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Abstract This study deals with the identification of
macroscopic elastic parameters of a layer-to-layer inter-
lock woven composite from a full-field measurement.
As this woven composite has a coarse microstructure,
the characteristic length of the weaving is not small as
compared to the specimen size. A procedure based on
an inverse identification method and full-field digital
image correlation kinematic measurement is proposed
to exploit a three-point bending test on short coupons
to characterize the out-of-plane shear modulus. Each
step of the proposed procedure is presented, and their
respective uncertainty is characterized with the help of
numerical simulations. The shear modulus is identified
with an accuracy of about 1.5 % and is 15 % lower
than the estimate obtained through Iosipescu tests. The
proposed procedure shows a correlation between the
ideal mesh size and the weaving period. It also reveals
that the actual boundary conditions deviate from the
ideal ones and hence a special attention is paid to their
optimization.
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Introduction

Composite materials, because of their remarkable com-
promise between weight and mechanical properties be-
come more and more present in the aeronautic indus-
try, even for demanding applications. During the past
decade, a major step has been achieved through the
development of 3D woven composites as their (espe-
cially through-thickness) resistance were considerably
increased [1–3]. Indeed, in contrast with laminated
composites where delamination is a major failure mode,
3D woven composites are strengthened by weaving the
different layers together.

The design of components made out of those com-
posites is based on a homogenized equivalent material.
The homogenization technique has been intensively
studied, and reviewed in [4–6]. Its predictive ability has
been demonstrated in particular for elastic properties
[7–9]. However, these approaches call for assumptions
on the periodicity and the regularity of the fabric that
the process can not reach. Consequently, the homoge-
nized equivalent material behavior does not account for
the scattered results observed in experimental tests [10,
11]. Alternatively, assumptions on the contact forces
between weft and warp fibres, may lead to models
whose parameters are to be finally determined from
experimental tests [12].

In all those cases, either to identify parameters, or to
validate a model, confrontations between modeling and
experiment are required.
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The present study is based on a layer-to-layer
interlock woven composite developed by SNECMA
(SAFRAN group) made out of carbon fiber tows and
an epoxy matrix. The fibre volume fraction is 58 %.
The composite is periodic along the three directions
(x, y, z), containing respectively one period on the warp
direction, two on the weft direction, and two on the out-
of-plane direction. The unit cell is shown schematically
in Fig. 1. Homogenization methods predict that the ho-
mogenized elastic properties are orthotropic. However,
the quantitative comparison between a homogenized
material description and the actual material reveals
a number of shortcomings, which call for a specific
methodology explored in the present article. The major
difficulty comes from the coarse microstructure of the
material. Indeed, field measurement technique used in
this study reveal very clearly the architecture of the
material, and hence the spatial resolution of this exper-
imental technique is potentially finer than the scale at
which a homogenized material is expected to be a valid
description. Adjusting the experimental technique, not
at its best performance, but at the level where it can
match the proposed modeling framework, constitutes a
novel challenge addressed in the present work.

An additional focus of the proposed approach is to
account faithfully for the actual experiment, modeling
the test as it is and not as it should ideally be. Toler-
ance to deviation from ideality, reveals to be a major
strength of the proposed methodology which neverthe-
less does not demand numerous or sophisticated addi-
tional sensors. Our analysis is indeed performed on a
standard three point bending test, and a digital camera
is the only required additional device as compared to a
standard test.

Fig. 1 Example of a unit cell of an interlock woven composite
used for the test

Finally, as our objective is the quantitative evalua-
tion of an elastic property, a special attention is devoted
to the evaluation of uncertainties throughout the entire
procedure.

Section “Three-Point Bending Test” presents the
mechanical three-point bending test to be exploited
and that will be used to evaluate the performance
of the different steps of the identification procedure.
The proposed methodology is based on Digital Image
Correlation (DIC) on the one hand, and the Finite
Element Model Updating (FEMU) on the other hand,
that are detailed in Sections “Global Digital Image
Correlation” and “Finite Element Model Updating” re-
spectively. The former section introduces the software
platform that hosts the entire procedure, presents the
global DIC technique, and reports on the uncertain-
ties attached to DIC per se. Section “Finite Element
Model Updating” recalls the principle of the FEMU
method, and its connection to DIC through the specific
metric used. This section also provides an estimate of
the uncertainty in the identified elastic modulus that
results from the entire chain of analysis. It is shown
that the uncertainties are very small, and that the main
limitation of the methodology is the very concept of
an equivalent homogenized medium. Indeed, DIC is
sufficiently accurate to reveal strain modulations which
are due to the weaving. Thus the issue of having a
consistent identification with the sought simplified de-
scription brings to light an original issue of choosing a
mesh which is adapted to the weaving periodicity, a point
which is discussed in Section “Suited Mesh for Identi-
fication”. Finally, Section “Conclusion and Perspec-
tives” proposes some conclusions and perspectives.

Three-Point Bending Test

In order to characterize the InterLaminar Shear
Strength (ILSS) and the out-of-plane shear modulus,
the sample is subjected to a standard three point
bending test (referenced as ASTM D2344) and shown
schematically in Fig. 2. The specimen is placed onto
two cylinder shaped supports parallel to the y-axis and
referred to in the following as supports 1 and 2 for the
left and right ones respectively. The load is applied on
top with a third cylinder shaped contact element, called
3. The warp fiber direction of the specimen is along
the horizontal x-axis whereas the weft fiber direction
is along the y-axis. The sample geometry and size was
determined based on the test standards and also consid-
ering the Representative Volume Element dimensions
[13]. If the height (along the z-axis) is denoted by h, the
length along the x-axis is 5h and the depth (along the
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Fig. 2 Schematic view of the 3 point bending test. The specimen
is placed on two cylinder shaped supports (labeled 1 and 2), and
the load is applied through a third contact element (labeled 3).
The field of view of the camera is shown as the inserted image.
Note that only the left part of the specimen is seen

y-direction) is 3h. The test is displacement controlled,
with a velocity of 8.33 × 10−3 mm.s−1. During the test,
the loading is registered and digital images are acquired
at imposed time intervals in order to measure a two
dimension full-field displacement on the surface sample
by DIC. For this purpose a fine-grained black and
white speckle pattern is applied on the side face of the
specimen. The choice was made to observe only the
left half of the sample in order to increase the image
resolution. An actual image showing the field of view
(ROI) and surface pattern has been superimposed on
the scheme shown in Fig. 2. Images (1376 × 1040 pix.)
are acquired by a digital 12-bit CCD camera system,
Sensicam™, providing a high signal-to-noise ratio.

As the aim of this test is to identify elastic properties,
the absence of fibre breaking or debonding in the load-
ing range considered in the present study was validated
using acoustic emission technique. The loading rate was
chosen as low to avoid significant viscosity effect. This is
essential to secure the considered loading in the elastic
regime.

Global Digital Image Correlation

A Specific Software Environment : The LMTpp
Platform

Identification involves a dialog between measurements
and modeling. Usually, simulation and measurements
are done with different softwares. The present study
has been performed within a unique environment
in order to provide an identification procedure of
macroscopic elastic parameters with minimal sources
of uncertainty and benefit from the entire field of
view. The specific environment is a C++ environment,
“LMTpp”, developed in house [14, 15]. Moreover, a

global DIC algorithm is used [16] so that the displace-
ment field is, from its basic formulation, expressed in
a finite-element formalism. Note that DIC only uses
the mesh and the finite-element shape functions as a
convenient way to decompose the displacement field
from the registration of images. However, no mechan-
ical modeling is involved at this stage. The constitu-
tive law and balance equations are not exploited in
global DIC.

Mechanical modeling will be used later for the
FEMU analysis. Based on parametrized boundary con-
ditions, and constitutive parameters, the displacement
field will be computed exploiting the mechanical equa-
tions. The boundary conditions and elastic constants
will then be optimized so that the DIC measured and
the computed displacement fields coincide. This pro-
cedure is shown schematically through a flow diagram
in Fig. 3. We will come back in details on both DIC
and FEMU procedures in the following, but we stress
here that the homogeneity of the kinematic description,
and of the LMTpp environment involves no loss in
the dialog between the different parts of the entire
identification procedure.

Global DIC

DIC [17] aims at measuring a full-field displacement
from images taken during the test on the side surface
of the sample. These images are analyzed to calculate
the displacement in each point of the observed area
called Region Of Interest (ROI). In this study, a global
DIC formulation was adopted [16]. A reference image
is chosen, usually taken before any loading is applied.
The user selects a ROI on this image, and meshes it
with quadrilateral or triangle elements for which shape
functions are bilinear. The grid can be structured or
unstructured [18]. Global DIC consists in estimating the
projection of the displacement field onto a suited basis,
here given by finite-element shape functions, so that it
matches the one used in the modeling.

The basic assumption of DIC is to assume that the
image texture (i.e. surface patterns) is simply advected
by the displacement, so that we can assume

g(x + u(x)) = f (x) + η(x) (1)

where f (x), respectively g(x), is the gray level at each
point x of reference image, respectively of the de-
formed image, and η(x) is the CCD sensor noise.

Introducing a decomposition of u(x) on the classical
FE basis function, it is possible to estimate the solution
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Fig. 3 Flow diagram of the identification procedure where DIC stands for Digital Image Correlation and FEA for Finite Element
Analysis. DIC is used to measure the experimental displacement field. FEA is used to compute the displacement field from boundary
conditions and material parameters which are determined so as to minimize the difference with the measured displacement Field

u by minimizing over the entire domain Ω the following
functional suited to a gaussian white noise:

T (u) =
∫

Ω

[
g

(
x +

2∑
α=1

n∑
i=1

aαi Ni(x)eα

)
− f (x)

]2

dx

(2)

where Ni are the finite element functions relative to
node i, and eα are unit vectors along the axes. The
amplitudes aαi are the unknown degrees of freedom
used to describe the kinematic field.

The above functional is strongly non-linear, because
of the rapidly varying texture f and g. Hence, an
iterative procedure is used, based on successive cor-
rections of the deformed image, g(n), such that g(n)(x +
u(n)(x)) = f (x) where u(n) is the displacement field de-
termined at step n until g(n) matches f . Incremental
corrections of the displacement field δu(n+1) are com-
puted from the minimization of the linearized form of
the objective functional, Tlin

Tlin(δu(n+1)) =
∫

Ω

[
g(n)(x) − f (x) − δu(n+1)∇ f (x)

]2
dx

(3)

where a Taylor expansion of f has been used as well as
a small strain assumption. Updating of the displacement
field is simply u(n+1) = u(n) + δu(n+1). It should be noted
that the above linearized form is only useful for deter-
mining the correction, however, convergence is estab-
lished based on the full (non-linear) functional T . Thus,
an approximate fulfillment of the small strain assump-
tion does not endanger the quality of the final solution.

The main interest of the above writing is that the
determination of the displacement increment δu(n) =
δa(n)Ne resumes to the solution of linear system

M.δa(n+1) = b (n) (4)

where M is the matrix

Mαi;β j =
∫

Ω

[Ni(x)N j(x)∂α f (x)∂β f (x)] dx (5)

and b is the vector

b (n)

αi =
∫

Ω

[(g(n)(x) − f (x))Ni(x)∂α f (x)] dx (6)

Note that M is the same at all steps of the iteration, so
that only b has to be updated.

Finally, the last difficulty is related to the use of a
Taylor expansion to first order in order to estimate the
displacement. This may cause trapping in secondary
minima of the non-linear functional T . To deal with
this problem a multiscale approach is developed: a
crude determination of the displacement is first per-
formed based on strongly low-pass filtered images.
Large displacements are captured by these first steps.
Then, based on this first determination, finer and finer
details are re-introduced in the images in order to
progressively obtain a more accurate determination of
the displacements. This procedure is carried down to
unfiltered images in the final pass. The convergence
criterion is based on the infinity norm of δu(n) displace-
ment increment between two consecutive steps and is
taken as ‖δu(n)‖∞ < 10−4.

Several options and parameters are to be set in the
DIC procedure: possible accounting of a brightness
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Fig. 4 Procedure used to create a translated image ft of half a pixel on each direction from an original image f . An image twice
as large as the reference one is built from mirror symmetric copies. The result is now a periodic image suitable for FFT. Half a pixel
translation is performed through a phase shift in Fourier space. Finally, the upper left quarter of the image is cropped, and saved as ft

correction (relaxing the texture conservation equa-
tion (1)), the type of image interpolation for computing
g(n) or the computation of the gray level gradient ∇ f .
Whereas brightness correction increases the number
of degrees of freedom, the choice is made to use it
in order to correct the brightness disparity between
images. Following the literature [19, 20], the spline
interpolation for subpixel displacements of g is chosen
to obtain better results in terms of systematic error
and uncertainty. Gray level gradients are computed as
centered finite differences.

Uncertainty Due to DIC

The above presented global DIC is an ill-posed prob-
lem, the measured displacement field computed as such
is limited by uncertainty, especially concerning subpixel
displacement. Using the global DIC explained above
with the chosen options, an uncertainty study is per-
formed to quantify the uncertainty on the measured
displacement field. As maximum uncertainty occurs
for subpixel displacement of 0.5 pixel, an artificial de-
formed image is obtained by adding a half-pixel dis-
placement to the reference image in both x and y direc-
tion. This is done by a Fast Fourier Transform (FFT)

where the ROI size is reduced to the maximum power
of 2 available as s = 2n < ROI size. A new image, f̃
of twice the size s, is created from the initial image, f ,
by symmetrizing the reduced ROI in order to satisfy
the periodicity needed by the FFT. Then, in the Fourier
space, the translated image f̃t is obtained by:

f̃t(x) = �(F( f̂ (λ)e−i(λ.u))) (7)

where f̂ (λ) is the Fourier Transform of image f (x), F
is the inverse Fourier Transform and u is the needed
translation displacement. f̃t(x) is finally rescaled to the
initial size of the reduced ROI (Fig. 4).

Then, from the global DIC led on these two images,
f and ft, for different element size, from 16 to 64
pixels, the mean error and the uncertainty plotted on
Fig. 5 show a decreasing uncertainty and mean error
as the element size increases. Hence, the uncertainty
is much higher than the mean error. It is worth noting
that if the kinematic field is not described by the basis
function on which the displacement is sought, the error
on the displacement field increases. Indeed, a complex
kinematic field cannot be described accurately with a
large element size.

Fig. 5 Uncertainty (a) and
mean error (b) of the DIC
analysis as a function of the
element size are shown in a
log-log plot. These data are
obtained for the worst case
of half a pixel displacement
in both x and y directions.
Dotted lines show a power-
law going through the first
data points

(a) (b)
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Finite Element Model Updating

Principles

Several techniques have been proposed to identify ma-
terial parameters from kinematic field measurements
[21, 22]. The FEMU is the most generic and intuitive
method [23]. It is based on over-determined data, a full-
field displacement measurement in this case, and allows
for dealing with a complex geometry. The principle
consists in finding iteratively parameter values intro-
duced in a Finite Element (FE) simulation to minimize
the cost function, R, measuring the gap between mea-
sured displacement fields by DIC, Umes, and calculated
ones i.e., U cal (Fig. 3).

R2 = (Umes − U cal)C
−1(Umes − U cal) (8)

Contrary to the classical approaches based on the com-
parison of strain fields [24], one notes that this objective
functional is based on the displacement field itself.
This specific character is important as it relaxes the
sensitivity to spurious high frequency modes inevitably
present in the measured displacement and very much
amplified in strain evaluations (the alternative being to
smooth out the strain field based on arbitrary a priori
assumptions).

In the equation (8), C−1 is the covariance matrix of
the displacement measured by DIC, when noise is the
dominant source of variability which can be evaluated
exactly as proportional to the matrix M [25]. It provides
a positive-definite weighting of the kinematic degrees
of freedom based on the measurement.

The FE simulation, as the measured field, is per-
formed in 2D, in the plane defined by the x-axis and
z-axis, with a plane strain hypothesis. The latter is
justified by the large thickness of the sample compared
to the two other dimensions and the fact that it is the
weft fibers orientation.

The boundary conditions chosen for the FE simu-
lation are shown in Fig. 6: At the contact point with
the left support (called “support 1”), a displacement
(U1

x, U1
z) is imposed. At the contact point with the right

support (“support 2”), only a vertical displacement is
imposed U2

z . The load being applied onto the cen-
tral upper cylinder (“contact element 3”) is modeled
through a distributed vertical force. Finally, as can be
seen on Fig. 7, the displacement field shows that the
test does not obey the expected left-right symmetry.
To account for this effect, and additional tangential
(horizontal) force is applied on the contact element 3.

Besides, the strain in the vicinity of the contacts is
quite large so that the linear elastic behavior assumed

Fig. 6 Mesh used for FEA on which the boundary conditions
are schematically represented. Note that a horizontal load has
to be included at the upper contact element 3 to account for
the observed dissymmetry of the test. The ROI on which DIC
is performed is delimited as a dot-dashed rectangle

in the simulation is dubious. As a consequence, these
areas will be omitted in the identification procedure.

The shear modulus G13, as well as the displacements
of the two outer cylinders and the tangential force
applied on the central one are sought based on the
FEMU method. The normal force is set to the exper-
imentally measured value, and the contact surfaces are
determined from the image.

Those elastic parameters are issued from a modeling
of the composite structure using the software TexComp
[28]. The latter is based on a geometrical description
of the fabric, and a homogenization procedure for
the elastic properties of the textile composite based
on the Eshelby inclusion method [26, 27]. Although
this approach involves a number of simplifications
and approximations, many studies have proved its
efficiency. The major source of uncertainty comes from
the difficulty of accounting for the transverse compres-

Fig. 7 Magnitude of the measured displacement field repre-
sented on the deformed mesh (amplified 50 times). Note that
the expected left-right symmetry of the test is violated as can be
clearly seen from the displacement underneath the central load
bearing contact element 3
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sion of fibres. As a result, in-plane constitutive parame-
ters, and in particular E1, agree quite well with their
computed estimates [27]. Out-of-plane parameters are
much more uncertain. One way to probe the effect of
the uncertainty resulting from approximate estimates of
the elastic constant is to compute the sensitivity fields,
∂Ucal/∂p where p is either ln(E1), ln(E3) or ν13. The
spatial mean of the modulus of the three sensitivity
fields is reported in Table 1. The overall sensitivity
of those parameters is quite modest (this could have
been expected from the very choice of our test which
is chosen to maximize the sensitivity with respect to
G13 : a few percent variation of ln(E3) or ν13 cannot
be resolved as the mean change in displacement is
in the centi-pixel range. E1 is the most sensitive pa-
rameter, and indeed its value affect our estimate of
G13 since it directly influences the deflected shape of
the calculated sample. However, it is to be stressed
that E1 is the constitutive parameter which is the most
securely estimated either with the modeling code, or
experimentally. Thus, the three elastic constants (E1,
E3 and ν13) are considered as trustful in the present
study.

Uncertainty in The Identification Process

One major source of uncertainty lies in the CCD sensor
noise that induces an uncertainty on the measured
displacement field. As the measured full-field displace-
ment is taken as a reference for the identification step,
it is necessary to know the propagation of this noise
along the identification chain. For that purpose, the
introduction of the camera noise on a synthetic image
is characterized and propagated through the complete
identification process to isolate the effect of the CCD
sensor noise from other possible artifacts. The results
are made dimensionless for confidentiality reasons. The
reference value for the elastic shear modulus, G130 , is
obtained from the mean value from Iosipescu tests led
by SNECMA, with a scatter of ± 4 % around this mean
value.

Evaluation of the CCD sensor uncertainty

Besides the uncertainty due to DIC evaluated in
Section “Uncertainty Due to DIC”, an other major source
of uncertainty on the measured displacement field us-

Table 1 Mean, m, over the entire domain of the magnitude of
the sensitivity map calculated analytically as ∂Ucal/∂p

Parameters p ln(E1) ln(E3) ν13

m 1.344 0.433 0.096

ing the global DIC, is the CCD sensor noise. It is
possible from N images of the same state considered as
reference to characterize the noise due to the acquisi-
tion (essentially the intrinsic noise of the CCD sensor).
Once this noise characterized, the attention would be
devoted to the propagation of the gray level noise along
the identification process in Section “Propagation of
uncertainty along the identification chain”.

A first DIC analysis is performed to evaluate a possi-
ble displacement between images. Choosing one image
as a reference, the N − 1 other images are chosen as
deformed pictures. Typical translation evaluations re-
veal an unanticipated displacement of order 0.1 pixel at
most. These small amplitude translations nevertheless
contribute significantly to image differences.

An attempt was made to determine, in addition to
noise, a gray level offset and rescaling, so that intro-
ducing the (unknown) noiseless reference image, f0(x),
image number i is written

fi(x) = (1 + bi)(ai + f0(x) + ηi(x)) (9)

where ai is the gray level offset, and (1 + bi) the gray
level rescaling which may come from fluctuation in the
exposure time (or lighting). ηi(x) is the noise whose
spatial average is 0.

〈 fi(x)〉 = (1 + bi)(ai + 〈 f0(x)〉) (10)

and, for i �= j,

〈 fi(x) f j(x)〉 − 〈 fi(x)〉〈 f j(x)〉
= (1 + bi)(1 + b j)(〈 f 2

0 〉 − 〈 f0〉2) (11)

This last set of N(N − 1)/2 equations allows for the
determination of the N unknowns bi if one assumes
〈log(1 + bi)〉i = 0. Similarly, assuming 〈ai〉i = 0, the first
equation allows for estimating ai. The above assump-
tions on a and b are needed because f0 is un-
known. From the gray level corrected images, f ′

i (x) =
fi(x)/(1 + bi) − ai, the noise ηi can be characterized

〈 fi(x)2〉 − 〈 fi(x)〉2 = (1 + bi)
2((〈 f 2

0 〉 − 〈 f0〉2) + 〈ηi(x)2〉)
(12)

hence

〈 f ′
i (x)2〉 − 〈 f ′

i (x)〉2 = (〈 f 2
0 〉 − 〈 f0〉2) + 〈ηi(x)2〉 (13)

The variance of each image noise 〈ηi(x)2〉 can thus be
estimated.

Images are encoded with a 16-bit deep gray level
(thus ranging from 0 to 65535). The determined rescal-
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ing corrections b are of order of 10−4, and a of order 10
gray levels. Thus these corrections are very modest.

It is observed that the noise level is very similar in
each image. Finally, the histogram of corrected image
differences f ′

i − f ′
j can be computed, showing that it

could be very well approximated by a Gaussian of zero
mean and variance v2 as shown in Fig. 8. The standard
deviation is estimated to be v ≈ 310 gray levels, much
larger than the above gray scale corrections.

Propagation of uncertainty along
the identif ication chain

A reference image is artificially deformed with a dis-
placement field issued from a finite element calculation
for which the material properties are known. Thus,
the material properties that have to be identified are
known. However, the gray level value of a pixel for
which the displacement assumes a non-integer value
has to be interpolated from the reference image.

Once noise is added to the deformed image by
specifying the mean and the standard deviation of a
Gaussian distribution, as determined in the previous
subsection, the FEMU identification is performed for
two hundred random samples. The results are shown
in Table 2. Both the mean difference between known
and estimated parameters (termed “systematic error”)
and the standard deviation of the estimates (termed
“uncertainty”) are reported. This characterizes the un-
certainty on the identified parameters due to the CCD
sensor noise using the FEMU identification.

The uncertainty on the displacement at support 1
(left) is much less than that of support 2 (right). The
reason is that only the left part of the specimen was in
the field of view of the camera and the displacement

Fig. 8 Histogram obtained from the pixel-to-pixel difference
between images. Data points are shown as ◦ symbols, and a
Gaussian fit (bold curve) is drawn as a guide to the eye

Table 2 Uncertainty on the identified shear modulus and bound-
ary condition parameters obtained from applying the proposed
procedure to synthetic data and added noise

Parameters G13/ Xl Zl Zr FX/FZ

G130 (px.) (px.) (px.) (%)

Initial 1 −5 −16.5 −14 11.26
values

Identified 0.993 −4.9993 −16.5004 −14.0212 11.33
values

Systematic 0.007 0.0007 −0.0004 −0.0212 0.07
error

Uncertainty 0.0014 0.001 0.00036 0.0039 0.12

at support 2 has to be extrapolated at a far distance,
inducing thereby a limited accuracy on this identified
parameter. However, the uncertainties on the iden-
tified parameters are still rather small. The FEMU
identification performances can thus be considered as
reliable.

Suited Mesh for Identification

Taking into account a real material and experiment to
feed the identification chain reveals yet another obsta-
cle to overcome. The homogenized model used in the
finite element method provides a smooth displacement
field with slow variations. In the real case, the presence
of the underneath textile architecture in the studied
composite material induces large local modulations of
the displacement field as shown in the Fig. 9. These
local variations have to be filtered out in order to com-
pare both measured and calculated displacement fields.
Let us stress that the challenge here is not to obtain the

Fig. 9 Horizontal component of the displacement field as mea-
sured by DIC with a regular square mesh of 16 pixel element
size. A clear modulation can be seen which reflects the underlying
microstructure
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best accuracy from DIC, but rather to resort to a coarse
analysis in order to match the chosen homogenized
material description.

The main difficulty with filtering the displacement
field as a post-processing step after DIC is that cor-
respondence with the experimental data is lost and
hence all the effort invested in securing identification
with experimental data would be ruined. Although such
smoothing processes of DIC displacement field are
often performed when strain are to be used, a clear
appreciation of actual uncertainties would not recom-
mend such a practice.

The proposed procedure is to filter the displacement
field while preserving the connection to experimental
images. Would the microstructure be ideally periodic,
a DIC analysis performed with a mesh size equal to
the period would indeed directly filter the periodic
component as required, yet preserving the DIC strategy
to determine the long wavelength components of the
displacement field.

In order to test the applicability of this idea, the
systematic influence of the mesh size is studied.

Mesh sizes ranging from 115 × 130 pixel to 47 × 22
pixel are systematically explored without changing any
other parameters in the identification chain. Figure 10
shows the impact of the mesh size on the estimated
dimensionless shear modulus G13 normalized by the
mean value obtained through Iosipescu tests, G130 .

One notes that the mesh size along the x-direction
has no or little systematic influence, whereas the z-
direction has a very systematic influence.

To understand this sensitivity, it is of interest to
consider the microstructure of the specimen surface
prior to the application of the speckle pattern as shown

Fig. 10 Map of the identified dimensionless shear modulus
G13/G130 as a function of the mesh size along x and z directions

Fig. 11 Microstructure of the specimen surface layer. The peri-
odicity of the weaving along the z-axis is clearly seen

in Fig. 11. The microstructure appears as periodic along
the z-axis but not along the x-axis (the period along
this direction is about 200 pixels, and would require too
coarse meshes to be seen).

The power spectrum of the microstructure image in
the Fourier domain along the z-axis shown in Fig. 12
presents a well defined peak at a period of 62 pixels.
In the same figure, the FEMU residual is also plotted
showing a minimum for twice this size.

The absolute lowest FEMU residual is reached for a
mesh size equal to 84 × 122 pixels.

For this mesh size, the residual maps of Umes − U cal
along both space direction are shown in Fig. 13(a)
and (b). The computation of the difference is carried
out on the nodes of the FEMU analysis, and the DIC
displacement is interpolated at those nodes using a bi-
linear interpolation. On this plot, the masked region
underneath the central cylinder is clearly visible. The

Fig. 12 FEMU residuals obtained for a regular square mesh
whose size is Lz along the z-axis are shown with • symbols. The
power spectrum of the microstructure (shown in Fig. 11) along
the z direction and averaged over x is shown on the same graph
as a dotted curve, it is plotted as a function of Lz = 2π/k. A
first peak is observed for the spatial period of the weaving, and a
second one at twice the period
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(a) (b)

(c) (d)

Fig. 13 Horizontal x component (a) (respectively (c)) and vertical z component (b) (respectively (d)) of the difference between
measured and computed displacement fields. The data is shown for a correlation mesh of 84 × 122 pixels. The minimization of R
(equation (8)) is made on the FE mesh (respectively on the correlation mesh) without (respectively with) making use of a weight
matrix. Difference between measured and computed displacement fields decreases when using a weighting matrix

range of displacement difference is about 0.12 pixel
along the x axis and 0.25 pixel along the z axis.

The identification can also be led with this optimal
correlation mesh and the difference of Umes − U cal
along both space direction can be evaluated on the
nodes of the DIC mesh, in order to benefit from the
weight matrix estimated from DIC. The residual maps,
shown in Fig. 13(c) and (d), have a range of displace-
ment difference slightly smaller than previously, about
0.12 pixel along the x axis and 0.18 pixel along the z axis.
It shows the improvement in the identification coming
from the use of the DIC correlation matrix. The values
of the identified parameters, for this last identification,
are shown in Table 3.

Let us stress that the best boundary conditions (dis-
placement and forces at the contact points) applied
to the finite element analysis are identified by the
FEMU in order to be consistent with the measurement
extracted from the experiment. It is observed that the
horizontal force FX taken into account in the modeling
is far from being negligible. Indeed it is the order

of 8.6 % of the applied vertical load. This horizontal
force—which would typically be ignored in modeling—
is due to the asymmetry of the test, found consistently
in the identified values of the two outer applied vertical
displacements.

The final estimate of the out-of-plane shear modulus
is finally determined with an accuracy of about 1.5 %.
It is to be observed that the main source of uncertainty
results from the required modeling assumption which
ignores the material microstructure. The camera noise

Table 3 Identified values for the best correlation mesh, the
element size of which is 84 × 122 pixels

Parameters G13/ Xl Zl Zr FX/FZ

G130 (px.) (px.) (px.) (%)

Identified 0.86 −6.35 −14.77 −17.72 8.6
values

Systematic −0.007 −0.0007 −0.0004 −0.0212 0.07
error

Standard 0.0014 0.001 0.0004 0.0039 0.12
deviation
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contributes to about 0.5 %, a rather small amount as
compared to the homogeneity assumption.

However, the results differs from other experiments
led by SNECMA on Iosipescu tests by a significant
amount (much larger than the uncertainty level). One
possible explanation of this discrepancy is the fact that
the stress state is very heterogeneous for the latter
tests, and for a composite material having a coarse
microstructure, the relevance of an equivalent homo-
geneous material becomes questionable. The required
scale separation between the microstructure and the
spatial variability of the stress field is poorly satisfied.
To clarify this issue, it would be extremely informative
to apply a strategy similar to the one proposed herein,
based on a combination of DIC and FEMU, to the
Iosipescu test.

Conclusion and Perspectives

This study was conducted on a model specimen with
a coarse periodic weaving, although an homogenized
elastic property was sought. The applicability of an
identification procedure based on DIC and FEMU on
such a material has been demonstrated. A continuous
pathway has been paved from test images to the iden-
tified property allowing for a tracking of all sources
of errors and uncertainties. One major source of un-
certainty was shown to be due to the camera noise.
However, the most limiting one is the constraint to
ignore the influence of the microstructure although it
could be clearly revealed by the DIC analysis.

The simplicity of the present methodology opens
new horizons to identify elastic properties (or more
generally stiffness) of complex materials and structures
under arbitrary loadings (preserving however a two-
dimensional kinematics). The detailed tracking of un-
certainties, including camera noise, down to the final
identification result not only provides an answer to
the sough properties, but also a way to evaluate in an
objective fashion the value of the determined infor-
mation. Extension of the present approach to inelastic
behaviors will be investigated in the future.
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