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Abstract The ply elastic constants needed for classical
lamination theory analysis of multi-directional laminates
may differ from those obtained from unidirectional lami-
nates because of three dimensional effects. In addition, the
unidirectional laminates may not be available for testing. In
such cases, full-field displacement measurements offer the
potential of identifying several material properties simulta-
neously. For that, it is desirable to create complex displace-
ment fields that are strongly influenced by all the elastic
constants. In this work, we explore the potential of using a
laminated plate with an open-hole under traction loading to
achieve that and identify all four ply elastic constants (E1,
E2, ν12, G12) at once. However, the accuracy of the

identified properties may not be as good as properties mea-
sured from individual tests due to the complexity of the
experiment, the relative insensitivity of the measured quan-
tities to some of the properties and the various possible
sources of uncertainty. It is thus important to quantify the
uncertainty (or confidence) with which these properties are
identified. Here, Bayesian identification is used for this
purpose, because it can readily model all the uncertainties
in the analysis and measurements, and because it provides
the full coupled probability distribution of the identified
material properties. In addition, it offers the potential to
combine properties identified based on substantially differ-
ent experiments. The full-field measurement is obtained by
moiré interferometry. For computational efficiency the
Bayesian approach was applied to a proper orthogonal de-
composition (POD) of the displacement fields. The analysis
showed that the four orthotropic elastic constants are deter-
mined with quite different confidence levels as well as with
significant correlation. Comparison with manufacturing
specifications showed substantial difference in one constant,
and this conclusion agreed with earlier measurement of that
constant by a traditional four-point bending test. It is possi-
ble that the POD approach did not take full advantage of the
copious data provided by the full field measurements, and
for that reason that data is provided for others to use (as on
line material attached to the article).

Keywords Bayesian identification . Composites . Full-
fields . Elastic constants . Uncertainty quantification

Introduction

Orthotropic elastic constants of composite materials are
usually identified by series of tests on unidirectional lami-
nate coupons. This provides good accuracy, however, it is
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not always possible or appropriate. First, one may want to
obtain the elastic constants of laminates made some time
ago, for reverse engineering, to determine the effect of
aging, or to determine whether the elastic constants do not
change somewhat due to the interaction between plies of
different fiber angles combined in a single laminate. In this
situation, it has been suggested that a full-field measurement
of the response might furnish sufficient data to identify all
the properties from a single test if the strain field in the
laminate is complex enough.

A tensile test on an elastically orthotropic plate with a
hole can create such a complex displacement field and has
already been used in the past for identifying the four ortho-
tropic elastic constants of a laminate [1, 2]. This is also the
experiment that we will use in the present paper. The objec-
tive of the paper is to find how accurately we can find the
elastic constants from such a single test.

After the experiment, we need to decide which method to
use for the identification itself. Multiple approaches exist
such as least squares based finite element model updating,
the constitutive equation gap method, the virtual fields
method, the equilibrium gap method, the reciprocity gap
method and we refer the reader to the review by Avril et
al. [3] for an overview of each of these methods in the
context of full field based identification.

While the above methods were designed to provide nu-
merical values for the properties to be identified, character-
izing the uncertainty in the identified properties is
sometimes crude (only variance estimates but no covarian-
ces) and in any case not systematic. This is important
however, since different material properties determined
based on a single test are not identified with the same
confidence. Typically the highest uncertainty is associated
with respect to properties to which the experiment is the
most insensitive. In addition, the uncertainty in different
properties can be strongly correlated, so that obtaining only
variance estimates may be misleading.

One of the challenges in the identification of multiple
material properties from a complex experiment resides in
handling different sources of uncertainty in the experiment
and the modelling of the experiment for estimating the
resulting uncertainty in the identified properties. A possible
approach for doing this is the Bayesian method [4, 5]. This
method was introduced in the late 1970s in the context of
identification [6] and has been applied since to different
problems, notably identification of elastic constants from
plate vibration experiments [7, 8]. The applications of the
method to these classical point-wise tests involved only a
small number of measurements (typically ten natural fre-
quencies in the previously cited vibration test), which facil-
itated the application of the Bayesian approach.

In the present article we adopt a Bayesian framework for
identifying the orthotropic elastic constants of a composite
material from an open-hole tensile test, on which we mea-
sure the displacement fields. Several authors carried out
identifications based on such measurements within a least
squares model updating framework [9, 10]. We apply here
the Bayesian identification approach to moiré interferometry
displacement measurements with the aim of identifying the
four ply elastic constants of a composite laminate.

The rest of the paper is organized as follows. In “Open
Hole Tensile Test” we give an overview of the identification
problem from an open-hole tensile test as well as the moiré
interferometry experiment that was carried out. “Numerical
Modelling” provides an overview of the numerical model-
ling allowing efficient treatment of the identification prob-
lem. In “Bayesian Identification” we provide the Bayesian
identification formulation, obtained results and their dis-
cussion. We give concluding remarks in “Concluding
Remarks”.

Open Hole Tensile Test

Experiment

In this paper we identify the orthotropic ply-elastic constants
from full field displacement measurements on an open-hole
plate. The plate is a laminate made from a graphite/epoxy
prepreg (Toray® T800/3631) with a stacking sequence of
[45,−45,0]s. Prior information on the properties that we seek
was available from the manufacturer and from previous

Table 1 Manufacturer’s specifications and properties found by Noh
[11] based on a four points bending test

Parameter E1(GPa) E2 (GPa) ν12 G12 (GPa)

Manufacturer’s
specifications

162 7.58 0.34 4.41

Noh’s values [11] 144 7.99 0.34 7.78

Fig. 1 Specimen geometry. The
specimen material is graphite/
epoxy and the stacking sequence
[45,−45,0]s. The tensile force is
700 N
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experiments. The manufacturer’s specifications are given in
Table 1 together with the properties obtained by Noh [11].
Noh obtained the material properties based on a four-point
bending test at the University of Florida on a laminate made
from the exact same prepreg roll that we used for the
specimen of this study.

The hole in the plate was machined using a special drill
designed specifically for composites. Special care was taken
to avoid delaminations around the hole especially on the
drill exit surface, since these delaminations may change the
displacement field around the hole. Only those specimens
without visible delamination around the hole were kept for
testing. The absence of significant delaminations was also
confirmed after the measurements by the fact that the mea-
sured displacement fields did not show any significant devi-
ations around the hole from the expected fields.

In the present study we seek to identify the ply-properties
and their uncertainties from a tensile test on a laminate having
the dimensions given in Fig. 1. The total thickness h is
0.78 mm and the applied tensile force is 700 N. The U and
V displacement fields are defined as being in the 1 and 2
direction, respectively. The full field measurements are taken
on a square area 24.3×24.3mm2 around the center of the hole.

The experimental setup utilized is shown in Fig. 2. The
testing machine was an MTI-30K. Rotations of the grips
holding the specimen were allowed by using a lubricated
ball bearing for the bottom grip and two lubricated shafts for
the top grip. This allowed to reduce parasitic bending during
the tension test. An ESM Technologies PEMI II 2020-X
moiré interferometer using a Pulnix TM-1040 digital camera
were utilized.

Moiré interferometry (Post et al. [12]) is a measure-
ment technique using the fringe patterns obtained by
optical interference off a diffraction grating in order to
obtain full-field displacement or strain maps. Among its
main advantages are high signal to noise ratio, excellent
spatial resolution and insensitivity to rigid body rota-
tions [13]. The displacement resolution, obtained by
repeatability tests, can be as low as 4 nm. Past appli-
cations of moiré interferometry include the mapping of

displacements of a tooth [14] and characterization of
advanced fabric composites [15]. Additional applications
are also provided by Post et al. [12].

The schematic of a four-beam moiré interferometry setup
used for the present experiment is given in Fig. 3. It uses
four collimated light beams, thus providing both the hori-
zontal and vertical displacement fields. The interference is
obtained by choosing the angle α such that it corresponds to
the first order diffraction angle. In this case two opposite
beams will be diffracted/reflected off the Moiré grating
placed on the specimen. Since the camera is positioned at
the angle of the first diffraction order it will capture the
interference fringe pattern with the highest intensity.

The fringe patterns that result from the interference of
two of the beams can be described by either intensity or
phase information. While intensity methods have been de-
veloped first, a major issue limiting their accuracy resides in
the determination of the exact maximum intensity locations.
To address this issue, methods based on phase information
were developed, such as phase shifting moiré. All these
methods use a carrier fringe pattern or a phase ramp in order
to extract the phase φ, due to the fact that the cosine
function is not bijective. Using a phase shift λ, the intensity
I can then be expressed as shown in equation 1.

Iðx; yÞ ¼ Ibacklightðx; yÞ þ Imodðx; yÞ cos 8 ðx; yÞ þ nl½ �
n ¼ 1 . . .N

ð1Þ

Obtaining N fringe patterns (typically N04) shifted by
the imposed phase shift allows to calculate the phase φ(x,y).
The displacement fields are then determined as follows:

Uðx; yÞ ¼ Δ8 xðx; yÞ
2pfs

ð2Þ

V ðx; yÞ ¼ Δ8 yðx; yÞ
2pfs

ð3Þ

 

Moiré interferometer

Digital camera 

Specimen 

Traction machine 
with load cell 

Fig. 2 Experimental setup for the open-hole tension test Fig. 3 Schematic of a moiré interferometry setup
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where Δφ is the phase difference between the initial and the
final loading step and fs is the spatial frequency of the
reference grating (2,400 lines/mm in our case).

An automated phase extraction procedure was developed
under Matlab by Yin [16] at the Experimental Stress Analysis
Laboratory at the University of Florida. This toolbox, which
will be used here, carries out the phase extraction and unwrap-
ping from the four phase shifted moiré fringe patterns. It then
provides the corresponding displacement fields.

The displacement fields obtained are provided as data
files attached to the online version of this article (see
Appendix 4) and are also graphically illustrated in Fig. 4.
Note that no filtering whatsoever was used during the ex-
traction algorithm. These two displacement fields serve as
the measurements for the present identification problem.

Typical sources of uncertainty affecting the displacement
fields are noise, the phase extraction procedure, imperfect
centering of the hole on the specimen or misalignment of the
grips, which can create bending.

Modelling and Problem Statement

In order to identify the ply-elastic constants, E1, E2, ν12,
G12, we need a model relating these to the displacement
fields. Unfortunately there are no exact analytical solutions
for the problem of an orthotropic plate. Instead we chose a
finite element model that will be used for the Bayesian
model updating.

The plate is modeled using the Abaqus® finite element
software. A total of 8020 S4R elements (general purpose,
four nodes per element, reduced integration) were used.
Boundary conditions were imposed by prescribed forces.
The finite element mesh in the area of interest is shown in

Fig. 5 and the measurement area highlighted in red. Note
that Fig. 5 does not include the entire mesh. Since the whole
plate is modeled in Abaqus there is a transition using trian-
gular elements towards a larger mesh at the grip edges of the
plate where the stresses are relatively uniform compared to
the area around the hole. The irregularity of this transition
did not have any significant effect on the displacements in
the area of interest.

A finite element mesh convergence study was carried out
to assess the quality of the model, and it was found that with
the present mesh the discretization error in the area of
interest was of the order of 6×10−4% of the average abso-
lute value of the field, which was considered acceptable.

Note that the model uses shell elements for computing the
mid-plane displacement fields after homogenization of the
six-plies composite into a single orthotropic layer. With in-
plane loading we considered that the computations using the
homogenized model lead to acceptable results and that we can
consider that the mid-plane displacement field is the same as
the surface displacement field. The absence of any significant
out of plane bending induced by the experimental setup was
verified on some specimen by the use of stereo digital image
correlation on the other side of the specimen.

During the identification process we vary a certain num-
ber of model parameters such as elastic constants or plate
dimensions and obtain each time the corresponding full
fields. In model updating frameworks one seeks to match
the predictions with the experimental fields either in a
deterministic way (least squares) or in a probabilistic way
(Bayesian), as we do here.

The field is described here by the displacement values at
the 4,569 nodes within the reference area (see highlighted
area in Fig. 5). Note that the experimental fields contain
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-6-4-2024

 (a) (b)

Fig. 4 Displacement fields (in
μm) obtained from the fringe
patterns in: (a) The 1-direction
(U field). (b) The 2-direction (V
field)
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much more information, since we obtain 490,000 measure-
ment points (pixels) per field. The values of the experimen-
tal fields at the node positions are calculated by linear
interpolation.

If a field calculation needs to be used within the Bayesian
framework where correlation between the measurements is
required, it is not practical to describe the fields by their
value at each point (at the 4,569 nodes here). This is essen-
tially because thousands-dimensional probability density
functions required to describe the correlation between the
different measurement points are outside the realm of what
statistical methods can currently handle with reasonable
computational resources.

Furthermore the model evaluation needs to be repeated
millions of times during the identification, a problem exac-
erbated by the need for statistical sampling. Using a finite
element model directly is not computationally feasible in
this case.

To address these problems we use the proper orthogonal
decomposition method for dimensionality reduction and
response surface methodology for cost reduction. These
are described in the following section.

Numerical Modelling

Proper Orthogonal Decomposition of the Full-Fields

The aim of the proper orthogonal decomposition (POD)
method is to construct an optimal, reduced dimensional
basis for the representation of simulation samples (that are
called snapshots in POD terminology).

Let us consider Ui ∈ ℝn, which is the vector representa-
tion of a field (e.g. displacement field). Note that n is usually
several thousands. We seek, based on N sample vectors
{Ui}i 0 1..N, a reduced dimensional representation of the
fields’ variations with some input parameters.

For the open-hole plate identification problem we are
interested in accounting for variations of the following
parameters: ply elastic constants E1, E2, ν12, G12 and ply
thickness t. We are looking at variations of the homogenized

ply-properties and thickness here and not at spatial varia-
tions within the plate. Accounting for variations in the
elastic constants is needed as usual for the identification
procedure. We added here the ply thickness as an important
source of uncertainty. We assumed here that we are interest-
ed in variations of the parameters E1, E2, ν12, G12 and t
within the bounds given in Table 2.

We obtained the snapshots required for the POD ap-
proach by sampling 200 points within the bounds of Table 2.
These bounds were chosen such that the manufacturer’s
specifications roughly lie in the middle. We chose relatively
wide bounds reflecting the fact that we did not want to
restrict the area in which the identified properties are sought.
The points are sampled by Latin hypercube, which consists
in obtaining the 200 sample points by dividing the range of
each parameter into 200 sections of equal marginal proba-
bility 1/200 and sampling once from each section. Latin
hypercube sampling typically ensures that the points are
reasonably well distributed in the entire space.

At each of the 200 sampled points we then perform a
finite element analysis, which gives the corresponding hor-
izontal and vertical displacement fields U and V respective-
ly. Based on these samples we construct the POD basis
using the singular value decomposition as detailed in Ap-
pendix 1. In the obtained POD basis we can express approx-
imately any displacement field obtained for parameter
values within the bounds of Table 2 as a linear combination
of the POD basis vectors:

eU i ¼
XK
k¼1

ai;kΦk ¼
XK
k¼1

U i;Φk

� �
Φk ð4Þ

where eU i is the POD approximation of the displacement
field Ui (which can be either a U displacement field (in
the 1-direction) or a V displacement field (in the 2-
direction); Φk k¼1::K are the basis vectors (also called

POD modes) of the POD orthogonal basis and αi,k are
the coefficients of the displacement field in this basis,
which can be obtained by the orthogonal projection of
field Ui onto the basis vectors.

Once the POD modes (basis vectors) were determined by
singular value decomposition, we still need to find an ap-
propriate truncation order K for the reduced dimensional
approximations of the fields (see equation 4).

Table 2 Bounds on the input parameters of interest (for a graphite/
epoxy composite material)

Parameter E1 (GPa) E2 (GPa) ν12 G12 (GPa) t (mm)

Lower
bound

126 7 0.189 3.5 0.12

Upper
bound

234 13 0.351 6.5 0.18

Fig. 5 Finite element mesh. The measurement area is highlighted in
red
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In order to choose the truncation order we first use a
typical error criterion for the POD method based on the
norm of the residuals (see equation 10 in Appendix 1 for
details). Table 3 provides this truncation error criterion for
various truncation orders. An additional global error criteri-
on is provided in Appendix 1.

Since the fields will be used for identification, not only
the accuracy of the fields is important but also the accuracy
of the derivatives of the field with respect to the ply-elastic
constants. This was verified and we found that four POD
coefficients for each field are also sufficient for representing
the derivates accurately enough. For details on this verifica-
tion the reader is referred to [17] (Chapter 6).

On a final note, the identification procedure will use the
POD projection of the displacement fields, which filters out
some information present in the initial fields. This can have
both positive and negative effects. Obvious negative effects
are that the identification procedure will not be able to
account for any information that was filtered out and that
might have been useful to the identification or the propaga-
tion of uncertainties. On the other hand if the information
filtered out is mainly related to the analysis tools used (e.g.
phase extraction algorithm) or to numerical or experimental
noise it can be useful to filter these elements out since they
do not have physical meaning in relation to the material
properties. For an initial investigation of the errors modes
left out by the use of the POD procedure the reader is
referred to [17] (Chapter 7).

Response Surface Approximations

Even though we reduced the dimensionality of the full-field
using the POD decomposition, the calculation of the POD
coefficients is still based on finite element results. Since the
Bayesian identification procedure (cf. next section) needs
millions of evaluations, we construct computationally cheap
approximations of the POD coefficients, αk, as functions of
the four elastic constants to be identified and the thickness
of the plate.

For this purpose we use response surface approximations
(RSA). In particular we used polynomial response surfaces
(PRS), which fit the simulation at sample points with a
polynomial so as to minimize the square difference between
the simulations and the prediction of the PRS. The accuracy

of the approximation can then be estimated using indicators
such as root mean square (RMS) error or cross validation
error. For more details on RSA techniques the reader can
refer to [18].

Here we fitted cubic polynomial response surface
approximations for each POD coefficient, of the form αk 0

PRS(E1, E2, ν12, G12, h) to the same 200 samples that were
used in the previous section to construct the POD basis.
These 200 points were sampled using Latin hypercube with-
in the bounds given in Table 2.

Several error measures were used to assess the accuracy
of the obtained response surface approximations and these
are provided in Appendix 2. These error measures showed
that the approximation error was negligible compared to the
other sources of uncertainty.

Bayesian Identification

Bayesian Formulation

We identify the joint probability distribution of the elastic
constants E1, E2, ν12, G12 given the measured displacement
fields using a Bayesian formulation. Denoting by f the
probability density functions (PDF), then the PDF that we
seek, also called posterior PDF, is given by Bayes’ formula:

fE a¼ameasure= ðEÞ ¼ 1

K
fa E= ðαmeasureÞ � f priorE ðEÞ ð5Þ

where E 0 {E1, E2, ν12, G12} is the four dimensional
random variable of the ply-elastic constants. α ¼
aU1 ; . . . ; a

U
4 ; a

V
1 . . . aV

4

� �
is the eight dimensional random

variable of the POD coefficients of the U and V

f i e ld ; αmeasure ¼ aU ;measure
1 ; . . . ; aU ;measure

4 ; aV ;measure
1 . . . ;

�
aV ;measure
4 g is the vector of the eight “measured” POD

coefficients, obtained by projecting the measured full fields
onto the POD basis.

Equation 5 provides the joint probability density function
(PDF) of the four elastic constants given the coefficients
αmeasure. This PDF, also called posterior PDF and denoted
fE a¼ameasure= ðEÞ , is equal to a normalizing constant K times
the likelihood function of the elastic constants E given the
coefficients αmeasure times the prior distribution of the elas-
tic constants E.

The prior distribution of E reflects the prior knowledge
we have on the elastic constants. In our case this prior
knowledge stems from two sources: the manufacturer’s
specifications and a four point bending test carried out by
Noh on a laminate made from the same prepreg roll that we
used (cf. Table 1 for the corresponding values). Since we do
not have any information about the accuracy of the values in
either source we chose to use a relatively wide prior

Table 3 Error norm truncation criterion (ε is defined in equation 10 of
Appendix 1)

K 2 3 4 5

ε for
U fields

2.439×10−7 4.701×10−9 7.280×10−11 1.211×10−11

ε for
V fields

1.054×10−6 2.900×10−9 4.136×10−10 3.517×10−11
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distribution with 10 % standard deviation and no correla-
tion. The mean value of the prior could be chosen to be
either Toray’s® specifications or Noh’s values or a mix of
the two (e.g. average). We showed in [17] (Chapter 7) that
because of the wide prior (10 % standard deviation) there is
little influence of the mean values chosen on the posterior
PDF. We chose to present here the results based on a prior
based on the manufacturer’s specifications (see Table 4 for
the parameters of the prior used) but the interested reader
can refer to [17] for the results based on Noh’s prior. The
prior distribution was truncated at the bounds given in
Table 5, which were chosen in an iterative way such as to
verify following aspects. First the bounds were chosen such
that eventually the mean of the posterior PDF is approxi-
mately in the center of the bounds. Second, the range be-
tween the lower and upper truncation bounds was chosen as
about four standard deviations of the posterior PDF for E2

and ν12, for which the Toray specifications and Noh’s values
agree well. For E1 and G12 for which the agreement is worse
we chose a range of about eight standard deviations of the
posterior PDF between the truncation bounds. Note that it
may seem strange that the truncation bound for E1 lies at the
mean value of the prior, but this is due to the fact that the
mean of the posterior was found to be quite far away from
the manufacturer’s specification (mean of the prior) as will
be discussed later in section “Identification Results and
Discussion”.

Other than the prior, the other term on the right hand side
of equation 5 is the likelihood function of the elastic con-
stants given the POD coefficients αmeasure. This function
provides an estimate of the likelihood of different E values
given the test results.

The uncertainty in the POD coefficients can have several
causes, which are detailed next. An important cause is
measurement error. Full-field measurements are usually
noisy, and the measured field can be decomposed into a
signal component and a white noise component. A Gaussian
white noise on the full-fields leads also to Gaussian distri-
butions on the POD coefficients, with zero mean and the
same standard deviation as the noise on the fields showed
(cf. [17] (Chapter 7) for the proof). Note that this does not
mean that there is no filtering effect through the use of the
POD coefficients; while the standard deviations are the
same the resulting fields will be different since the noise

does not act on the same quantities (POD coefficients versus
displacement values).

Another uncertainty in the identification process is due to
uncertainty in the other input parameters of the plate model
such as the thickness, misalignment of the center of the hole
or misalignment of the loading direction. The thickness of
the plate h was assumed to be distributed normally with a
mean value of 0.78 mm (the prescribed specimen thickness)
and a standard deviation of 0.005 mm (the typical accuracy
of a microcaliper). Note that this uncertainty accounts for
the lack of knowledge on the actual spatially averaged
thickness of the specimen. Since boundary conditions are
force-prescribed, the assumed uncertainty of about 0.6 % in
the thickness leads to an uncertainty of opposite sign in the
moduli. This is taken into account through the likelihood
function in the Bayesian approach. However, since the
various uncertainties add up as their squares, the thickness
uncertainty appears to contribute only a small part of the
total uncertainty.

Finally, alignment uncertainty as well as other sources of
modeling uncertainty for the calculation of the likelihood
function were considered indirectly, with somewhat de-
creased fidelity through a generic uncertainty term on the
POD coefficients that had zero mean and a standard devia-
tion of 0.4 % of the mean value of the POD coefficients.

In order to calculate the posterior probability density
function of equation 5 a numerical procedure previously
developed by the authors was used. Details on this approach
are provided in Appendix 3. This procedure was first tested
on simulated full field measurements, where good agree-
ment between the true values and most likely identified
values of the properties was found. For details on the iden-
tification on the simulated experiment the reader is referred
to [17] (Chapter 7).

Identification Results and Discussion

The Bayesian framework does not identify a single value for
each of the four ply-elastic constants but a probability dis-
tribution function characterizing the properties as well as the
uncertainties with which these are obtained for the specific
specimen and the specific experiment and numerical models
used.

Applying the Bayesian procedure to the experimental
displacement fields described in “Open Hole Tensile Test”

Table 4 Normal uncorrelated prior distribution of the material prop-
erties for a graphite/epoxy composite material

Parameter E1(GPa) E2 (GPa) ν12 G12 (GPa)

Mean value 162 7.58 0.34 4.41

Standard deviation 16 0.75 0.03 0.5

Table 5 Truncation bounds on the prior distribution of the material
properties

Parameter E1(GPa) E2 (GPa) ν12 G12 (GPa)

Lower truncation bound 118 6 0.26 4.25

Upper truncation bound 162 9.5 0.36 5.75

Exp Mech (2013) 53:635–648 641



leads to the four-dimensional approximately normal joint
probability distribution having the mean values, coefficient
of variations (i.e. standard deviation over mean value) and
correlation matrix given in Tables 6 and 7. By doing the
identification with increasingly larger grid sizes for the
support of the PDF the mean values were found to be
converged to about one percent, the standard deviations
were found to be converged to about 8 % while the corre-
lations coefficients were found to be converged to about
10 %.

We note first that the coefficients of variation with which
the properties are identified vary greatly from one property
to another. While the longitudinal Young’s modulus E1 of
the ply is identified most accurately, the Poisson’s ratio ν12
of the ply is identified with the highest uncertainty. This
trend has been noted before in the composites community,
since the measured quantities (displacements here) are typ-
ically less sensitive to ply’s Poisson’s ratio compared to the
other three properties when all of them are being sought
simultaneously from a complex experiment on a multi-ply
laminate. For example identifying the orthotropic constants
based on vibration experiments also led the Poisson’s ratio
to be identified the least accurately [19]. Back to the present
experiment we also note that E2 is identified here with a
higher uncertainty than G12. This is due to the stacking
sequence [45,−45,0]s, which does not have a 90˚ ply, thus
making it more difficult to identify E2 from the traction test
in the 1-direction.

We also note that some of the correlation coefficients are
significant. The correlation structure of the identified prop-
erties is an important result and we could not find any
previous study giving the correlation matrix of the ortho-
tropic constants identified. Ignoring the correlation could
lead to significantly overestimating the uncertainty in the
identified properties. The significance of this result can be
illustrated by an example in probabilistic structural design
(e.g. reliability analyses), which use variability models in
order to estimate the probability of failure of a structure.
This variability can be estimated or propagated through the
physics of the problem. In all the cases an important part of
the total uncertainty stems from the measurements. Uncor-
related uncertainty models are often used for the experimen-
tal uncertainty due to lack of better estimates and this can
lead to errors in the probability of failure. The Bayesian

identification approach offers the possibility to improve the
models of experimental uncertainty by providing correlation
data. Initial studies on the impact of the correlation models
on experimental uncertainty were presented in [20].

At this point we also want to make a short note on
the significance of the coefficients of variation and the
correlation matrix. These account for the fact that for
the given layup of the specimen and for the given open
hole test the displacement fields have specific sensitiv-
ities with respect to each of the four ply-elastic con-
stants. If the displacement field is highly sensitive to
one of the elastic constants then this constant will be
identified with a low coefficient of variation. If two
elastic constants affect the displacement fields in a
similar way then these two constants will be identified
with some correlation. This also means that changing
the experimental measurement technique but keeping the
same layup and the same test this may change the
values of the coefficients of variation and correlations.
For our test the changes in the correlation structure turn
out to be rather small when a different signal to noise
ratio is used so that even with a different measurement
technique a similar correlation structure is obtained. On
the other hand changing the ply layup or using a dif-
ferent test (e.g. Iosipescu, Brazilian disc) would drasti-
cally change the sensitivities and thus the coefficients of
variations and the correlation matrix. Basically the iden-
tified variance-covariance structure is specific to the
test, specimen layup and uncertain parameters being
considered.

The identified mean values in Table 6 show a good
agreement with the manufacturer’s specifications (cf.
Table 1), except for E1. This might seem surprising,
however Noh [11] found a similar value on the same
prepreg roll that we used (cf. Table 1). The mean values
of E2, ν12 and G12 are close to the specification values.
G12 is far however from Noh’s values but it should be
noted that the four point bending test used by Noh is
relatively poor for identifying G12.

While it might seem surprising that the property that is
identified with the lowest uncertainty (E1) is also the one
which is the furthest away from the manufacturer’s

Table 6 Mean values and coefficients of variation of the identified
posterior distribution based on the moiré interferometry full-fields from
an open-hole tensile test

Parameter E1(GPa) E2 (GPa) ν12 G12 (GPa)

Mean value 140 7.48 0.33 5.02

COV (%) 3.3 9.5 10.3 4.3

Table 7 Correlation matrix (symmetric) of the identified posterior
distribution based on the moiré interferometry full fields from an
open-hole tensile test

E1 E2 ν12 G12

E1 1 0.023 −0.043 0.51

E2 - 1 −0.005 −0.17

ν12 - - 1 0.24

G12 - - - 1
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specifications, it is important to recall that the identification
does not account for inter-specimen variability or inter-
prepreg batch variability of the material properties. Thus if
the specimen or the prepreg roll deviates somewhat from the
manufacturer’s specification, it is not contradictory that,
while identifying a property far away from the specifica-
tions, this can still be the property identified with the lowest
uncertainty based on the particular experiment used. The
other variabilities, not identified by the Bayesian method,
would then have to be estimated by repeating tests on
multiple specimens coming from different prepreg rolls. In
addition, a key reason for carrying out experiments on
complex laminates instead of unidirectional ones is the
possibility that the effective material properties change
somewhat due to interactions, manufacturing, and three
dimensional effects. While the uncertainties on E2 and ν12
that we found based on the plate with an open-hole exper-
iment were high, we consider the possibility that further data
processing of the displacement field may allow to reduce
them further. We consider that a challenge that may be
picked up by others, and for this reason we have included
the test data as additional on-line material for the paper.

Even if no additional narrowing of the uncertainties from
this test is possible, an appealing option to further lower the
uncertainties would be to use a different experiment on the
same specimen which would be more sensitive to E2 and
ν12, thus allowing to reduce the uncertainty on them. For
example a vibration experiment could be carried out on the
same specimen (plate with a hole), which would allow to
identify again the four ply elastic constants and their uncer-
tainty based on measurements of the natural frequencies of
the plate. The authors carried out in [19] a Bayesian identi-
fication of the orthotropic ply elastic constants of a laminate
on a rectangular plate (without a hole) based on the first ten
natural frequencies of the plate. We found the uncertainties
on the identified E2 to be of the order of 5 % COV and on
ν12 of the order of 12 % COV. The results are not directly
applicable because the plate did not have a hole and the
laminate layup was different. However, they show a promise
that by using a vibration experiment on the same plate with
a hole it might be possible to decrease the uncertainty on E2

for the particular specimen in question.

Concluding Remarks

Elastic constants are usually identified by series of tests on
uni-directional laminates. However, this is not possible at
times, as when one needs to identify the properties of a
laminate of unknown provenance. Also, the effective elastic
constants of complex laminates may be somewhat different
than those of unidirectional laminates due to three dimension-
al interaction effects. We considered in the present article the

problem of orthotropic elastic constants identification
based on full-field displacement measurements on a
plate with a hole. Moiré interferometry was carried out
during an open-hole tensile test and provided the exper-
imental data for the identification. Bayesian identifica-
tion was used in order to identify a probability
distribution for the ply-elastic constants, thus character-
izing the uncertainty with which the properties can be
found from the given open-hole tensile on the given
specimen. A numerical approach based on proper or-
thogonal decomposition (POD) and response surface
methodology was implemented for the Bayesian identi-
fication. It is possible that the POD-based approach did
not take full advantage of the copious data provided by
the full-field measurements, and for that reason that data
is provided for others to use (as on line material at-
tached to the article).

We found that the four orthotropic elastic constants are
not identified with the same confidence. Furthermore some
properties were identified with non-negligible correlation.
While the longitudinal Young’s modulus was identified with
the lowest standard deviation, the transverse Young’s mod-
ulus and the Poisson’s ratio were identified with the highest
uncertainty.

The high uncertainties could also be lowered further by
using additional experiments (e.g. a vibration experiment)
on the same specimen and the Bayesian identification pro-
vides a natural framework for combining properties identi-
fied from different experiments based on their uncertainty
structure.

The longitudinal Young’s modulus was also found to
be far away from the manufacturer’s specifications. This
was consistent however with previous test results on the
same prepreg roll using traditional four point bending
tests. It is indeed important to note that the distribution
determined by Bayesian identification is only part of the
total uncertainty present in design problems and addi-
tional variability need to be determined by repeating
tests multiple times.

Finally, it is the authors opinion that providing not
only numerical values for the identified properties but
also an as comprehensive as possible uncertainty struc-
ture (e.g. mean values, standard deviations, correlations)
is a worthwhile undertaking since it allows more accu-
rate representation of experimental uncertainty at various
subsequent design stages as well a solid basis for com-
bining measurements and their uncertainty stemming
from different experiments.
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Appendix 1: Proper Orthogonal Decomposition

The objective of this appendix is to provide an overview of the
proper orthogonal decomposition method that is used for the
dimensionality reduction of the full-fields. First the theoretical
foundations of the method are presented followed by some
results of its application to the plate with a hole problem.

Let us consider Ui ∈ ℝn, which is the vector representa-
tion of a field (e.g. displacement field). Note that n is usually
several thousands. We seek, based on N sample vectors
{Ui}i 0 1..N, a reduced dimensional representation of the
fields’ variations with some input parameters.

The aim of the proper orthogonal decomposition (POD)
method is to construct an optimal, reduced dimensional
basis for the representation of the sample vectors (also
called snapshots). In the POD approach the snapshots need
to have zero mean, if this is not the case the mean value
needs to be subtracted.

We denote Φkf g
k¼1::K

the vectors of the orthogonal basis of
the reduced dimensional representation of the snapshots.
The POD method seeks to find the basis vectors Φk that
minimize the representation error:

min
1

2

XN
i¼1

Ui �
XK
k¼1

ai;kΦk

�����
�����
2

L2

ð6Þ

Because Φkf g
k¼1::K

is an orthogonal basis, the coefficients
αi,k are given by the orthogonal projection of the snapshots
onto the basis vectors. As a result we have the following

reduced dimensional representation eUi of the vectors of the
snapshot set:

Ui ¼
XK
k¼1

ai;kΦk ¼
XK
k¼1

Ui;Φk

� �
Φk ð7Þ

The reduction in dimension is from N to K. The trunca-
tion order K needs to be selected such as to maintain a

reasonably small error in the approximate representationseUi of Ui. Selecting such a K is always problem specific and
an error criterion is given further down.

The main advantage of the POD method is that it pro-
vides a simple procedure for constructing the basis from the
samples {Ui}i 0 1..N. The procedure guarantees that for a
given truncation order we cannot find any other basis that
better approximates the snapshots subspace.

The basis Φkf g
k¼1::K

is constructed using the following
matrix:

X ¼
U 1

1 . . . UN
1

..

. . .
. ..

.

U 1
n . . . UN

n

0B@
1CA ð8Þ

The vectors Φkf g
k¼1::K

are then obtained by the singular
values decomposition of X, or equivalently by calculating
the eigenvectors of the matrix XXT. The singular values
decomposition allows writing that:

X ¼ Φ
X

ΛT ð9Þ
where Φ is the matrix of the column vectors Φk. The svd()
function in Matlab was used here for the singular value
decomposition.

A truncation error criterion ε is then defined by the sum
of the error norms as shown in equation 10.

XN
i¼1

Ui �
XK
k¼1

ai;kΦk

�����
�����
2

L2

� "
XN
i¼1

Ui
�� ��2

L2
ð10Þ

where " ¼ 1� PK
j¼1

σ2
j

PN
j¼1

σ2
j

, !
, and σj are the diagonal

terms of the diagonal matrix Σ. For a derivation of this
criterion and further details on POD the reader can refer to
[21]. The variation of this criterion with the truncation order
for the plate with a hole problem is provided in Table 3 of
the main section.

The error norm truncation criterion ε, while being a
global error criterion, is relatively hard to interpret physical-
ly. Furthermore the criterion is based only on the conver-
gence of the snapshots that served for the POD basis
construction. However in most cases we will want to de-
compose a field that is not among the snapshots, so we also
want to know the convergence of the truncation error in
such cases.

Accordingly we chose to construct a different error mea-
sure based on cross validation. The basic idea of cross
validation is the following: if we have N snapshots, instead
of using them all for the POD basis construction we can use
only N-1 snapshots and compute the error between the
actual fields of the snapshot that was left out and its trun-
cated POD decomposition. By successively changing the
snapshot that is left out we can thus obtain N errors. The
root mean square of these N errors, which we denote by
CVRMS, is then a global error criterion that can be used to
assess the truncation inaccuracy.

Table 8 Cross validation CVRMS truncation error criterion

K 2 3 4 5

U
field

CVRMS

(mm)
9.35×10−6 1.05×10−6 1.65×10−7 7.83×10−8

CVRMS (%) 9.96×10−2 1.13×10−2 2.37×10−3 9.49×10−4

V
field

CVRMS

(mm)
1.00×10−5 6.30×10−7 3.05×10−7 7.32×10−8

CVRMS (%) 1.10×10−1 4.71×10−2 3.71×10−3 1.84×10−3

644 Exp Mech (2013) 53:635–648



In order to use the cross validation technique we need to
define how to measure the error between two strain fields
(the actual strain field and its truncated POD decomposi-
tion). We chose the maximum absolute difference between
two fields. This maximum error is computed at each of the N
(N0200 here) cross validation steps and the root mean
square leads to the global error criterion CVRMS. Table 8
provides these values for different truncation orders. The
relative CVRMS error with respect to the value of the field
where the maximum error occurs is also given in Table 8.

Next we provide a graphical representation of POD
results in order to have a more intuitive understanding of
the modal decomposition. First an illustration of the fields

obtained for a particular snapshot (snapshot 1) is shown in
Fig. 6, which provides an idea of the spatial variations and
order of magnitude of the displacement fields. These fields
were obtained with the following parameters: E10

202.2 GPa, E2010.84 GPa, ν1200.2142, G1204.989 GPa,
t00.1312 mm.

The first four POD modes that we obtained are represented
graphically in Figs. 7 and 8. We note that the first modes are
relatively close (but not identical even though the differences
cannot be seen by naked eye) to the typical U and V displace-
ment fields (see Fig. 6). Furthermore we see that the modes
have a more complicated shape with increasing mode number,
as expected for a modal decomposition basis.

Fig. 6 U and V displacement
fields for snapshot 1

i=1 i=2

i=3 i=4

Fig. 7 First 4 POD modes for
the U field
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Appendix 2: Error Measures of the Response Surface
Approximations

The error measures used to assess the quality of the response
surface approximations (RSA) constructed in “Identification
Results and Discussion” are given in Table 9 for the first
four POD coefficients of the U fields and in Table 10 for
those of the V fields. The second row gives the mean value
of the POD coefficient across the design of experiments
(DoE). The third row provides the standard deviation of
the coefficients across the DoE, which gives an idea of the
magnitude of variation in the coefficients. Row four pro-
vides R2, the correlation coefficient obtained for the fit,
while row five gives the root mean square error among the
DoE points. The final column gives the cross validation
PRESS error [22].

Comparing the error measures for each coefficient to
their range of variation (i.e. standard deviations) we consid-
ered that the RSA are accurate enough to be used in the
identification process, with the approximation error being
negligible compared to the other sources of uncertainty.

Appendix 3: Bayesian Numerical Implementation

A Bayesian identification numerical procedure able to
account for measurement uncertainty, modeling uncer-
tainty as well as uncertainty in other model parameters
was previously developed by the authors in [23] and
will also be used here.

The numerical procedure uses Monte Carlo simulations
for uncertainty propagation. While the use of Monte Carlo

i=1 i=2

i=3 i=4

Fig. 8 First 4 POD modes for
the V field

Table 9 Error measures for RSA of the U-field POD

POD
coefficient RSA

α1 α2 α3 α4

Mean value of αi −4.04 10−1 −3.40 10−5 −2.20 10−5 −8.35 10−7

Standard deviation
of αi

8.19 10−2 6.92 10−4 2.01 10−4 2.80 10−5

R2 0.99999 0.99993 0.99992 0.99951

RMS error 2.77 10−4 6.32 10−6 2.01 10−6 6.75 10−7

PRESS error 3.61 10−4 7.92 10−6 2.67 10−6 9.33 10−7

Table 10 Error measures for RSA of the V-field POD

POD
coefficient RSA

α1 α2 α3 α4

Mean value of αi −2.97 10−1 −9.51 10−5 −2.14 10−5 9.76 10−7

Standard deviation
of αi

5.40 10−2 2.26 10−3 3.10 10−4 1.50 10−5

R2 0.99999 0.99992 0.99987 0.99830

RMS error 1.69 10−4 2.26 10−5 3.88 10−6 6.89 10−7

PRESS error 2.45 10−4 3.05 10−6 5.27 10−6 1.04 10−6
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simulation has the advantage of propagating uncertainties
represented by arbitrary probability distribution functions it
has the drawback of being computationally expensive. The
POD method and response surface methodology are thus
used for reducing the cost associated with the construction
of the likelihood function. A flowchart overview of the
utilized procedures is presented in Fig. 9.

The likelihood function is computed point by point with-
in the prior distribution’s support (truncation bounds) at a
grid in the four-dimensional space of the material properties
E 0 {E1, E2, ν12, G12}. We chose a 174 grid, which is a
compromise between convergence and computational cost
considerations.

At each of the grid points, E is fixed and we need to
evaluate the probability density function (PDF) of the POD
coefficients, fα E¼Efixed= ðαÞ , at the point α 0 αmeasure. The

PDF of the POD coefficients is determined by propagating
through Monte Carlo with 4,000 simulations the uncertain-
ties in the other model parameters (plate thickness here) and
adding a sampled value of the normally distributed uncer-
tainty in the POD coefficients resulting from measurement
and modeling uncertainty, as described in the previous
subsection.

Physical considerations showed that the resulting
samples must be close to Gaussian so the samples were
replaced by the normal distribution, having the sample
mean and variance-covariance matrix. This Gaussian
nature is due to the fact that the uncertainty resulting
from the measurement noise is Gaussian and the uncer-
tainty due to thickness is proportional to 1/h, which can
in this case be well approximated by a normal distribu-
tion. The distribution fa E¼Efixed= ðαÞ was then evaluated at

the point α 0 αmeasure, leading to fa E¼Efixed= ðαmeasureÞ. In
this way we obtain a discretized likelihood function,
which multiplied by the prior distribution gives us the
posterior distribution of the elastic constants that we
seek to identify.

At this point we want to make the following note.
We found that the overall uncertainty on the POD
coefficients is close to normal, which means that the

Bayesian identification could have been treated within a
purely analytical framework, thus avoiding the need for
expensive Monte Carlo simulations. The analytical treat-
ment would however have no longer been possible if
uncertainties on more complex input parameters would
have been considered leading to a clearly non-Gaussian
distribution on the POD coefficients. In such a case the
Monte Carlo simulations based approach would still
work and this is the purpose why we developed this
more general approach in [23]. For convenience we
reused our already developed approach here, even
though with several days of computational cost this
approach is clearly not numerically the most efficient.
More efficient numerical implementation are certainly
possible and we provide the data files of the experi-
mental results together with this paper such as to allow
interested persons (including possibly ourselves at a
future point) to test other implementations on the same
experimental data.

Appendix 4: Data Structure of the Provided
Measurements

The authors also provide attached to the online version
of the paper the experimental displacement fields
obtained. These are the displacement fields obtained
based on the moiré interferometry images and the
automated phase extraction procedure described in
“Experiment”. The data is provided in matrix form as
.txt files which can be opened with any text editor.
The X.txt file provides the X coordinate (in milli-
meters) of each point where a displacement value is
provided. Similarly the Y.txt file provides the Y coor-
dinate. The U.txt file provides the displacements in
micrometers at each point in the loading direction (Y
direction). The V.txt file provides the displacements in the
orthogonal direction (X direction). Note that the X and Y
direction are related to the actual experiment axes (Fig. 2)
not to the 1 and 2-driections provided in Fig. 1.

Fig. 9 Flow chart of the proce-
dure used to calculate the likeli-
hood function. Cost reduction is
shown in green and dimension-
ality reduction in red
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