
Linear and Nonlinear Algorithms for Stress Separation
in Photoelasticity

S. Yoneyama & S. Arikawa & Y. Kobayashi

Received: 21 February 2011 /Accepted: 20 May 2011 /Published online: 14 June 2011
# Society for Experimental Mechanics 2011

Abstract An experimental-numerical hybrid method for
the stress separation in photoelasticity is proposed in this
study. In the proposed method, boundary conditions for a
local finite element model, that is, tractions along bound-
aries are inversely determined from photoelastic fringes.
Two algorithms are proposed for determining the boundary
condition. One is a linear algorithm in which the tractions
are obtained by the method of linear least-squares from
both principal stress difference and principal direction.
Another is the nonlinear algorithm in which the tractions
are determined only from the principal stress difference.
After determining the boundary conditions for the local
finite element model, the stresses can be obtained by finite
element direct analysis. The effectiveness is demonstrated
by applying the proposed method to a perforated plate
under tension and contact problems. Results show that the
boundary conditions of the local finite element model can
be determined from the photoelastic fringes and then the
individual stresses can be obtained by the proposed method.
Furthermore, the stresses can be evaluated even if the
boundary condition is complicated such as at the contact
surface. It is expected that the proposed method can be
powerful tool for stress analysis.
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Introduction

Optical methods in experimental stress analysis such as
photoelasticity, thermoelasticity and a wide variety of
interferometric methods are useful and valuable techni-
ques because they provide whole-field information on a
specimen surface or the area of interest. However, it is
sometimes difficult to extract desired quantities from the
quantities obtained by these methods. For example,
moiré interferometry provides surface displacements
and then strains are obtained by differentiating the
displacements spatially. However, the differentiation of
measured displacements has the difficulties that the
errors in the measured values give rise to even greater
errors in their derivatives. Thus, various studies have
been performed to obtain strains from measured dis-
placements [1–4].

In the case of photoelasticity, it is well known that the
fringe patterns represent the principal stress difference and
the principal direction, and thus the stress components
themselves cannot be obtained directly. Conventionally, a
method based on the equilibrium equation such as a shear
difference method has been used for the stress separation
in photoelasticity [5, 6]. Several stress separation techni-
ques based on the integration of the equilibrium equations
have been developed [7–9]. The major drawback of the
conventional methods is that the stresses obtained by these
methods usually suffer from error accumulation arising by
finite difference approximation. On the other hand,
various techniques for determining stress components
have also been reported. Patterson and coworkers [10,
11], and Sakagami et al. [12] developed a hybrid method
of photoelasticity and thermoelasticity. In this method, the
difference and the sum of principal stresses are measured
separately, and then, they are combined for obtaining
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stress components. The difference and the sum of
principal stresses can also be obtained by combining
photoelasticity and interferometry [13–16]. The disadvan-
tage of the hybrid methods of photoelasticity and another
experimental method is that the measurement can be
complicated and cumbersome. On the other hand, several
hybrid methods with theoretical analysis or numerical
analysis, and inverse analysis methods have also been
proposed for the stress separation. Chang et al. [17]
determined the coefficients of Airy stress function from
photoelastic fringes for determining stresses. Berghaus
[18] proposed a hybrid method with a finite element
method. In this method, displacement boundary condition
along the axis of symmetry and free boundary for a finite
element method is determined by photoelasticity. Hayabusa
et al. [19] and Chen et al. [20] proposed a hybrid method
with a numerical method such as a boundary element
method. They determined boundary conditions by inverse
analysis from photoelastic fringes and then stresses are
determined by direct analysis.

The stress separation can be performed by the
methods mentioned above. Particularly it can be consid-
ered that the use of numerical methods such as a finite
element method or a boundary element method for the
stress separation is useful because the data processing is
easy and full-field stresses and strains can be obtained
easily. However, inverse boundary value problems are
often ill-posed. Therefore, various additional techniques
should be introduced to the inverse analysis for obtaining
stable and accurate results. In the present study, an
alternative and simple hybrid method for stress separa-
tion in photoelasticity is proposed. Boundary conditions
for a local finite element model, that is, tractions along
the boundaries are determined from photoelastic fringes
inversely. Two algorithms are presented. One is linear
algorithm in which the tractions are determined from the
principal stress difference and the principal direction
using the method of linear least-squares. In another
algorithm, on the other hand, the tractions are determined
only from the principal stress difference using nonlinear
least-squares. After determining the tractions, the stress
components are obtained by finite element direct analy-
sis. The effectiveness of the proposed method is
validated by analyzing the stresses around a hole in a
plate under tension and the contact stresses under normal
and shear load. Results show that the boundary con-
ditions of the local finite element model can be
determined from the photoelastic fringes and then the
individual stresses can be obtained by the proposed
method. Furthermore, the stresses can be determined
even if the boundary condition is complicated such as at
the contact surface. It is expected that the proposed
method can be powerful tool for stress analysis.

Inversion of Boundary Conditions

Basic Principle

Figure 1 shows a typical optical setup for photoelasticity,
that is, a circular polariscope. A birefringent specimen is
placed in the polariscope, and then, photoelastic fringes
appear when the specimen is loaded. The angle 8 of the
principal axis of the specimen is interpreted as the principal
direction, i.e., the isoclinic parameter. Similarly, the
retardation δ of the specimen, that is, the isochromatic
parameter is related to the principal stress difference as [21]

s1 � s2 ¼ dfs
2ph

; ð1Þ

where fs is the material fringe value, h is the thickness of a
specimen, and σ1 and σ2 express the principal stresses,
respectively. Various techniques such as a phase-stepping
method can be used for obtaining the isochromatic and
isoclinic parameters [22–25]. Therefore, the principal stress
difference and the principal direction are obtained in the
region of interest or the whole field of the specimen by
introducing one of the data acquisition and processing
techniques.

In a finite element method, on the other hand, it can be
considered that the reasonably accurate stress distributions
are obtained when the appropriate boundary conditions are
given, provided that appropriate finite element model is
used and material properties are known. In the proposed
method, therefore, the boundary conditions of the analysis
region, that is, the tractions along the boundaries, are
inversely determined from photoelastic fringes. Then, the
stresses are determined by finite element direct analysis by
applying the computed boundary conditions.

Figure 2 schematically shows a two-dimensional finite
element model of the analysis region. The displacements of
some nodes are fixed so that the rigid body motion is not
allowed. Then, a unit force along one of the direction of the
coordinate system is applied to a node at the boundary of
the model. That is, the finite element analysis is performed
under the boundary condition of the unit force on the
boundary. The analysis is repeated by changing the
direction of the unit force and the node at which the unit
force is applied. The stress components at a point (xi, yi) for
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Fig. 1 Typical optical setup for photoelasticity
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the applied unit force Pj = 1 (j = 1~N) are represented as
(σx′)ij, (σy′)ij, and (τxy′)ij. Here, i (= 1~M) is the data index,
j is the index of the applied force, M is the number of the
data points, and N is the number of the forces to be
determined at the nodes along the boundary of the model.
The stress components (σx)i, (σy)i, and (τxy)i at the point
(xi, yi) under the actual applied forces Fj (j = 1~N) can be
expressed using the principle of superposition as

sxð Þi ¼ s
0
x

� �
ij
Fj

sy

� �
i
¼ s

0
y

� �
ij
Fj

txy
� �

i
¼ t

0
xy

� �
ij
Fj

9>>>>>=
>>>>>;

i ¼ 1 � M ; j ¼ 1 � Nð Þ; ð2Þ

where the summation convention is used. That is, for
example,

sxð Þi ¼ s
0
x

� �
ij
Fj i ¼ 1 � M ; j ¼ 1 � Nð Þ

¼
XN
j¼1

s
0
x

� �
ij
Fj i ¼ 1 � Mð Þ

¼ s
0
x

� �
i1
F1 þ s

0
x

� �
i2
F2 þ . . .þ s

0
x

� �
iN
FN i ¼ 1 � Mð Þ:

In equation (2), Fj is the nodal forces along the
boundary. Therefore, the tractions along the boundaries
are determined and subsequent stress analysis can be
performed if the values of Fj are determined.

Linear Algorithm

From the principal stress difference σ1−σ2 and the principal
direction 8 obtained by photoelasticity, the normal stress
difference σx−σy and the shear stress τxy are obtained as

sx � sy ¼ s1 � s2ð Þ cos 28;
txy ¼ 1

2
s1 � s2ð Þ sin 28:

ð3Þ

Therefore, the relationships between the values obtained
by photoelasticity and the nodal forces Fj along the
boundary can be expressed as

sx � sy

� �
i
¼ s

0
x

� �
ij
� s

0
y

� �
ij

� �
Fj i ¼ 1 � M ; j ¼ 1 � Nð Þ;

txy
� �
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0
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� �
ij
Fj i ¼ 1 � M ; j ¼ 1 � Nð Þ;

ð4Þ
where (σx−σy)i and (τxy)i express the normal stress
difference and the shear stress at the point (xi, yi) obtained
by photoelasticity. Equation (4) expresses linear equations
in the unknown coefficients Fj. For numerous data points,
an over-determined set of simultaneous equations is
obtained. In this case, the nodal forces Fj along the
boundary can be estimated using linear least-squares as

F ¼ ATA�1
� �

ATS; ð5Þ
where F, A and S are the nodal force, stresses under the
boundary condition of the unit force and the values obtained
by photoelasticity, respectively. They are expressed as
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:

After determining the nodal force F along the boundary
using equation (5), the stress components can be obtained

by the finite element direct analysis by using the nodal
force F as the boundary condition.

(xi, yi)

Pj=1

Node Element

x

y

Fig. 2 Finite element model
with boundary condition of unit
force
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Nonlinear Algorithm

As is well known, it is difficult to obtain the accurate
values of the principal direction by photoelasticity. The
measured principal direction is sometimes affected by the
isochromatics and the accuracy of quarter-wave plates. In
order to obtain accurate values of the principal direction,
various techniques have been proposed [26, 27]. Because
the accurate values of the principal direction cannot
always be obtained, a method for determining the
boundary condition without the principal direction is also
described below.

The principal stress difference is expressed using the
stress components as

s1 � s2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sx � sy

� �2 þ 4t2xy:
q

ð6Þ

Therefore, the relationship between the experimentally
obtained values of the principal stress difference and the
nodal forces Fj along the boundary can be expressed as

s1 � s2ð Þi
	 
2 ¼ s
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x
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ij
Fj � s
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y

� �
ij
Fj

� �2

þ 4 t
0
xy
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� �2
i ¼ 1 � M ; j ¼ 1 � Nð Þ;

ð7Þ
where (σ1−σ2)i is the principal stress difference obtained by
photoelasticity at the point (xi, yi). Equation (7) is nonlinear
in the unknown parameters Fj. To solve these parameters,
an iterative procedure based on Newton–Raphson method
is employed. Equation (7) is rewritten as

hi ¼ s
0
x

� �
ij
Fj � s

0
y

� �
ij
Fj

� �2
þ 4 t

0
xy

� �
ij
Fj

� �2

� s1 � s2ð Þi2 i ¼ 1 � M ; j ¼ 1 � Nð Þ; ð8Þ
A series of iterative equations based on Taylor’s series

expansions of equation (8) yields the following equations.

hið Þkþ1 ¼ hið Þk þ
@hi
@F1

� �
k

ΔF1 þ . . .þ @hi
@FN

� �
i

ΔFN i ¼ 1 � Mð Þ;

ð9Þ
where subscript k denotes the kth iteration step, and
ΔF1, …, ΔFN are the corrections to the previous estimation
of F1, …, FN. The desired results (hi)k+1 = 0 yield the
following simultaneous equations with respect to the
corrections.

�hi ¼ @hi
@F1

� �
ΔF1 þ . . .þ @hi

@FN

� �
ΔFN i ¼ 1 � Mð Þ;

ð10Þ

The solution of equation (10) in the least-squares sense
is

D ¼ BTB
� ��1

BTH: ð11Þ
In that equation,

D ¼
ΔF

..

.

ΔFN

2
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@h1
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@FN
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. ..
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2
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..

.

�hM

2
664

3
775:

The solution of the matrix equation gives the correction
terms for prior estimates of the coefficients. Accordingly,
an iterative procedure must be used to obtain the best-fit set
of coefficients. Then, the estimates of the unknowns are
revised. This procedure is repeated until the corrections
become acceptably small. After determining the nodal
forces along the boundary, the stress components can be
obtained by the finite element direct analysis by using the
nodal forces as the boundary condition. That is, the stress
separation can be performed. It is noted that because the
method described here uses only the principal stress
difference, the sign of the applied forces along the
boundary cannot be determined. In other words, the
proposed nonlinear algorithm cannot judge whether the
traction is tension or compression. Therefore, the appropri-
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Fig. 3 Perforated plate specimen used for verifying the proposed
method
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ate initial values should be provided for the calculation of
the nonlinear least-squares.

Experimental Verification of the Proposed Method

A simple static problem is analyzed to verify the
proposed method. A perforated plate made of epoxy
resin, 228 mm in height, 50 mm in width and 3 mm in
thickness, having a hole of diameter of 10 mm, is
subjected to the tensile load of P=398 N as shown in
Fig. 3. The material fringe value fs of the material is
determined as 11.48 kN/m by a calibration test. The
specimen is placed in a circular polariscope with the
quarter-wave plates matched for the wavelength of

560 nm. Three monochromatic lights of wavelengths of
500 nm, 550 nm, and 600 nm emitted from a halogen lamp
with interference filters are used as the light source in
order to apply the absolute phase analysis method with
tricolor images [28]. The phase-stepped photoelastic
fringes are collected by a monochromatic CCD camera
with the resolution of 640×480 pixels and 256 Gy levels.
Then, the fringe pattern is analyzed, the ambiguity of
isochromatic phase is corrected and the phase unwrapping
is performed by the method proposed previously [28].

Figure 4(a) shows an example of the photoelastic fringe
pattern around the hole. Applying the phase-stepping
method with 7 images [28, 29], the wrapped phases of the
retardation and the principal direction are obtained as
shown in Fig. 4(b) and (c). The phase map of the

–π

4π

–π/2

π/2

phase
(rad)

phase
(rad)

(a) (b)
–π/4

π/4

phase
(rad)

–π

π

phase
(rad)

10 mm

(c)

–π

π

phase
(rad)

(d) (e) (f)

Fig. 4 (a) Photoelastic fringe
pattern; (b) wrapped retardation
with ambiguity of sign;
(c) wrapped principal direction;
(d) wrapped retardation;
(e) unwrapped retardation;
(f) unwrapped principal
direction

Elements: 200
Nodes: 680

A B

CD

x

y

O

Fig. 5 Finite element model of analysis region
Fig. 6 Example of the variation of nodal force during iteration
process in nonlinear algorithm
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retardation in Fig. 4(b) contains the region of ambiguity
where the mathematical sign of the retardation is wrong. In
addition, the values of the retardation in Fig. 4(b) are lying
in the range of the −π to π rad. On the other hand, the
principal direction in Fig. 4(c) lies in the range from −π/4
to π/4 rad whereas the actual value should be in the range
from −π/2 to π/2 rad. The ambiguity of the retardation is
corrected using the phase maps obtained for the three
monochromatic wavelengths as shown in Fig. 4(d). Then,
the unwrapped phases of the retardation and the principal
direction are obtained, as shown in Fig. 4(e) and (f). The
principal stress difference and the principal direction at the
number of the data points M=2394 on the specimen surface
are extracted and used as the data input into the algorithm
by the proposed method.

The stress separation is performed in the 20 mm×20 mm
region around the hole, indicated by ABCD, shown in
Fig. 3. Figure 5 shows the finite element model of the
20 mm×20 mm region used for the proposed method. In
this model, 8-noded isoparametric elements are used. The
numbers of the elements and the nodes are 200 and 680,
respectively. In order to obtain the stresses under the unit
force at a point on the boundary, the displacements at some
nodes must be fixed to prevent the rigid body motion. In

this study, the x and y components of the displacement at
the point A and the y directional displacement at the point
B are assumed not to move though these points are
displaced actually. This assumption is valid because the
rigid body translation and the rotation of the analysis region
do not affect the stress distribution. The nodal forces at the
other nodes on the boundary are obtained by the proposed
method. The number of the nodes along the boundary is 80
and thus the number of the nodal forces along the boundary
is 160. That is, the number of the nodal forces to be
determined is N=157 because the three displacement
components at the points A and B are fixed.

The nodal forces are determined using both linear and
nonlinear algorithms. These calculations, not only the least-
squares but also finite element analysis, are performed
using C language programs made by the authors. In the
analysis by nonlinear algorithm, the arbitrary initial values
of −1 N are given at all nodes at which the nodal forces are
to be determined. Then, the iteration is stopped when the
values of the correction are smaller than 0.001 N. Figure 6
shows an example of the variation of nodal force at a point
during iteration process in the nonlinear algorithm. The
value of the nodal force is corrected by the Newton–
Raphson method. Then, the value converges to a constant
value as shown. Because the nodal forces at 157 points are
simultaneously determined in the iteration process, the
convergence is not fast and the number of iteration of about
40 is required in this example.

The tractions along the boundary CD determined from
the nodal forces obtained by the linear and nonlinear
algorithms are shown in Fig. 7. In this figure, solid curves
represent the values obtained by finite element direct
analysis. As shown in this figure, the tractions on the
boundary of the analysis area obtained by the proposed
method show good agreement with the values obtained by
the direct analysis. In addition, the significant difference
between the tractions obtained using the linear and
nonlinear algorithms is not observed. The average differ-
ences between the values obtained by the proposed method

Fig. 7 Tractions along the boundary CD

Fig. 8 Stresses obtained by the proposed linear algorithm: (a) σx; (b) σy; (c) τxy
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and the direct analysis are 0.13 N for the linear algorithm
and 0.26 N for the nonlinear algorithm. Using the nodal
forces obtained by the proposed method as the input data to
finite element analysis, the stresses are computed. Figures 8
and 9 show the stresses around the hole obtained by the
linear and nonlinear algorithms, respectively. The stresses
obtained by finite element direct analysis are also shown in
Fig. 10 for comparison. As shown in these figures, the
stress components are obtained from the photoelastic
fringes by the proposed linear to nonlinear algorithms.
The average difference between the y directional normal
stresses σy obtained by the linear algorithm and direct ones
is 0.11 MPa, the maximum difference is 0.66 MPa, and the
standard deviation is 0.10 MPa. On the other hand, the
average difference, the maximum difference and the
standard deviation between the values by the nonlinear
algorithm and those by the direct analysis are 0.28 MPa,
0.68 MPa, and 0.12 MPa, respectively. It seems that the
results obtained by the linear algorithm are better than those
by the nonlinear algorithm. However, in the linear
algorithm, the principal stress difference as well as the
principal direction is used for obtaining the shear stress and
the normal stress difference. Therefore, the results of the
stress separation are affected by the accuracy of the
principal direction. The principal stress difference can be

accurately evaluated in photoelasticity. The principal
direction is also accurately evaluated in this result employ-
ing the three wavelengths technique. As mentioned,
however, it is known that the accurate evaluation of the
principal direction is difficult even if a phase-stepping
method is introduced. In this case, therefore, the nonlinear
algorithm should be used for obtaining the better results. The
drawback of the nonlinear algorithm is that the sign of the
nodal force cannot be determined. Therefore, appropriate
initial values of the nodal force are determined by the linear
algorithm and then the nonlinear algorithm is used for
determining the tractions if the accurate result of the
principal direction is not obtained. Then, the stresses with
appropriate sign can be obtained.

Contact Stress Analysis

As is well known, it is difficult to evaluate contact stresses
accurately by numerical or theoretical methods because
actual condition at the contact surface, for example, the
coefficient of friction, the area of contact, the area of slip
and stick, cannot be known. Thus, photoelasticity has been
used for the contact stress analysis [30, 31], and the results
of the contact stress analysis by a numerical method have

Fig. 9 Stresses obtained by the proposed nonlinear algorithm: (a) σx; (b) σy; (c) τxy

Fig. 10 Stresses obtained by finite element direct analysis: (a) σx; (b) σy; (c) τxy
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been validated by experiments [32]. Therefore, contact
stress analysis is one of the best examples of the application
of photoelasticity.

Figure 11 shows the specimen and the loading condition
used in this study. A disk specimen of 25 mm radius and
3 mm thickness is placed in a wide groove between two
inclined side-walls and is compressed into contact at the top
of the specimen in the normal direction. Not only the disk
specimen but the inclined walls and the indenter at the top
are made of epoxy resin. This setup can realize three types
of contact state including compression and sliding. The
compressive load of P=62 N is applied to the specimen,
then, the photoelastic fringes at the contact surfaces A, B
and C are observed by a CCD camera (640×480 pixels×
8 bits). The phase-stepping method with three monochro-
matic lights is again used for the fringe pattern analysis
[28].

The examples of the photoelastic fringes near the contact
surfaces A, B and C are shown in Figure 12. As shown in
these figures, the maximum fringe order does not appear at
the contact surface but a small distance from it. This is the
typical fringe pattern of contact problems [30–33]. The
eccentric fringe pattern is observed at the contact surface B
under the normal and the tangential loads unlike the fringe
pattern at the contact surface A under the normal load. On
the other hand, the complicated fringe pattern where the
small fringe loops appear at the contact surface is observed
at the contact surface C. It can be considered that the small

fringe loops at the contact surface is generated by the
influence of not only the tangential load but the slip
between contact surfaces.

The stress separations are performed by the proposed
method in the 3 mm×1 mm regions inside the disk
specimen at the contact surfaces A, B and C. The regions
for analysis are indicated in Fig. 12 as aAbAcAdA for the
contact surface A, aBbBcBdB for the contact surface B, and
aCbCcCdC for the contact surface C. The local coordinate
systems, shown in Fig. 11, are used for the subsequent
analysis. Figure 13 shows the finite element model of the
3 mm×1 mm region used for the stress separation. The
8-noded isoparametric elements are again used for the finite
element model. It is noted that the linear algorithm is used
at first, then, the results of the nodal forces obtained by the
linear algorithm are used as the initial values for the
nonlinear algorithm for obtaining the final results in order
to avoid the influence of the inaccuracies of the principal
direction.

Figure 14 shows the subsurface stress components at the
contact surfaces A, B and C obtained by the proposed
method. At the contact surfaces A and B, the reasonable
stress distributions under the normal load at A and the
normal and tangential loads at B are obtained. It is observed
that the compressive stress σy is higher than the stress σx on
the contact surface A even if the magnitudes of these
stresses are identical in Hertz contact theory where the
friction at the contact surface is ignored [33]. The stress
distributions at the contact surface B are distorted by the
effect of the load of the tangential direction. On the other
hand, the complicated stress distributions are observed at
the contact surface C reflecting the complicated fringe

Load P

Epoxy resin
Thickness=3mm

π/4 rad
5π/12 rad

Contact
surface A

Contact
surface B

Contact
surface C

xB

y B

xA
yA

xC

y C

50 m
m

(xA, yA)
(xB, yB)
(xC, y C)

Local coordinate system
at contact surface}

Fig. 11 Specimen and loading condition for contact stress analysis
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Fig. 13 Finite element model for contact stress analysis
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Fig. 12 Photoelastic fringe
patterns and region for
analysis: (a) contact surface A;
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pattern at the contact surface. It can be considered that there
are the regions of stick and slip on the contact surface C
because the stresses vary drastically along the contact
surface. The maximum shear stresses in plane, that are
proportional to the isochromatics fringe order are also
computed from the stress components in Fig. 14. Compar-
ing the distributions of the maximum shear stresses in
Fig. 15 with the isochromatics fringes in Fig. 12, it can be
considered again that the reasonable results are obtained by
the proposed method.

Conclusions

In this study, an experimental-numerical hybrid method
for determining stress components in photoelasticity is
proposed. Boundary conditions for a local finite element
model are inversely determined from the principal stress
difference and the principal direction in linear algorithm.
On the other hand, the boundary conditions can be
determined from the principal stress difference if the
nonlinear algorithm is used. Then, the stresses are
obtained by finite element direct analysis using the
computed boundary conditions. The effectiveness is
validated by applying the proposed method to a plate
with a hole under tension and contact problems. Results
show that the boundary conditions of the local finite
element model can be determined from the photoelastic

Fig. 14 Subsurface stresses: (a)~(c) σx, σy and τxy at contact surface A; (d)~(f) σx, σy and τxy at contact surface B; (g)~(i) σx, σy and τxy at
contact surface C

Fig. 15 Maximum shear stress τ1 in plane: (a) contact surface A; (b)
contact surface B; (c) contact surface C
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fringes and then the individual stresses can be obtained by
the proposed method. It is expected that the proposed
method can be powerful tool for stress analysis.
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