2 each
were placed on opposite sides of the specimen to capture the
images on both sides simultaneously. The square shaped
specimen was loaded multi-directionally using the modified
Arcan fixture. The cameras were rotated according to the
loading angle of the specimen so that the displacements and
strains were computed along the global coordinate direction
of the specimen (x and y, see Fig. 2). The advantage of this
set-up is that it enables the elimination of out-of-plane
movements by averaging the measured values from the
two cameras. It can also account for possible through-
thickness gradients of the strain field. This was already
successfully employed in [19]. The detailed performance
of this set-up is reported in Table 1. Resolutions were
evaluated as the standard deviation of the displacement
and strain maps of two consecutive images of the sta-
tionary specimen.

VFM Techniques Applied to the Multi-axial Arcan Test

The basic idea of the VFM is to express the condition of
global equilibrium of the tested specimen using the principle
of virtual work. The principle of virtual work without body
force and in quasi-static situation can be expressed as:Z

V
σ : "*dV ¼

Z
@V

T � u*dS ð1Þ

where ‘:’ denotes the contracted product of the stress tensor
σ and the virtual strain tensor ε*, and ‘.’ denotes the dot

product between the external traction force vector T and the
virtual displacement vector u*. The equation expresses the
condition of global equilibrium between the internal virtual
work over the specimen volume V and the external virtual
work over the boundary surface of V. The only condition on
the vectorial function u* is that it is continuous and

differentiable over the domain V. It is then assumed that
the specimen material (polymer foam) can be described as a
homogeneous, orthotropic and linear elastic solid, and that
the specimen is under a state of plane stress. The constitu-
tive equation of the foam can therefore be written as (in the
material orthotropy axes):

σ1

σ2

σ6

8<
:

9=
; ¼

Q11 Q12 0
Q12 Q22 0
0 0 Q66

2
4

3
5 "1

"2
"6

8<
:

9=
; ð2Þ

where σi, εi, (i01,2,6) are the in-plane stress and strain
components according to the so-called contracted notation
[20], and Qij (i, j01,2,6) are the in-plane stiffness compo-
nents. Substituting the stress components with the actual
strains and constitutive parameters, equation (1) can be
rewritten as:
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where t is the thickness of the specimen. Since the elastic
strain fields are known from the full-field measurement, and
since the resulting force applied to the specimen is known
from the load cell readings, a new set of equations can be
obtained in which only the elastic parameters are unknown
for each new selected virtual field. When choosing at least
as many independent virtual fields as unknowns, all the
parameters can be identified directly by solving the resulting
linear system [10].

For the construction of the virtual fields, piecewise func-
tions were used in this study [10, 21]. This method uses
shape functions Φ(i) which are similar to that employed in
finite element analysis. They express the virtual displace-
ment u* at any points in the solid as a function of the virtual
displacement u*(i) at the nodes of a mesh as demonstrated in
equation (4):

u* ¼
Xn
i¼1

ΦðiÞu�ðiÞ ð4Þ

where n is the number of nodes per element. In the present
study, bilinear shape functions with 4-noded quadrilateral
elements have been used. The shape functions and nodal
displacement in the element are defined as:

Φ : Φð1Þ 0 Φð2Þ 0 Φð3Þ 0 Φð4Þ 0
0 Φð1Þ 0 Φð2Þ 0 Φð3Þ 0 Φð4Þ

� �

ð5Þ

Table 1 The performance report of the DIC set-up

Technique Used Mono image correlation

Subset size 40×40 pixel2

Shift 20 pixel

Camera 8 bit, 2048×2048 ARAMIS 4 M system

Field of view 26 mm×26 mm

Measurement points 5776

Displacement

Spatial resolution 0.51 mm/40 pixel

Resolution 0.14 μm

Strain

Smoothing method Gaussian Average (3×3)

Differentiation method Finite differences

Resolution 1.2×10-4
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The virtual strain component in the elements are obtained
by differentiating equation (4)

"* ¼
Xn
i¼1

SΦðiÞu�ðiÞ ð7Þ

where S is a linear differential operator defined as:

S :
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@
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@
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2
64
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75 ð8Þ

As a potentially infinite number of virtual fields can be
found, an additional criterion was employed to select the
virtual fields optimally and automatically aiming at mini-
mizing noise influence on the identified parameters. The
detailed derivation of this procedure is proposed in the
optimized VFM theory [10]. The basic idea is to assume a
Gaussian white noise added to the actual strain fields. Then
it is proved in [10] that the standard deviation σQij of each

constitutive parameter Qij is directly proportional to the
standard deviation γ of the strain noise:

σQij ¼ gηij ð9Þ
where ɳij describes the sensitivity of each constitutive pa-
rameter to the noise in the VFM identification procedure.
The expression of (ɳij)2 is derived as:
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where S is the measurement area, np is the amount of data
points. By rewriting equation (10), sensitivity to noise
parameters can be expressed as:

ðηijÞ2 ¼
1

2
Y �ðijÞTHY �ðijÞ ð11Þ

where Y*(ij) is a vector with virtual nodal displacements. H is
a square matrix which contains the unknown stiffness
parameters and the formulation of the virtual strain compo-
nent from equation (7). Previous work in [10] has proved
that (ɳij)2 exhibits a unique minimum. So the minimization
of (ɳij)2 will be a criterion to choose the virtual fields Y*(ij).
The Lagrangian L associated with the constrained minimi-
zation problem can be written as:

L ¼¼ 1

2
Y �ðijÞTHY �ðijÞ þ ΛðijÞT ðAY �ðijÞ � ZðijÞÞ ð12Þ

Λ(ij)(AY*(ij)-Z(ij)) defines the constraints of this minimiza-
tion problem. The first constraint is that the virtual field must
be kinematically admissible (mainly continuity conditions).
The second one is that the virtual field must be special so that
stiffness parameters can be obtained directly. Λ(ij) is a vector
containing the Lagrange multipliers. A is the matrix of de-
scribing the constraints. Z(ij) is a vector containing only zeros
except one component which is equal to one. The location of
this nonzero component depends on which stiffness is to be

identified with this particular special field. Four optimized
virtual fields are defined by solving this problem after chang-
ing the position of the 1 in the Z(ij )vector.

The minimization of Lagrangian L is obtained by solving
the following linear system:

H AT

A 0

� �
Y ðijÞ
ðijÞ

� 	
¼ 0

ZðijÞ

� 	
ð13Þ

After obtaining the virtual nodal displacement vector
Y*(ij), the unknown stiffness parameters Qij are required
to determine ηij. The idea here is to give some initial
value of Qij and find a first set of four special opti-
mized virtual fields to provide updated values of Qij. Then
the new Qij parameters are used in the next iteration to
find the new virtual fields, etc. Previous work [10] has
shown that the iterative procedure generally converges
quickly within two loops regardless of the choice of
initial values for the Qij.

In the present study, 4×4016 virtual elements have been
employed here which gives a total of 50 virtual degrees of
freedom. The convergence study indicated that 4×4 element
size was enough to provide stable identification and save
computing time compared with a higher number of virtual
elements. The area S2 where the strains are processed by the
VFM is shown in Fig. 4. It has been moved slightly away
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from the glued specimen boundaries because accurate data
are difficult to obtain close to edges. Also, the fixture
casts some shadow which makes it difficult to obtain
data right to the edge. The ratio between the length W
of the field of view and the specimen length L is 0.95
(see Fig. 4).

Therefore the area of the specimen is divided into
three parts: one area with actual deformation fields
being measured (S2) and two areas without actual strain
field measurements (S1 and S3). By separating the inte-
grals in the principle of virtual work and assuming a
state of plane-stress, equation (3) can be rewritten as
(14):

�
Z
S1

σ : "*dS�
Z
S2

σ : "*dS�
Z
S3

σ : "*dS

þ
Z
@S1

T � u*dl þ
Z
@S2

T � u*dl þ
Z
@S3

T � u*dl ¼ 0

ð14Þ

As a consequence of the above, the virtual displace-
ments on areas S1 and S3 are constrained to be rigid
body-like so that missing experimental data on these two
areas will not appear in the final equation (zero virtual
strain fields cancelling out the virtual work of internal
forces on S1 and S3). Therefore, the terms related to actual
stress σ on areas S1 and S3 should be removed in equation
(14). Since no external force is applied on S2, equation
(14) becomes:

�
Z
S2

σ : "*dSþ
Z
@S3

T � u*dl ¼ 0 ð15Þ

The virtual displacement on S1 is selected to be zero. For
S3, the total force F measured from the load cell can be

divided into two resultant components Fx and Fy by relation
(16).

Fx ¼ F sin a; Fy ¼ F cos a ð16Þ
where α is the loading angle relative to the global coordinate
direction (Fig. 2). Hence the virtual work of the external
forces on S3 can be written as:
Z
@S3

T � u*dl ¼
Z
@S3

f1ðyÞ
f2ðyÞ

� 	
u*1
u*2

� 	
dl ð17Þ

where f1 and f2 are the horizontal and vertical linear force
distribution along the boundaries, respectively. Since only
the resultant force F is measured and the virtual displace-
ment has to be rigid body-like on S3, the horizontal and
vertical virtual displacements on this area are defined as
constants a and b. Therefore, equation (17) transforms into:

Z
@S3

T � u*dl ¼ a
b

� 	 R
@S3

f1ðyÞdyR
@S3

f2ðyÞdy

8><
>:

9>=
>; ð18Þ

Since the resultant is only known in the vertical direction
(direction of F in Fig. 2), a good choice for a and b is:

a ¼ sin a
b ¼ cos a

�
ð19Þ

and the virtual work of external forces reduces to F.
In addition, the continuity conditions of the virtual dis-

placement field lead to the following constraints on the
boundary of S2 when automatically selecting piecewise
optimized virtual fields:

u�ðS2Þ
1
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2 x¼0; yð Þ¼0

�
ð20Þ

u
�ðS2Þ
1 x¼L; yð Þ¼a

u
� S2ð Þ
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Since the specimens might be cut in different off-axis
angles relative to the material principal directions, the
actual strain and virtual strain fields should be trans-
ferred along the material principal direction from the
global coordinate system when identifying the ortho-
tropic material parameters. The transformation relation
is given in equations (22) and (23) below.
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c ¼ cos θ; s ¼ sin θ ð23Þ
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Fig. 4 Measurement area S2 used for identification (W/L00.95)
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where θ is the off-axis angle relative to the material principal
direction (Fig. 2).

Optimization Study of the Test Configuration
using Simulation Data

One important feature of the VFM identification methodol-
ogy is that the quality of the identification depends on the
test configuration. Therefore an optimized test configuration
should be sought that activates all the stress components to
provide a balanced identification of all stiffness parameters.
The idea is to choose several design variables that can be
easily adjusted to change the test configuration. Then an
optimization routine is introduced to find the best combina-
tion of the design variables that leads to the best identifica-
tion results. In the modified Arcan fixture test several design
variables could be considered. The measurement area, load-
ing angle and principal material directions are obvious var-
iables that affect the identification performance. However,
to ensure that the loading axis passes through the centre
point of the specimen, the distance between the two bonded
edges was fixed to 20 mm. Therefore, the measurement area
could only be varied freely along the unglued specimen
sides (y direction). In order to utilize the pixels of the
cameras optimally, a 20×20 mm2 specimen dimension is
best because it has the same aspect ratio as that of the CCD
camera (2048×2048), as shown in [16] for a similar test
configuration. As a result, the design variables selected here
are the loading angle and the material principal direction.
The loading angle can be adjusted by connecting to different
holes of the modified Arcan fixture. The change in material
principal direction is obtained by cutting the specimen in
different directions within the foam slab. Finite Element anal-
yses were conducted using ANSYS version 13.0 along with
the ANSYS APDL language, to create 361 simulated tests
with different combinations of the two design variables. The
model was built-up using the quadrilateral isoparametric ele-
ment PLANE 82, with eight nodes and sixteen degrees of
freedom (DOF). The 80×80 mesh density was selected by
considering the numerical convergence and also approximat-
ed to the amount of experimental data points (76×76) to avoid
bring any significant influence from spatial resolution differ-
ence. Here the amount of simulation data points is relatively
lager than the experimental one as additional data points
would be removed later for studying the missing data effect.
The two arms of the Arcan fixture were simulated as rigid
bodies. The material principal direction was varied from 0° to
90° with increments of 5°. The load angle was varied from 0°
to 90° (pure shear to pure tension) with increments of 5°. All
strain maps were input into a MATLAB VFM identification
routine, which was adjusted according to the loading and
material angles. During this identification process, two main

error sources were introduced. One is measurement noise, and
the other is missing data at the edges. A cost function must be
defined to describe the stability of the identified parameters
with respect to the different error sources. The procedure
results in plots of the cost function as a contour map with
respect to the two design variables.

First, the effects of measurement noise were studied. Due
to the effect of noise, the measured strain values are different
from the exact ones which will cause some scatter on the
identified stiffness parameters. In this optimization study,
the sensitivity to noise parameters were used to form a cost
function to find the test configuration which led to the most
balanced simultaneous identification of all stiffness param-
eters. The chosen cost function is identical to that used in
[15] for the unnotched Iosipescu test. The relative sensitivity
to noise parameters rij used in the cost function are defined
by the ratio of sensitivity parameter ɳij by the corresponding
stiffness parameter Qij . Since the orders of magnitude of the
different Qij are sometimes quite different, relative sensi-
tivity parameters ɳij/Qij can give more clear representation
of the impact of ɳij on the corresponding stiffness parame-
ters. The parameter r12 corresponding to Q12 was not in-
cluded in the cost function to avoid the cost function being
dominated by this term which is inherently larger than the
other rij parameters. The chosen cost function C1 is:

C1 ¼ ðr11 � r22Þ2 þ ðr22 � r66Þ2 þ ðr11 � r66Þ2
ðr11 þ r22 þ r66Þ2

ð24Þ

The contour map of this cost function is shown in Fig. 5.
It can be seen that the material principal direction (also
referred to as the ‘off-axis angle’) is the most important
factor to obtain balanced parameter identification. When
the material principal axes coincide with the specimen co-
ordinate system, it is difficult to obtain an accurate

Fig. 5 Cost function for the noise sensitivity study
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identification of all four stiffness parameters regardless of
the loading direction. The test configurations with off-axis
angles between 25° and 65° provide good identification
with the lowest combined sensitivity to noise. Two local
minima can be observed; one is located at (θ035°, α030°),
and the other at (θ035°, α085°). Since the modified Arcan
fixture vary from 0° to 90° with increments of 15°, the off-
axis tensile test configuration (θ035°, α090°) will be se-
lected instead of the test configuration (θ035°, α085°).

Missing Data Effect

Because of the intrinsic nature of the DIC algorithms, at
least half a facet size is lost at the edges of the field of view
(as shown Fig. 6). Reducing the facet size is a way of
addressing this issue but unfortunately, this also increases
the noise level.

This issue is not important on the right and left hand side
edges as the VFM identification area can be easily adjusted
in the horizontal direction, as shown above. However, if
data are missing at the top and bottom edges, this means
that the fraction of the shear/tension force going through this
section will be missing in the equilibrium equation, resulting
in significant overestimation of the stiffnesses.

This was already demonstrated in [16]. In practice, at
least one row of data points at the edges is normally incom-
plete and has to be deleted before inputting the strain maps
into the virtual fields routine. In the current study, the effect
of missing data at the top and bottom specimen edges has
been investigated by removing two rows of data points on
each edges of the specimen (5 % of total cross section data
points) in the simulated strain maps. Two rows of data were
also removed from the right and left hand side edges, but
this did not lead to a VFM artifact. The relative error of each
of the identified stiffness parameters is computed as:

ErelðQijÞ ¼
Qij � Qijref



 


Qijref

ð25Þ

where Qij is the stiffness parameter identified from VFM
routine and Qijref is the reference stiffness input into the FE
model. The results shown in Fig. 7 indicate that missing data
on the upper and bottom free edges bring significant bias on
the identified material parameters. The main reason is the
formulation of virtual fields method. In Fig. 3, the specimen
was separated into 3 areas and different virtual fields were
defined in these 3 areas to take into account that no strain data
was available on S1 and S3. Since the virtual displacement on

Fig. 7 (a) Relative error of each of the identified parameters with missing data on the left and right sides (b) Relative error of each of the identified
parameters with missing data on the upper and bottom edges

Fig. 6 The facets on the edge of the specimen
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S1 and S3 are set to be rigid body, the principle of virtual work
is written as in equation (15). However due to the missing data
on the free edges, the actual strains are also not available in the
areas S4 and S5 shown in Fig. 8. Thus, equation (15) can be
rewritten as:

�
Z
S2

σ : "*dS�
Z
S4

σ : "*dS�
Z
S5

σ : "*dSþ
Z
@S3

T � u*dl

¼ 0

ð26Þ

where
R
S4
σ : "*dS and

R
S5
σ : "*dS are the error terms

introduced by the missing data effect. It could be possible to
assign rigid body-like virtual fields to S4 and S5 as well but the

continuity conditions on the virtual displacements would then
result in the impossibility to involve the applied force in the
equation. In this case, only stiffness ratios could be identified,
not actual stiffness values

A new cost function C2 was defined to find the optimized
test configuration with minimal influence of the missing
data effect. This cost function represents the overall varia-
tion before and after accounting for missing data on the free
edges, and is given in equation (27).

C2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q11�Q11ref

Q11ref

� 2
þ Q22�Q22ref

Q22ref

� 2

þ Q12�Q12ref

Q12ref

� 2
þ Q66�Q66ref

Q66ref

� 2

vuuuut ð27Þ

Fig. 10 The cost fuction for missing data sensitivity study (missing
20 % of total datas)

Fig. 11 Cost function with extrapolation of missing data
Fig. 9 The cost fuction for missing data sensitivity study (missing 5 %
of total datas)

S2S1 S3

y 

S5

S4

    x 

Fig 8 The measurement area S2 used for identification with missing
data on free edges
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In equation (27) Qijref are the reference values of the four
identified material stiffness parameters, and Qij are the iden-
tified parameters affected by missing data. The plot of this
cost function contour map is shown in Fig. 9. The results
indicate that the loading angle becomes the main issue
affecting the sensitivity of the identified parameters to the
missing data effect. For some shear and biaxial loading test
configuration, the overall identification error of four stiff-
ness parameters becomes extremely significant. The best
area in this map is close to a loading angle equal to
90° which corresponds to the tensile test configuration.
This can be explained by realizing that when the test
configuration is close to a pure shear test of the foam
block (θ00), a bending moment is effectively induced

which produces large bending stresses at the free edges,
resulting in a more significant error on the equilibrium
equation when data points are missing there.

Combining this result with the conclusion from the noise
sensitivity study, it is found that the best test configuration
to minimize the noise effect in Fig. 5 is around θ035° and
α030°, while the best configuration to minimize the miss-
ing data effect is around θ035° and α090°. Therefore it is
important to make a compromise between these two factors
in the actual test. It can be noted that there are some
singularities at several locations in Fig. 9 (θ025° and α0
45°, etc.). The main reason is that some ‘bad’ test config-
urations are very sensitive to the missing data effect. So the
results produced by these ‘bad’ test configurations are very

Fig. 12 DIC strain maps for the
θ090° and α00° test configura-
tion (pure shearing)

Table 2 θ090° and α00° pure shear test configuration

After extrapolation Before extrapolation

MPa Q11 Q22 Q12 Q66 Q11 Q22 Q12 Q66

Test1 20.3 73.4 4.15 28.7 59.5 83.5 19.0 29.0

Test2 1.06 66.0 0.01 30.6 12.9 78.0 2.33 32.5

Test3 13.0 71.3 2.35 32.1 43.0 80.9 11.1 34.9

Test4 3.44 70.0 0.670 32.0 20.7 80.2 6.06 33.4

Average 9.45 70.2 1.80 30.9 34.0 80.6 9.63 32.5

Ref(AAU) [6] 140 63.5 23.6 32.5 140 63.5 23.6 32.5

Ref(SOU) [5] 143 63.4 26.0 30.1 143 63.4 26.0 30.1

Relative Difference 93.3 % 10.6 % 92.4 % 1.28 % 75.7 % 26.9 % 59.2 % 3.83 %
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unstable and easily affected by the amount of missing data.
The experimental study in the next section also indicates
that these ‘bad’ test configurations are very sensitive to
virtual mesh sizes. Therefore, the optimized test configura-
tion is selected by looking for the spots with lowest value of
cost function and also the area around these spots. Figure 10
shows the cost function contour created by increasing the
amount of missing data. The overall identification error for
the four stiffness parameters increases a lot compared with
the results in Fig. 9 but the number of ‘singular points’ is
greatly reduced, even though they tend to happen in the
same location of the design space. Although there is a slight
variation between the patterns of the two cost function, the
best areas (around tensile loading angle) of these two con-
tours are still very stable and consistent.

Recovery of Missing Data

Since the missing data effect has a large influence on the
present procedure, it is considered to reduce its impact by
extrapolating the 2D data (strain) maps to reconstruct the
missing data points at the two free edges. The idea is to use
the nearest data points and to copy them to the missing data
positions (‘padding’ procedure). The cost function contour
map after conducting this extrapolation is shown in Fig. 11.
The maximum value is around 0.12, which is much smaller
than the value shown in Fig. 9. This indicates that a much
better parameter identification can be achieved when the
missing data have been recovered. The plot in Fig. 11 also
indicates that the poor test configurations represented by the
central part of the cost function map shown in Fig. 9

Fig. 13 DIC strain maps for the
θ035° and α030° test configu-
ration (multi axial loading)

Table 3 θ035° and α030° multi-axial test configuration

After extrapolation Before extrapolation

MPa Q11 Q22 Q12 Q66 Q11 Q22 Q12 Q66

Test1 156 73.9 11.1 35.5 165 101 19.8 46.3

Test2 152 77.3 9.98 34.6 159 94.2 14.7 43.6

Test3 158 81.0 11.3 34.0 170 101 19.3 45.9

Test4 148 69.2 8.05 33.6 158 88.6 13.2 40.6

Average 154 75.4 10.1 34.4 163 96.2 16.7 44.1

Ref(AAU)[6] 140 63.5 23.6 32.5 140 63.5 23.6 32.5

Ref(SOU)[5] 143 63.4 26.0 30.1 143 63.4 26.0 30.1

Relative Difference 8.83 % 18.8 % 59.2 % 9.90 % 15.2 % 51.5 % 32.7 % 40.9 %
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experienced significant improvement when missing data
recovery was performed. Nevertheless, choosing a test con-
figuration which can give less sensitivity to missing data is
still important even with the extrapolation of 2D data maps.
By combining the plots in Figs. 5, 9 and 11 it is found that
θ035° and α090° provides the best compromise. Therefore
this configuration has been selected for the experimental
validation. Another good test configuration is the biaxial
loading test with θ035° and α030°. The reason that this
test configuration was also selected for the experimental
validation is that it has the minimal cost function value when
only noise is considered (see Fig. 5). Thus, if the error from
missing data can be reduced to a very low level, this test
configuration should provide the best parameter identifica-
tion. A comparison of the two configurations discussed
above will provide insight into the real practical effect of
missing data.

Experimental Validation and Discussion

This section presents the experimental results aiming at
validating the above findings from the numerical test opti-
mization study. The two optimized test configurations se-
lected from above have been used. The pure shear test
configuration (θ090°, α00°) was also chosen for compari-
son. First, the pure shear test was performed. Reference
values for the elastic properties were obtained using ASTM
standard tests in [5], as well as from measurements con-
ducted using the modified Arcan fixture with tensile tests
along the in-plane and through-thickness directions and
shearing tests using butterfly-shaped specimens [6]. The
strain maps for the pure shear test are given in the material
orthotropy axes in Fig. 12. The load is applied up to around
150N with 5 load steps. Previous work [6] gave the tensile
and shear stress vs. strain curves until failure, which

Fig. 14 DIC strain maps for the
θ035° and α090° test configu-
ration (off-axis tensile)

Table 4 θ035° and α090° off-axis tensile test configuration

After extrapolation Before extrapolation

MPa Q11 Q22 Q12 Q66 Q11 Q22 Q12 Q66

Test1 144 75.4 19.4 29.5 147 77.3 20.9 30.6

Test2 152 78.8 19.0 31.6 157 84.2 19.7 33.6

Test3 148 78.0 20.1 31.3 150 81.1 21.3 31.9

Test4 150 71.2 18.0 28.2 153 74.6 18.2 30.6

Average 148 75.9 19.1 30.2 152 79.3 20.0 31.7

Ref(AAU)[6] 140 63.5 23.6 32.5 140 63.5 23.6 32.5

Ref(SOU)[5] 143 63.4 26.0 30.1 143 63.4 26.0 30.1

Relative Difference 4.59 % 19.5 % 23.0 % 3.51 % 7.42 % 25.0 % 19.4 % 1.28 %
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indicates that the linear elastic region extends up to around
4 % elastic tensile strain. Hence the strain maps selected
here are derived within the linear elastic region. The identi-
fied parameters for the 4 specimens are listed in Table 2. The
relative difference is given by comparing the average testing
results and the mean value of two sets of reference data. It
can be seen from the results that the most reliably deter-
mined parameters in the present pure shear loading test
configuration are Q22 and Q66, which is due to the predom-
inant longitudinal bending and shear stresses/strains in the
specimen. It is problematic to attempt extracting Q11 and
Q12 from this (pure shear) test configuration because of the
very low levels of transverse stress. Thus, Q11 and Q12

exhibit a large bias even when applying the extrapolation
on the edges of the data maps.

The strain maps obtained for the (θ035° and α030°) test
are shown in Fig. 13, and the identification results are listed
in Table 3. Compared with the results in Table 2, the iden-
tified parameters are all much closer to the reference values.
There is some difference, however, relative to the reference
values. This is especially the case for the stiffness Q22,
which is nearly 51 % larger than the reference value. When
correcting for missing data points at the upper and lower
edges, a significant improvement is obtained wrt. identifi-
cation of the parameters Q11, Q22 and Q66. This is especially
the case for Q22. However, there is still a large bias on Q12,
which in any case is the most difficult parameter to identify.
The only parameter which is slightly less accurately deter-
mined than in the pure shear test is Q66. This was expected
because some shear modulus sensitivity was sacrificed to
get more balanced values for the other stiffness components.
The fact that the missing data correction has a large effect on
the identified values is consistent with the results of Fig. 9
for this particular test configuration.

The final test configuration is the off-axis tensile test (θ0
35° and α090°). Comparing the strain maps of this test
(Fig. 14) with the results of the other tests (cf. Fig. 12 and

Fig. 13), it is observed that the two optimized positions gave
much more balanced strain values for all components with
non zero values over most of the field of view, whereas in
the shear test, most of the significant normal strain values
are concentrated at the corners. The identification results are
reported in Table 4. For the results without any data extrap-
olation on the edges to recover missing data, the off-axis
tensile test gives much more accurate results than those
listed in Table 3. Thus, the correction for missing data brings
the results slightly closer to the reference values, but at the
same time the variation is much smaller than for the results
of the other tests. This is again consistent with the findings
reported in Fig. 9. The most stable parameter identified in
the current test is Q66. This was expected since off-axis
tensile tests induce very large shear strains, and such test
configuration is therefore commonly used to determine the
in-plane shear modulus of anisotropic materials [22]. The
major limitation of the standard off-axis tensile test is that it
is very hard to produce a homogeneous stress/strain distri-
bution in the specimen gauge section. However by using
DIC and VFM this problem is solved. Finally, the reason
why this test configuration leads to the best results is appar-
ent when comparing Fig. 14 with Fig. 13. The off-axis
tensile test provides much less spatial heterogeneity. As a
consequence, the limited spatial resolution of DIC has less
impact on the strain maps for this test than for the biaxial
one. This could certainly be seen if the procedure presented
in [16] was used here to simulate the speckle deformation.
This is one of the improvements that will be sought in the
future.

To further evaluate the two optimized test configurations,
different virtual element mesh sizes were used to extract the
stiffness parameters from the DIC strain data. Table 5 and
Table 6 show the comparison between the two test config-
urations using different virtual mesh sizes. It is observed that
the results of the off-axis tensile tests are much more stable
than those obtained from the off-axis multi-axial shear test,

Table 5 θ035° and α030°
muti-axial test configuration
with different virtual mesh sizes

MPa Mesh 4×4 Mesh 6×6 Mesh 10×10 Ref(AAU) Ref(SOU)

Q11 156 155 150 141 143

Q22 73.9 50.8 35.7 63.5 63.4

Q12 11.1 6.61 3.02 23.6 26.0

Q66 35.5 29.7 21.4 32.5 30.1

Table 6 θ035° and α090° off-
axis tensile test configuration
with different virtual mesh sizes

MPa Mesh 4×4 Mesh 6×6 Mesh 10×10 Ref(AAU) Ref(SOU)

Q11 144 138 136 141 143

Q22 75.4 66.5 58.7 63.5 63.4

Q12 19.4 27.8 31.6 23.6 26.0

Q66 29.5 29.9 30.2 32.5 30.1
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especially for the identification of the parameters Q22, Q12

and Q66. Again, this is certainly caused by the more pro-
nounced strain heterogeneities which are not well tackled by
the DIC measurements. Although the off-axis tensile test
gives a relatively reliable identification, there are still some
differences between the identified parameters and the refer-
ence values. However, significant density variations exist
within the tested PVC foam panels [5], and this may account
for some of the differences observed. However, the impor-
tant variations observed for Q22 and Q12 when the virtual
mesh size is varied indicate that there are some unresolved
issues in the present methodology. In particular, the effect of
smoothing, speckle quality etc. is yet to be evaluated. Thus,
as already suggested above, the next step is to set up a
complete identification simulation based on the procedure
proposed in [16] to track all possible sources of bias, and
based on this to chose regularizing parameters (subset size,
smoothing…) in a more rational way.

Conclusions and Future Work

In this study, the simultaneous identification of the orthotropic
stiffness components of a PVC foam was undertaken using
Digital Image Correlation and the Virtual Fields Method. A
modified Arcan test fixture was used, and an optimization
routine was developed to identify the best test configuration
as a function of loading angle and material principal direc-
tions. The effect of noise and missing data were included into
the optimization study as the two main error sources. The
experimental results validated the optimization study.

The main conclusions are summarized as follows:

1. The experimental results validated the finding of the
numerical optimization study in that the off-axis tensile
test gave an improved identification of the orthotropic
stiffness components of the PVC foam.

2. Missing strain data at the free edges proved to have a
very significant influence on the identification results.
This was accounted for by using a data extrapolation
scheme which proved to be successful.

3. The larger sensitivity of the shear test to missing data as
opposed to the off-axis tensile test was also revealed in
the experimental data and confirmed the numerical anal-
ysis results. This is due to large bending stresses at the
free edges of the specimen.

4. The identification results were significantly affected by
the size of the virtual mesh, particularly for the param-
eters Q22 and Q12. This may be caused by errors intro-
duced by inappropriate spatial resolution of the
measurements. Different virtual fields process the bias
caused by inappropriate local spatial resolution differ-
ently, hence different stiffness values are obtained. The
only way to assess this issue rigorously is to simulate

the DIC measurements. To do so, a procedure likes
that in [16] will be set up in the near future to bring
further improvements to the current procedure.

5. Finally, when the procedure is ready, it can be used to
evaluate the variation of properties within a slab by
testing many of these small specimens cut at different
locations within the slab. This should provide an invalu-
able insight into the mechanical variability of the foam.
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